- home
- Search
- Energy Research
- 7. Clean energy
- AU
- CA
- University of Queensland
- Energy Research
- 7. Clean energy
- AU
- CA
- University of Queensland
description Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP130101714Mahnaz Dadkhah; Mark J. Biggs; Mark J. Biggs; Cameron J. Shearer; Joseph G. Shapter; Munkhbayar Batmunkh; Munkhbayar Batmunkh;handle: 2440/102862
AbstractHigh‐performance dye‐sensitized solar cell (DSSC) devices rely on photoanodes that possess excellent light‐harvesting capabilities and high surface areas for sufficient dye adsorption. In this work, morphologically controlled SnO2 microstructures were synthesized and used as an efficient light‐backscattering layer on top of a nanocrystalline TiO2 layer to prepare a double‐layered photoanode. By optimizing the thickness of both the TiO2 bottom layer and the SnO2 top layer, a high power conversion efficiency (PCE) of 7.8 % was achieved, an enhancement of approximately 38 % in the efficiency compared with that of a nanocrystalline TiO2‐only photoanode (5.6 %). We attribute this efficiency improvement to the superior light‐backscattering capability of the SnO2 microstructures.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 AustraliaPublisher:Elsevier BV Authors: Diniz Da Costa, J. C.; Prasad, P.; Pagan, R. J.;In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.
Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1205/095758204323065957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1205/095758204323065957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Duarte de Paula Costa, Micheli; Adame, Maria Fernanda; Bryant, Catherine V.; Hill, Jack; +10 AuthorsDuarte de Paula Costa, Micheli; Adame, Maria Fernanda; Bryant, Catherine V.; Hill, Jack; Kellaway, Jeffrey J.; Lovelock, Catherine E.; Ola, Anne; Rasheed, Michael A.; Salinas, Christian; Serrano, Oscar; Waltham, Nathan; York, Paul H.; Young, Mary; Macreadie, Peter;pmid: 36870497
Vegetated coastal ecosystems, in particular mangroves, tidal marshes and seagrasses are highly efficient at sequestering and storing carbon, making them valuable assets for climate change mitigation and adaptation. The state of Queensland, in northeastern Australia, contains almost half of the total area of these blue carbon ecosystems in the country, yet there are few detailed regional or state-wide assessments of their total sedimentary organic carbon (SOC) stocks. We compiled existing SOC data and used boosted regression tree models to evaluate the influence of environmental variables in explaining the variability in SOC stocks, and to produce spatially explicit blue carbon estimates. The final models explained 75 % (for mangroves and tidal marshes) and 65 % (for seagrasses) of the variability in SOC stocks. Total SOC stocks in the state of Queensland were estimated at 569 ± 98 Tg C (173 ± 32 Tg C, 232 ± 50 Tg C, and 164 ± 16 Tg C from mangroves, tidal marshes and seagrasses, respectively). Regional predictions for each of Queensland's eleven Natural Resource Management regions revealed that 60 % of the state's SOC stocks occurred within three regions (Cape York, Torres Strait and Southern Gulf Natural Resource Management regions) due to a combination of high values of SOC stocks and large areas of coastal wetlands. Protected areas in Queensland play an important role in conserving SOC assets in Queensland's coastal wetlands. For example, ~19 Tg C within terrestrial protected areas, ~27 Tg C within marine protected areas and ~ 40 Tg C within areas of matters of State Environmental Significance. Using multi-decadal (1987-2020) mapped distributions of mangroves in Queensland; we found that mangrove area increased by approximately 30,000 ha from 1987 to 2020, which led to temporal fluctuations in mangrove plant and SOC stocks. We estimated that plant stocks decreased from ~45 Tg C in 1987 to ~34.2 Tg C in 2020, while SOC stocks remained relatively constant from ~107.9 Tg C in 1987 to 108.0 Tg C in 2020. Considering the level of current protection, emissions from mangrove deforestation are potentially very low; therefore, representing minor opportunities for mangrove blue carbon projects in the region. Our study provides much needed information on current trends in carbon stocks and their conservation in Queensland's coastal wetlands, while also contributing to guide future management actions, including blue carbon restoration projects.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Informa UK Limited Authors: Yin, Kwong-sang; Ward, Adrian; Dargusch, Paul; Halog, Anthony;ABSTRACTIn 2012, a total of 13.1 million tonnes of carbon dioxide were emitted by 14 airlines while transporting 72 per cent of international passengers into and out of Australia in 2012. With passenger and cargo traffic growing at between five to six per cent annually from 2013 to 2033, acquiring more fuel efficient aircraft to both renew the existing fleet and to service growth has the greatest potential in reducing emissions over the next 20 years. Our analysis shows that implementing carbon dioxide emissions abatement options such as installing light weight seats, iPad electronic flight bags, winglets, washing aircraft engines and reducing the number of engines used during taxiing, all offer net financial savings when considered over 20 years. Acquiring new fuel efficient aircraft has the biggest impact on emissions reduction. Low interest loans and longer loan repayment periods may incentivise airlines to acquire more fuel efficient aircraft to service traffic growth but other complimentary incentive...
International Journa... arrow_drop_down International Journal of Sustainable TransportationArticle . 2017 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15568318.2017.1341575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainable TransportationArticle . 2017 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15568318.2017.1341575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Authors: Chattopadhyay, Debabrata; Bazilian, Morgan; Lilienthal, Peter;Providing access to electricity for the roughly 3 billion people who currently have no access or limited access to reliable service is a fundamental social and economic development challenge. A significant part of this population lives far away from the power grid, mostly in rural areas, where mini-grids could go far in meeting this enormous demand.
The Electricity Jour... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tej.2015.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Electricity Jour... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tej.2015.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Togar W.S. Panjaitan; Togar W.S. Panjaitan; Paul Dargusch; David Wadley; Ammar Abdul Aziz;Abstract A key challenge for heavy industry in emerging economies is how to meet international greenhouse gas (GHG) emission standards since they are often based on the conditions and capacities of manufacturing in advanced countries. Firms in developing nations are typically cost-driven and reliant on older, less efficient technology: very few have achieved the relevant targets. Cement making underscores the point: no study to date has specifically quantified, in technical and financial terms, the gap between existing firm performance and global GHG emission standards. We examine Indonesia's largest cement manufacturing facility to investigate what needs to be done to overcome the discrepancy. The article starts by reviewing key contextual issues such as the facility's location, scale, organisational configuration, available materials, energy use, and technological capacities. The plant's direct emission intensity is 0.69 t CO2e/t cement, higher than the global target for 2030 (0.55 t CO2e/t). Analysis reveals six potential emissions reduction activities: (1) utilizing fly ash as a clinker substitute; (2) employing limestone as a clinker substitute; (3) using biomass from rice husks as an alternative fuel; (4) adding pre-heating stages in kilns; (5) waste heat recovery for power generation; and (6) using refused-derived fuel from municipal solid waste as an alternative fuel. These measures, if adopted in full, could reduce GHGs at the facility by up to 33%, or a total of 34,145,190 t CO2e over a 10-year timeframe (2020–2030). This abatement action would leave the facility's direct emissions intensity to 0.48 t CO2e/t cement. In present values, assuming a 10% discount rate, they would result in savings of US$415 million for a US$94 million outlay. Despite the apparent technical and financial advantages, all measures together are unlikely to be adopted, since the plant studied is well advanced in its lifecycle and the parent company is experiencing financial constraints common to those in developing nations.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.128604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.128604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Elsevier BV Authors: Neupane, Binod; Halog, Anthony; Dhungel, Shashi;Abstract Besides the apparent need to reduce greenhouse gas emissions, other important factors contributing to the renewed interest in biofuels are energy security concerns and the need of sustainable transportation fuel. Nearly 30% of the annual CO2 emissions in the U.S. come from the transportation sector and more than half of the fuel is imported. Biofuels appear to be a promising option to reduce carbon dioxide emissions, and the reliance on imported oil concomitantly. The interest on (ligno) cellulosic ethanol is gaining momentum as corn-based ethanol is criticized for using agricultural outputs for fuel production. Among many lignocellulosic feedstocks, woodchips is viewed as one of the most promising feedstocks for producing liquid transportation fuels. The renewable and carbon neutral nature of the feedstocks, similar chemical and physical properties to gasoline, and the low infrastructure cost due to the availability of fuel flex vehicles and transportation networks make (ligno) cellulosic bioethanol an attractive option. An in-depth LCA of woodchips shows that harvesting and woodchips processing stage and transportation to the facility stage emit large amount of environmental pollutants compared to other life cycle stages of ethanol production. Our analysis also found that fossil fuel consumption and respiratory inorganic effects are the two most critical environmental impact categories in woodchips production. We have used Eco-indicator 99 based cradle-to-gate LCA method with a functional unit of 4 m3 of dry hardwood chips production.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2010.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2010.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Zou, Quanle; Lin, Baiquan; Zheng, Chunshan; Hao, Zhiyong; Zhai, Cheng; Liu, Ting; Liang, Jinyan; Yan, Fazhi; Yang, Wei; Zhu, Chuanjie;Coal bed Methane (CBM), a primary component of natural gas, is a relatively clean source of energy. Nevertheless, the impact of considerable coal mine methane emission on climate change in China has gained an increasing attention as coal production has powered the country's economic development. It is well-known that coal bed methane is a typical greenhouse gas, the greenhouse effect index of which is 30 times larger than that of carbon dioxide. Besides, gas disasters such as gas explosive and outburst, etc. pose a great threat to the safety of miners. Therefore, measures must be taken to capture coal mine methane before mining. This helps to enhance safety during mining and extract an environmentally friendly gas as well. However, as a majority of coal seams in China have low-permeability, it is difficult to achieve efficient methane drainage. Enhancing coal permeability is a good choice for high-efficiency drainage of coal mine methane. In this paper, a modified coal-methane co-exploitation model was established and a combination of drilling–slotting-separation–sealing was proposed to enhance coal permeability and CBM recovery. Firstly, rapid drilling assisted by water-jet and significant permeability enhancement via pressure relief were investigated, guiding the fracture network formation around borehole for high efficient gas flow. Secondly, based on the principle of swirl separation, the coal–water–gas separation instrument was developed to eliminate the risk of gas accumulation during slotting and reduce the gas emission from the ventilation air. Thirdly, to improve the performance of sealing material, we developed a novel cement-based composite sealing material based on the microcapsule technique. Additionally, a novel sealing–isolation combination technique was also proposed. Results of field test indicate that gas concentration in slotted boreholes is 1.05–1.91 times higher than that in conventional boreholes. Thus, the proposed novel integrated techniques achieve the goal of high-efficiency coal bed methane recovery.
Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2015.07.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2015.07.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981 AustraliaPublisher:Elsevier BV Authors: Karunaratne N.D.;The belief that the price mechanism can be used exclusively to combat problems arising from growing energy shortages has led to the neglect of the repercussions of energy conservation on the macroeconomic problems of growth and development. Moreover, many studies consider only the direct effects of energy use and concentrate on petroleum shortages, so underestimating the total repercussion and structural dependence associated with changes in energy demand in Australia. This study attempts to overcome these gaps by modifying input-output modelling to estimate all primary energy demand for fossil fuels in Australia. The complex interactions between energy conservation and macroeconomic goals are investigated at sectoral levels. The optimal sectors that meet macroeconomic goals and energy constraints simultaneously have been identified using simple, but powerful, analytical tools. The tradeoffs between energy use and macroeconomic objectives are quantified using energy as a numeraire. The conflicts that emerge between macro-planning criteria and energy use efficiency are exemplified and the need to reconcile them using the value judgements of political decisionmakers is clarified. The limitations and the scope for refinement of the methodology are also discussed.
Energy Economics arrow_drop_down The University of Queensland: UQ eSpaceArticle . 1981Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0140-9883(81)90037-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Economics arrow_drop_down The University of Queensland: UQ eSpaceArticle . 1981Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0140-9883(81)90037-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Miriam Peces; Joan Mata-Álvarez; Sergi Astals; Sergi Astals; Joan Dosta; M.S. Romero-Güiza; Xavier Fonoll;Anaerobic digestion is a commercial reality for several kinds of waste. Nonetheless, anaerobic digestion of single substrates presents some drawbacks linked to substrate characteristics. Anaerobic co-digestion, the simultaneous digestion of two or more substrates, is a feasible option to overcome the drawbacks of mono-digestion and to improve plants economic feasibility. At present, since 50% of the publication has been published in the last two years, anaerobic co-digestion can be considered the most relevant topic within anaerobic digestion research. The aim of this paper is to present a review of the achievements and perspectives of anaerobic co-digestion within the period 2010-2013, which represents a continuation of the previous review made by the authors [3]. In the present review, the publications have been classified as for the main substrate, i.e., animal manures, sewage sludge and biowaste. Animal manures stand as the most reported substrate, agro-industrial waste and the organic fraction of the municipal solid waste being the most reported co-substrate. Special emphasis has been made to the effect of the co-digestion over digestate quality, since land application seems to be the best option for digestate recycling. Traditionally, anaerobic co-digestion between sewage sludge and the organic fraction of the municipal solid waste has been the most reported co-digestion mixture. However, between 2010 and 2013 the publications dealing with fats, oils and greases and algae as sludge co-substrate have increased. This is because both co-substrates can be obtained at the same wastewater treatment plant. In contrast, biowaste as a main substrate has not been as studied as manures or sewage sludge. Finally, three interdisciplinary sections have been written for addressing novelty aspects in anaerobic co-digestion, i.e., pre-treatments, microbial dynamics and modeling. However, much effort needs to be done in these later aspects to better understand and predict anaerobic co-digestion.
Renewable and Sustai... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 821 citations 821 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP130101714Mahnaz Dadkhah; Mark J. Biggs; Mark J. Biggs; Cameron J. Shearer; Joseph G. Shapter; Munkhbayar Batmunkh; Munkhbayar Batmunkh;handle: 2440/102862
AbstractHigh‐performance dye‐sensitized solar cell (DSSC) devices rely on photoanodes that possess excellent light‐harvesting capabilities and high surface areas for sufficient dye adsorption. In this work, morphologically controlled SnO2 microstructures were synthesized and used as an efficient light‐backscattering layer on top of a nanocrystalline TiO2 layer to prepare a double‐layered photoanode. By optimizing the thickness of both the TiO2 bottom layer and the SnO2 top layer, a high power conversion efficiency (PCE) of 7.8 % was achieved, an enhancement of approximately 38 % in the efficiency compared with that of a nanocrystalline TiO2‐only photoanode (5.6 %). We attribute this efficiency improvement to the superior light‐backscattering capability of the SnO2 microstructures.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 AustraliaPublisher:Elsevier BV Authors: Diniz Da Costa, J. C.; Prasad, P.; Pagan, R. J.;In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.
Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1205/095758204323065957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1205/095758204323065957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Duarte de Paula Costa, Micheli; Adame, Maria Fernanda; Bryant, Catherine V.; Hill, Jack; +10 AuthorsDuarte de Paula Costa, Micheli; Adame, Maria Fernanda; Bryant, Catherine V.; Hill, Jack; Kellaway, Jeffrey J.; Lovelock, Catherine E.; Ola, Anne; Rasheed, Michael A.; Salinas, Christian; Serrano, Oscar; Waltham, Nathan; York, Paul H.; Young, Mary; Macreadie, Peter;pmid: 36870497
Vegetated coastal ecosystems, in particular mangroves, tidal marshes and seagrasses are highly efficient at sequestering and storing carbon, making them valuable assets for climate change mitigation and adaptation. The state of Queensland, in northeastern Australia, contains almost half of the total area of these blue carbon ecosystems in the country, yet there are few detailed regional or state-wide assessments of their total sedimentary organic carbon (SOC) stocks. We compiled existing SOC data and used boosted regression tree models to evaluate the influence of environmental variables in explaining the variability in SOC stocks, and to produce spatially explicit blue carbon estimates. The final models explained 75 % (for mangroves and tidal marshes) and 65 % (for seagrasses) of the variability in SOC stocks. Total SOC stocks in the state of Queensland were estimated at 569 ± 98 Tg C (173 ± 32 Tg C, 232 ± 50 Tg C, and 164 ± 16 Tg C from mangroves, tidal marshes and seagrasses, respectively). Regional predictions for each of Queensland's eleven Natural Resource Management regions revealed that 60 % of the state's SOC stocks occurred within three regions (Cape York, Torres Strait and Southern Gulf Natural Resource Management regions) due to a combination of high values of SOC stocks and large areas of coastal wetlands. Protected areas in Queensland play an important role in conserving SOC assets in Queensland's coastal wetlands. For example, ~19 Tg C within terrestrial protected areas, ~27 Tg C within marine protected areas and ~ 40 Tg C within areas of matters of State Environmental Significance. Using multi-decadal (1987-2020) mapped distributions of mangroves in Queensland; we found that mangrove area increased by approximately 30,000 ha from 1987 to 2020, which led to temporal fluctuations in mangrove plant and SOC stocks. We estimated that plant stocks decreased from ~45 Tg C in 1987 to ~34.2 Tg C in 2020, while SOC stocks remained relatively constant from ~107.9 Tg C in 1987 to 108.0 Tg C in 2020. Considering the level of current protection, emissions from mangrove deforestation are potentially very low; therefore, representing minor opportunities for mangrove blue carbon projects in the region. Our study provides much needed information on current trends in carbon stocks and their conservation in Queensland's coastal wetlands, while also contributing to guide future management actions, including blue carbon restoration projects.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Informa UK Limited Authors: Yin, Kwong-sang; Ward, Adrian; Dargusch, Paul; Halog, Anthony;ABSTRACTIn 2012, a total of 13.1 million tonnes of carbon dioxide were emitted by 14 airlines while transporting 72 per cent of international passengers into and out of Australia in 2012. With passenger and cargo traffic growing at between five to six per cent annually from 2013 to 2033, acquiring more fuel efficient aircraft to both renew the existing fleet and to service growth has the greatest potential in reducing emissions over the next 20 years. Our analysis shows that implementing carbon dioxide emissions abatement options such as installing light weight seats, iPad electronic flight bags, winglets, washing aircraft engines and reducing the number of engines used during taxiing, all offer net financial savings when considered over 20 years. Acquiring new fuel efficient aircraft has the biggest impact on emissions reduction. Low interest loans and longer loan repayment periods may incentivise airlines to acquire more fuel efficient aircraft to service traffic growth but other complimentary incentive...
International Journa... arrow_drop_down International Journal of Sustainable TransportationArticle . 2017 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15568318.2017.1341575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainable TransportationArticle . 2017 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15568318.2017.1341575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Authors: Chattopadhyay, Debabrata; Bazilian, Morgan; Lilienthal, Peter;Providing access to electricity for the roughly 3 billion people who currently have no access or limited access to reliable service is a fundamental social and economic development challenge. A significant part of this population lives far away from the power grid, mostly in rural areas, where mini-grids could go far in meeting this enormous demand.
The Electricity Jour... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tej.2015.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Electricity Jour... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tej.2015.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Togar W.S. Panjaitan; Togar W.S. Panjaitan; Paul Dargusch; David Wadley; Ammar Abdul Aziz;Abstract A key challenge for heavy industry in emerging economies is how to meet international greenhouse gas (GHG) emission standards since they are often based on the conditions and capacities of manufacturing in advanced countries. Firms in developing nations are typically cost-driven and reliant on older, less efficient technology: very few have achieved the relevant targets. Cement making underscores the point: no study to date has specifically quantified, in technical and financial terms, the gap between existing firm performance and global GHG emission standards. We examine Indonesia's largest cement manufacturing facility to investigate what needs to be done to overcome the discrepancy. The article starts by reviewing key contextual issues such as the facility's location, scale, organisational configuration, available materials, energy use, and technological capacities. The plant's direct emission intensity is 0.69 t CO2e/t cement, higher than the global target for 2030 (0.55 t CO2e/t). Analysis reveals six potential emissions reduction activities: (1) utilizing fly ash as a clinker substitute; (2) employing limestone as a clinker substitute; (3) using biomass from rice husks as an alternative fuel; (4) adding pre-heating stages in kilns; (5) waste heat recovery for power generation; and (6) using refused-derived fuel from municipal solid waste as an alternative fuel. These measures, if adopted in full, could reduce GHGs at the facility by up to 33%, or a total of 34,145,190 t CO2e over a 10-year timeframe (2020–2030). This abatement action would leave the facility's direct emissions intensity to 0.48 t CO2e/t cement. In present values, assuming a 10% discount rate, they would result in savings of US$415 million for a US$94 million outlay. Despite the apparent technical and financial advantages, all measures together are unlikely to be adopted, since the plant studied is well advanced in its lifecycle and the parent company is experiencing financial constraints common to those in developing nations.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.128604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.128604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Elsevier BV Authors: Neupane, Binod; Halog, Anthony; Dhungel, Shashi;Abstract Besides the apparent need to reduce greenhouse gas emissions, other important factors contributing to the renewed interest in biofuels are energy security concerns and the need of sustainable transportation fuel. Nearly 30% of the annual CO2 emissions in the U.S. come from the transportation sector and more than half of the fuel is imported. Biofuels appear to be a promising option to reduce carbon dioxide emissions, and the reliance on imported oil concomitantly. The interest on (ligno) cellulosic ethanol is gaining momentum as corn-based ethanol is criticized for using agricultural outputs for fuel production. Among many lignocellulosic feedstocks, woodchips is viewed as one of the most promising feedstocks for producing liquid transportation fuels. The renewable and carbon neutral nature of the feedstocks, similar chemical and physical properties to gasoline, and the low infrastructure cost due to the availability of fuel flex vehicles and transportation networks make (ligno) cellulosic bioethanol an attractive option. An in-depth LCA of woodchips shows that harvesting and woodchips processing stage and transportation to the facility stage emit large amount of environmental pollutants compared to other life cycle stages of ethanol production. Our analysis also found that fossil fuel consumption and respiratory inorganic effects are the two most critical environmental impact categories in woodchips production. We have used Eco-indicator 99 based cradle-to-gate LCA method with a functional unit of 4 m3 of dry hardwood chips production.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2010.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2010.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Zou, Quanle; Lin, Baiquan; Zheng, Chunshan; Hao, Zhiyong; Zhai, Cheng; Liu, Ting; Liang, Jinyan; Yan, Fazhi; Yang, Wei; Zhu, Chuanjie;Coal bed Methane (CBM), a primary component of natural gas, is a relatively clean source of energy. Nevertheless, the impact of considerable coal mine methane emission on climate change in China has gained an increasing attention as coal production has powered the country's economic development. It is well-known that coal bed methane is a typical greenhouse gas, the greenhouse effect index of which is 30 times larger than that of carbon dioxide. Besides, gas disasters such as gas explosive and outburst, etc. pose a great threat to the safety of miners. Therefore, measures must be taken to capture coal mine methane before mining. This helps to enhance safety during mining and extract an environmentally friendly gas as well. However, as a majority of coal seams in China have low-permeability, it is difficult to achieve efficient methane drainage. Enhancing coal permeability is a good choice for high-efficiency drainage of coal mine methane. In this paper, a modified coal-methane co-exploitation model was established and a combination of drilling–slotting-separation–sealing was proposed to enhance coal permeability and CBM recovery. Firstly, rapid drilling assisted by water-jet and significant permeability enhancement via pressure relief were investigated, guiding the fracture network formation around borehole for high efficient gas flow. Secondly, based on the principle of swirl separation, the coal–water–gas separation instrument was developed to eliminate the risk of gas accumulation during slotting and reduce the gas emission from the ventilation air. Thirdly, to improve the performance of sealing material, we developed a novel cement-based composite sealing material based on the microcapsule technique. Additionally, a novel sealing–isolation combination technique was also proposed. Results of field test indicate that gas concentration in slotted boreholes is 1.05–1.91 times higher than that in conventional boreholes. Thus, the proposed novel integrated techniques achieve the goal of high-efficiency coal bed methane recovery.
Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2015.07.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2015.07.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981 AustraliaPublisher:Elsevier BV Authors: Karunaratne N.D.;The belief that the price mechanism can be used exclusively to combat problems arising from growing energy shortages has led to the neglect of the repercussions of energy conservation on the macroeconomic problems of growth and development. Moreover, many studies consider only the direct effects of energy use and concentrate on petroleum shortages, so underestimating the total repercussion and structural dependence associated with changes in energy demand in Australia. This study attempts to overcome these gaps by modifying input-output modelling to estimate all primary energy demand for fossil fuels in Australia. The complex interactions between energy conservation and macroeconomic goals are investigated at sectoral levels. The optimal sectors that meet macroeconomic goals and energy constraints simultaneously have been identified using simple, but powerful, analytical tools. The tradeoffs between energy use and macroeconomic objectives are quantified using energy as a numeraire. The conflicts that emerge between macro-planning criteria and energy use efficiency are exemplified and the need to reconcile them using the value judgements of political decisionmakers is clarified. The limitations and the scope for refinement of the methodology are also discussed.
Energy Economics arrow_drop_down The University of Queensland: UQ eSpaceArticle . 1981Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0140-9883(81)90037-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Energy Economics arrow_drop_down The University of Queensland: UQ eSpaceArticle . 1981Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0140-9883(81)90037-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Elsevier BV Miriam Peces; Joan Mata-Álvarez; Sergi Astals; Sergi Astals; Joan Dosta; M.S. Romero-Güiza; Xavier Fonoll;Anaerobic digestion is a commercial reality for several kinds of waste. Nonetheless, anaerobic digestion of single substrates presents some drawbacks linked to substrate characteristics. Anaerobic co-digestion, the simultaneous digestion of two or more substrates, is a feasible option to overcome the drawbacks of mono-digestion and to improve plants economic feasibility. At present, since 50% of the publication has been published in the last two years, anaerobic co-digestion can be considered the most relevant topic within anaerobic digestion research. The aim of this paper is to present a review of the achievements and perspectives of anaerobic co-digestion within the period 2010-2013, which represents a continuation of the previous review made by the authors [3]. In the present review, the publications have been classified as for the main substrate, i.e., animal manures, sewage sludge and biowaste. Animal manures stand as the most reported substrate, agro-industrial waste and the organic fraction of the municipal solid waste being the most reported co-substrate. Special emphasis has been made to the effect of the co-digestion over digestate quality, since land application seems to be the best option for digestate recycling. Traditionally, anaerobic co-digestion between sewage sludge and the organic fraction of the municipal solid waste has been the most reported co-digestion mixture. However, between 2010 and 2013 the publications dealing with fats, oils and greases and algae as sludge co-substrate have increased. This is because both co-substrates can be obtained at the same wastewater treatment plant. In contrast, biowaste as a main substrate has not been as studied as manures or sewage sludge. Finally, three interdisciplinary sections have been written for addressing novelty aspects in anaerobic co-digestion, i.e., pre-treatments, microbial dynamics and modeling. However, much effort needs to be done in these later aspects to better understand and predict anaerobic co-digestion.
Renewable and Sustai... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 821 citations 821 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu