search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
135,262 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • AU
  • IT
  • FI

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; +2 Authors

    Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility53
    visibilityviews53
    downloaddownloads15
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; +2 Authors

    The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility30
    visibilityviews30
    downloaddownloads17
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility30
    visibilityviews30
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Leahy, Lily; Scheffers, Brett R.; Andersen, Alan N.; Hirsch, Ben T.; +1 Authors

    Aim: We propose that forest trees create a vertical dimension for ecological niche variation that generates different regimes of climatic exposure, which in turn drives species elevation distributions. We test this hypothesis by statistically modelling the vertical and elevation distributions and microclimate exposure of rainforest ants. Location: Wet Tropics Bioregion, Australia Methods: We conducted 60 ground-to-canopy surveys to determine the vertical (tree) and elevation distributions, and microclimate exposure of ants (101 species) at 15 sites along four mountain ranges. We statistically modelled elevation range size as a function of ant species’ vertical niche breadth and exposure to temperature variance for 55 species found at two or more trees. Results: We found a positive association between vertical niche and elevation range of ant species: for every 3 m increase in vertical niche breadth our models predict a ~150% increase in mean elevation range size. Temperature variance increased with vertical height along the arboreal gradient and ant species exposure to temperature variance explained some of the variation in elevation range size. Main Conclusions: We demonstrate that arboreal ants have broader elevation ranges than ground-dwelling ants and are likely to have increased resilience to climatic variance. The capacity of species to expand their niche by climbing trees could influence their ability to persist over broader elevation ranges. We propose that wherever vertical layering exists - from oceans to forest ecosystems - vertical niche breadth is a potential mechanism driving macrogeographic distribution patterns and resilience to climate change. Data_collections.csv Main survey collections data in a site by species matrix showing all data for all sites surveyed. Tuna baited vials were placed every three metres from ground to canopy in trees at elevation sites at four subregion mountain ranges of the Australian Wet Tropics Bioregion. Note data file includes empty vials that lacked ants. Microclimate_AthertonTemp.csv This file contains Atherton Uplands temperature data from ibuttons deployed at one tree per elevation (200, 400, 600, 800, 1000) at every three metres in height in Dec-Jan 2017- 2018 set to record every half hour. See file Metadata for details of column names and data values.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2021
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility28
    visibilityviews28
    downloaddownloads34
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2021
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wolfe, Kennedy David; Desbiens, Amelia; Mumby, Peter;

    Patterns of movement of marine species can reflect strategies of reproduction and dispersal, species’ interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa is greatest in dead coral and rubble, which is suggested to fuel food webs from the bottom-up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels. We address the bioavailability of motile coral reef cryptofauna based on small-scale patterns of emigration in rubble. We deployed modified RUbble Biodiversity Samplers (RUBS) and emergence traps in a shallow rubble patch at Heron Island, Great Barrier Reef, to detect community-level differences in the directional influx of motile cryptofauna under five habitat accessibility regimes. The mean density (0.13–4.5 ind.cm-3) and biomass (0.14–5.2 mg.cm-3) of cryptofauna were high and varied depending on microhabitat accessibility. Emergent zooplankton represented a distinct community (dominated by the Appendicularia and Calanoida) with the lowest density and biomass, indicating constraints on nocturnal resource availability. Mean cryptofauna density and biomass were greatest when interstitial access within rubble was blocked, driven by the rapid proliferation of small harpacticoid copepods from the rubble surface, leading to trophic simplification. Individuals with high biomass (e.g., decapods, gobies, and echinoderms) were greatest when interstitial access within rubble was unrestricted. Treatments with a closed rubble surface did not differ from those completely open, suggesting that top-down predation does not diminish rubble-derived resources. Our results show that conspecific cues and species’ interactions (e.g., competition and predation) within rubble are most critical in shaping ecological outcomes within the cryptobiome. These findings have implications for prey accessibility through trophic and community size structuring in rubble, which may become increasingly relevant as benthic reef complexity shifts in the Anthropocene. We address the bioavailability of coral reef cryptofauna in rubble based on small-scale patterns of emigration. We adapted the accessibility of Rubble Biodiversity Samplers (RUBS), models used to standardise biodiversity sampling in rubble (Wolfe and Mumby 2020), to explore the local movement patterns of rubble-dwelling fauna, with inference to predation processes within and beyond the cryptobenthos. Five treatments were developed to detect community-level differences in the directional influx of motile cryptofauna under various habitat accessibility regimes. Four of these treatments were developed by modifying accessibility into RUBS (https://www.thingiverse.com/thing:4176644/files) to understand limitations on the directional influx and movement of cryptofauna within coral rubble patches using four treatments; (1) open (completely accessible), (2) interstitial access (top closed), (3) surficial access (sides and bottom closed), and (4) raised (above rubble substratum). The fifth treatment involved a series of emergence plankton traps, designed to target demersal cryptofauna that vertically migrate from within the rubble benthos at night, given emergent zooplankton biomass and diversity are greatest at night. Fieldwork was conducted over several weeks (11th September to 5th October 2021) in a shallow (~3–5 m depth) reef slope site on the southern margin of Heron Island (-23˚26.845’ S, 151˚54.732’ E), Great Barrier Reef, Australia (Fig. 1). All collections were conducted under the Great Barrier Reef Marine Park Authority permit G20/44613.1.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility4
    visibilityviews4
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • This file contains the AiNU data used for the article entitled by Physics-based material parameters extraction from perovskite experiments via Bayesian optimization (https://arxiv.org/abs/2402.11101).

    ZENODOarrow_drop_down
    ZENODO
    Dataset . 2024
    Data sources: ZENODO
    ZENODO
    Dataset . 2024
    Data sources: Datacite
    ZENODO
    Dataset . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      ZENODOarrow_drop_down
      ZENODO
      Dataset . 2024
      Data sources: ZENODO
      ZENODO
      Dataset . 2024
      Data sources: Datacite
      ZENODO
      Dataset . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Felton, Annika; Wam, Hilde; Borowski, Zbigniew; Granhus, Aksel; +5 Authors

    Literature search and screening We searched for relevant literature with publication month and years Jan 2000- Nov 2022 in two databases: Web of Science (https://www.webofscience.com/; The Core Collection) and Scopus (https://www.scopus.com). We used the same nested Boolean (i.e., AND between different groups of search terms, OR within groups of similar search terms and NOT for excluding search terms) search string in the title, abstract and keywords fields for both Web of Science (TS) and Scopus (TITLE-ABS-KEY) (complete search strings in the supplementary material, Appendix S1). We targeted the relevant deer species for the boreal and temperate forests (i.e., Alces alces, Capreolus capreolus, Cervus spp., Dama dama, Odocoileus spp., Rangifer tarandus; for distribution maps, see Fig. S2), by using a combination of Latin and common names that we combined with geographical constraints based on names of biogeographical regions, countries, and states. We combined this search string with climate related variables (temperature, precipitation etc., Appendix S2). From here on, we refer to Cervus elaphus as red deer, and C. canadensis as wapiti. We refer to R. tarandus living in Europe and Asia as reindeer but as caribou when living in North America. We restrained the search by language (English) and document type (peer-reviewed papers). Our aim was to be as least exclusive as possible, but this led to some unexpected irrelevant documents. We therefore added exclusion terms to filter out non-targeted biogeographical regions and scientific fields. We did not exclude any topical part of our search because it would be impossible to make a coherent pre-emptive list of terms to exclude. The search hits from Web of Science and Scopus were merged and cleaned of duplicates, resulting in 8154 unique papers. Screening of papers was conducted using Rayyan (Ouzzani et al. 2016), a free web application for reviewing articles. Decisions on exclusion or inclusion were first made by reading the title and abstract of each article and determining their conformity to the criteria targeted by the search terms: right topic (i.e., in context of climate change), species (Cervidae excluding semi-domestic reindeer), geography (boreal and temperate zones), language (English) and type of study (new, or new synthesis of, empirical temporal data on deer response to climate). We included papers of migratory caribou residing in forest for larger parts of the year. Note that papers did not have to specify a climate change context to be included. It was sufficient that it contained temporal data on deer and weather variations. Given the controversies surrounding definitions of climate change, rather few papers proclaim having documented climate change and a stricter criterion would have excluded almost all papers. The robustness of the exclusion criteria and the individual screener divergence of the first screening were tested before the actual screening was done. Fifty randomly drawn papers were reviewed by all authors individually without conferring. The papers were randomly distributed among authors. The discrepancies were rather few (13 out of 49 papers (27%) had at least 1 person with a different opinion than the others). After discussing each of these cases in detail, the basis for coherent decision making was improved. To verify the improvement, another control procedure was applied for the remaining screening: 289 papers were each read by two to four authors. The result of this control screening showed 18 (6%) conflicting decisions. Screening of the remaining 7815 papers was done by the authors one by one and assigned equally among readers according to alphabetic order by the first author of the papers. The first screening finally generated 556 papers possibly relevant for the review. All papers with conflicting decisions in the test and control screenings were included among the 556. The possibly relevant papers were then equally divided between the authors. These papers were read completely and again scrutinized for conformation to criteria, resulting in a final list of 218 papers relevant for review. Data from these papers were then tabulated and systemized per demographics (species, location, season, etc.), deer responses and climate factor. Further details on this data collection are specified in Appendix S3. The table here in Dryad includes the detailed tabulations used to produce Table 1, Figure 1, Figure in the main article, and Table S3 in the Appendix.  Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short-term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. We systematically reviewed literature (published 2000-2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation) and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use and population dynamics. We targeted deer species which inhabit relevant biomes in North America, Europe and Asia: moose, roe deer, elk, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou and reindeer. Our review (218 papers) shows that many deer populations will likely benefit in-part from warmer winters, but hotter and drier summers may exceed their physiological tolerances. We found support for deer expressing both morphological, physiological, and behavioral plasticity in response to climate variability. For example, some deer species can limit the effects of harsh weather conditions by modifying habitat use and daily activity patterns, while the physiological responses of female deer can lead to long-lasting effects on population dynamics. We identified 20 patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the influence of local variables (eg. population density and predation) for how deer will respond to climatic conditions. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type and wetter autumns. The patterns we have identified in this literature review should help managers understand how populations of deer may be affected by regionally projected futures regarding temperature, rainfall and snow. # Literature review protocol: Climate change and deer in boreal and temperate regions [https://doi.org/10.5061/dryad.jh9w0vtmd](https://doi.org/10.5061/dryad.jh9w0vtmd) ## Description of the data and file structure We systematically reviewed literature (published 2000-2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation) and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use and population dynamics. We targeted deer species which inhabit relevant biomes in North America, Europe and Asia: moose, roe deer, elk, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou and reindeer. After screening, 218 articles remained. The data made available here pertains to these articles. ### Files and variables #### File: Felton\_et\_al\_2024\_GCB\_Protocol\_literature\_review\_Dryad 30 aug no hidden columns.xlsx **Description:** protocol for tabulating relevant information from published literature. ##### Variables * Column B-G: Climatic variables that the studies assessed (temperature, rainfall, snow, combined measures, extreme climatic events) * Column H: animal species * Column I: extreme events * Column K-AF: registration whether information is presented that relate to the three larger topics of the review (Physiology, Spatial use, Population dynamics) and to any of the 20 Patterns Found, which are summarised in Table 2 in the main article. Abbreviations refer to details of such patterns, which are explained in the heading of Table 2 in the main article. * Blank cells = no relevant information exist. Data was derived from the following sources: * We searched for relevant literature with publication month and years Jan 2000- Nov 2022 in two databases: Web of Science ([https://www.webofscience.com/](https://www.webofscience.com/); The Core Collection) and Scopus ([https://www.scopus.com](https://www.scopus.com/)).

    DRYADarrow_drop_down
    DRYAD
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      DRYADarrow_drop_down
      DRYAD
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Matteo, Nigro; Michele, Barsanti; Roberto, Giannecchini;

    The version 1.0 contains the supporting data for the work (still under submission) "Last century changes in annual precipitation in a Mediterranean area and their spatial variability. Insights from northern Tuscany (Italy)". The following files are here available (all file are georeferenced in EPSG: 3003): - AVG_Rainfall_1990-2019.tif -> Raster map of the mean annual precipitation for the northern Tuscany, Italy. It encompasses the portion of the Tuscany region northern of the cities of Livorno - Florence. The interpolation was validated via a leave one out cross-validation procedure. - D3-1_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1921 to 1950 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - D3-2_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1951 to 1980 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - DeltaSHP_Points_AVG_Annual_Rainfall.zip -> Shape file of the raingauges locations with the mean annual precipitation values of the period 1990 to 2019. - RaingaugesSHP_Points_AVG_Annual_Rainfall_1990-2019.zip -> Shape file of the raingauges locations with the following information: differences in the mean annual precipitation values between the two 3-decades periods 1951 to 1980 and 1990 to 2019 (named D3-2); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1951 to 1980 and 1990 to 2019; difference in the mean annual precipitation values between the two 3-decades periods 1921 to 1950 and 1990 to 2019 (named D3-1); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1921 to 1950 and 1990 to 2019.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: O’Gorman, E.J.; Warner, E.; Marteinsdóttir, B.; Helmutsdóttir, V.F.; +2 Authors

    Herbivory assessments were made at the plant community and species levels. We focused on three plant species with a widespread occurrence across the temperature gradient: cuckooflower (Cardamine pratensis, Linnaeus), common mouse-ear (Cerastium fontanum, Baumgerten), and marsh violet (Viola palustris, Linnaeus). For assessments of invertebrate herbivory at the species level, thirty individuals per species of C. pratensis, C. fontanum, and V. palustris were marked in each of ten plots, using a stratified random sampling method where individuals were randomly selected, but the full range of within-plot soil temperatures was represented. For assessments of invertebrate herbivory at the community level, five 50 × 50 cm quadrats were marked at random points in eight of the plots that best captured the full temperature gradient. The community-level herbivory assessment was conducted on 19th June. The number of damaged plants was recorded out of 100 random individuals, selected using a 10 × 10 grid within each 50 × 50 cm quadrat. For the species-level herbivory assessment, individual marked plants were surveyed for signs of invertebrate herbivory every two weeks from 30th May to 2nd July, generating three time-points per species. At each survey, all marked individuals for each species were assessed within a 48-hour period. Plants were recorded as damaged or not damaged by invertebrate herbivores at each time-point. Further details of how phenological stage of development, vegetation community composition, soil temperature, moisture, pH, nitrate, ammonium, and phosphate were recorded are provided in the supporting documentation. This is a dataset of environmental data, vegetation cover, and community- and species-level invertebrate herbivory, sampled at 14 experimental soil plots in the Hengill geothermal valley, Iceland, from May to July 2017. The plots span a temperature gradient of 5-35 °C on average over the sampling period, yet they occur within 1 km of each other and have similar soil moisture, pH, nitrate, ammonium, and phosphate.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Coni, Ericka O C; Nagelkerken, Ivan; Ferreira, Camilo M; Connell, Sean D; +1 Authors

    Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-07-26.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2021
    Data sources: B2FIND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2021
    License: CC BY
    Data sources: PANGAEA
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2021
    Data sources: PANGAEA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2021
      Data sources: B2FIND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2021
      License: CC BY
      Data sources: PANGAEA
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2021
      Data sources: PANGAEA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
135,262 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jarvie, Scott; Ingram, Travis; Chapple, David; Hitchmough, Rodney; +2 Authors

    Although GPS coordinates for current populations are not included due to the potential threat of poaching, the climate variables for each species are provided. The records for extant gecko and skinks mainly came from the New Zealand's Department of Conervation Herpetofauna Database. After updating the taxonomy and cleaning the data to reflect the taxonomy as at 2019 of 43 geckos speceis recognised across seven genera and 61 species in genus, we then thinned the occurrence records at a 1 km resolution for all species then predicted distributions for those with > 15 records using species distribution models. The climate variables for each species were selected among annual mean temperature (bio1), maximum temperature of the warmest month (bio5), minimum temperature of the coldest month (bio6), mean temperature of driest quarter (bio9), mean temperature of wettest quarter (bio10), and precipitation of the driest quarter (bio17). To reduce multicollinearity in species distribution models for each species, we only retained climate variables with a variable inflation factor < 10. The climate variables were from the CHELSA database (https://chelsa-climate.org/), which can be freely downloaded for current and future scenarios. We also provide MCC tree files for the geckos and skinks. The phylogenetic trees have been constructed for NZ geckos by (Nielsen et al., 2011) and for NZ skinks by (Chapple et al., 2009). For geckos we used a subset of the sequences used by Nielsen et al. (2011) for four genes, two nuclear (RAG 1, PDC) and two mitochondrial (16S, ND2 along with flanking tRNA sequences). For skinks, we used sequences from Chapple et al. (2009) for one nuclear (RAG 1) and five mitochondrial (ND2, ND4, Cyt b, 12S and 16S) genes, and additional ND2 sequences for taxa not included in the original phylogeny (Chapple et al., 2011, p. 201). In total we used sequences for all recognised extant taxa (Hitchmough et al., 2016) as at 2019 except for three species of skink (O. aff. inconspicuum “Okuru”, O. robinsoni, and O. aff. inconspicuum “North Otago”) and two species of gecko (M. “Cupola” and W. “Kaikouras”) for which genetic data were not available. Aim: The primary drivers of species and population extirpations have been habitat loss, overexploitation, and invasive species, but human-mediated climate change is expected to be a major driver in future. To minimise biodiversity loss, conservation managers should identify species vulnerable to climate change and prioritise their protection. Here, we estimate climatic suitability for two speciose taxonomic groups, then use phylogenetic analyses to assess vulnerability to climate change. Location: Aotearoa New Zealand (NZ) Taxa: NZ lizards: diplodactylid geckos and eugongylinae skinks Methods: We built correlative species distribution models (SDMs) for NZ geckos and skinks to estimate climatic suitability under current climate and 2070 future-climate scenarios. We then used Bayesian phylogenetic mixed models (BPMMs) to assess vulnerability for both groups with predictor variables for life history traits (body size and activity phase) and current distribution (elevation and latitude). We explored two scenarios: an unlimited dispersal scenario, where projections track climate, and a no-dispersal scenario, where projections are restricted to areas currently identified as suitable. Results: SDMs projected vulnerability to climate change for most modelled lizards. For species’ ranges projected to decline in climatically suitable areas, average decreases were between 42–45% for geckos and 33–91% for skinks, although area did increase or remain stable for a minority of species. For the no-dispersal scenario, the average decrease for geckos was 37–52% and for skinks was 33–52%. Our BPMMs showed phylogenetic signal in climate change vulnerability for both groups, with elevation increasing vulnerability for geckos, and body size reducing vulnerability for skinks. Main conclusions: NZ lizards showed variable vulnerability to climate change, with most species’ ranges predicted to decrease. For species whose suitable climatic space is projected to disappear from within their current range, managed relocation could be considered to establish populations in regions that will be suitable under future climates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility53
    visibilityviews53
    downloaddownloads15
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; +2 Authors

    The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility30
    visibilityviews30
    downloaddownloads17
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility30
    visibilityviews30
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Leahy, Lily; Scheffers, Brett R.; Andersen, Alan N.; Hirsch, Ben T.; +1 Authors

    Aim: We propose that forest trees create a vertical dimension for ecological niche variation that generates different regimes of climatic exposure, which in turn drives species elevation distributions. We test this hypothesis by statistically modelling the vertical and elevation distributions and microclimate exposure of rainforest ants. Location: Wet Tropics Bioregion, Australia Methods: We conducted 60 ground-to-canopy surveys to determine the vertical (tree) and elevation distributions, and microclimate exposure of ants (101 species) at 15 sites along four mountain ranges. We statistically modelled elevation range size as a function of ant species’ vertical niche breadth and exposure to temperature variance for 55 species found at two or more trees. Results: We found a positive association between vertical niche and elevation range of ant species: for every 3 m increase in vertical niche breadth our models predict a ~150% increase in mean elevation range size. Temperature variance increased with vertical height along the arboreal gradient and ant species exposure to temperature variance explained some of the variation in elevation range size. Main Conclusions: We demonstrate that arboreal ants have broader elevation ranges than ground-dwelling ants and are likely to have increased resilience to climatic variance. The capacity of species to expand their niche by climbing trees could influence their ability to persist over broader elevation ranges. We propose that wherever vertical layering exists - from oceans to forest ecosystems - vertical niche breadth is a potential mechanism driving macrogeographic distribution patterns and resilience to climate change. Data_collections.csv Main survey collections data in a site by species matrix showing all data for all sites surveyed. Tuna baited vials were placed every three metres from ground to canopy in trees at elevation sites at four subregion mountain ranges of the Australian Wet Tropics Bioregion. Note data file includes empty vials that lacked ants. Microclimate_AthertonTemp.csv This file contains Atherton Uplands temperature data from ibuttons deployed at one tree per elevation (200, 400, 600, 800, 1000) at every three metres in height in Dec-Jan 2017- 2018 set to record every half hour. See file Metadata for details of column names and data values.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2021
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility28
    visibilityviews28
    downloaddownloads34
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2021
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wolfe, Kennedy David; Desbiens, Amelia; Mumby, Peter;

    Patterns of movement of marine species can reflect strategies of reproduction and dispersal, species’ interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa is greatest in dead coral and rubble, which is suggested to fuel food webs from the bottom-up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels. We address the bioavailability of motile coral reef cryptofauna based on small-scale patterns of emigration in rubble. We deployed modified RUbble Biodiversity Samplers (RUBS) and emergence traps in a shallow rubble patch at Heron Island, Great Barrier Reef, to detect community-level differences in the directional influx of motile cryptofauna under five habitat accessibility regimes. The mean density (0.13–4.5 ind.cm-3) and biomass (0.14–5.2 mg.cm-3) of cryptofauna were high and varied depending on microhabitat accessibility. Emergent zooplankton represented a distinct community (dominated by the Appendicularia and Calanoida) with the lowest density and biomass, indicating constraints on nocturnal resource availability. Mean cryptofauna density and biomass were greatest when interstitial access within rubble was blocked, driven by the rapid proliferation of small harpacticoid copepods from the rubble surface, leading to trophic simplification. Individuals with high biomass (e.g., decapods, gobies, and echinoderms) were greatest when interstitial access within rubble was unrestricted. Treatments with a closed rubble surface did not differ from those completely open, suggesting that top-down predation does not diminish rubble-derived resources. Our results show that conspecific cues and species’ interactions (e.g., competition and predation) within rubble are most critical in shaping ecological outcomes within the cryptobiome. These findings have implications for prey accessibility through trophic and community size structuring in rubble, which may become increasingly relevant as benthic reef complexity shifts in the Anthropocene. We address the bioavailability of coral reef cryptofauna in rubble based on small-scale patterns of emigration. We adapted the accessibility of Rubble Biodiversity Samplers (RUBS), models used to standardise biodiversity sampling in rubble (Wolfe and Mumby 2020), to explore the local movement patterns of rubble-dwelling fauna, with inference to predation processes within and beyond the cryptobenthos. Five treatments were developed to detect community-level differences in the directional influx of motile cryptofauna under various habitat accessibility regimes. Four of these treatments were developed by modifying accessibility into RUBS (https://www.thingiverse.com/thing:4176644/files) to understand limitations on the directional influx and movement of cryptofauna within coral rubble patches using four treatments; (1) open (completely accessible), (2) interstitial access (top closed), (3) surficial access (sides and bottom closed), and (4) raised (above rubble substratum). The fifth treatment involved a series of emergence plankton traps, designed to target demersal cryptofauna that vertically migrate from within the rubble benthos at night, given emergent zooplankton biomass and diversity are greatest at night. Fieldwork was conducted over several weeks (11th September to 5th October 2021) in a shallow (~3–5 m depth) reef slope site on the southern margin of Heron Island (-23˚26.845’ S, 151˚54.732’ E), Great Barrier Reef, Australia (Fig. 1). All collections were conducted under the Great Barrier Reef Marine Park Authority permit G20/44613.1.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility4
    visibilityviews4
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • This file contains the AiNU data used for the article entitled by Physics-based material parameters extraction from perovskite experiments via Bayesian optimization (https://arxiv.org/abs/2402.11101).

    ZENODOarrow_drop_down
    ZENODO
    Dataset . 2024
    Data sources: ZENODO
    ZENODO
    Dataset . 2024
    Data sources: Datacite
    ZENODO
    Dataset . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      ZENODOarrow_drop_down
      ZENODO
      Dataset . 2024
      Data sources: ZENODO
      ZENODO
      Dataset . 2024
      Data sources: Datacite
      ZENODO
      Dataset . 2024
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Felton, Annika; Wam, Hilde; Borowski, Zbigniew; Granhus, Aksel; +5 Authors

    Literature search and screening We searched for relevant literature with publication month and years Jan 2000- Nov 2022 in two databases: Web of Science (https://www.webofscience.com/; The Core Collection) and Scopus (https://www.scopus.com). We used the same nested Boolean (i.e., AND between different groups of search terms, OR within groups of similar search terms and NOT for excluding search terms) search string in the title, abstract and keywords fields for both Web of Science (TS) and Scopus (TITLE-ABS-KEY) (complete search strings in the supplementary material, Appendix S1). We targeted the relevant deer species for the boreal and temperate forests (i.e., Alces alces, Capreolus capreolus, Cervus spp., Dama dama, Odocoileus spp., Rangifer tarandus; for distribution maps, see Fig. S2), by using a combination of Latin and common names that we combined with geographical constraints based on names of biogeographical regions, countries, and states. We combined this search string with climate related variables (temperature, precipitation etc., Appendix S2). From here on, we refer to Cervus elaphus as red deer, and C. canadensis as wapiti. We refer to R. tarandus living in Europe and Asia as reindeer but as caribou when living in North America. We restrained the search by language (English) and document type (peer-reviewed papers). Our aim was to be as least exclusive as possible, but this led to some unexpected irrelevant documents. We therefore added exclusion terms to filter out non-targeted biogeographical regions and scientific fields. We did not exclude any topical part of our search because it would be impossible to make a coherent pre-emptive list of terms to exclude. The search hits from Web of Science and Scopus were merged and cleaned of duplicates, resulting in 8154 unique papers. Screening of papers was conducted using Rayyan (Ouzzani et al. 2016), a free web application for reviewing articles. Decisions on exclusion or inclusion were first made by reading the title and abstract of each article and determining their conformity to the criteria targeted by the search terms: right topic (i.e., in context of climate change), species (Cervidae excluding semi-domestic reindeer), geography (boreal and temperate zones), language (English) and type of study (new, or new synthesis of, empirical temporal data on deer response to climate). We included papers of migratory caribou residing in forest for larger parts of the year. Note that papers did not have to specify a climate change context to be included. It was sufficient that it contained temporal data on deer and weather variations. Given the controversies surrounding definitions of climate change, rather few papers proclaim having documented climate change and a stricter criterion would have excluded almost all papers. The robustness of the exclusion criteria and the individual screener divergence of the first screening were tested before the actual screening was done. Fifty randomly drawn papers were reviewed by all authors individually without conferring. The papers were randomly distributed among authors. The discrepancies were rather few (13 out of 49 papers (27%) had at least 1 person with a different opinion than the others). After discussing each of these cases in detail, the basis for coherent decision making was improved. To verify the improvement, another control procedure was applied for the remaining screening: 289 papers were each read by two to four authors. The result of this control screening showed 18 (6%) conflicting decisions. Screening of the remaining 7815 papers was done by the authors one by one and assigned equally among readers according to alphabetic order by the first author of the papers. The first screening finally generated 556 papers possibly relevant for the review. All papers with conflicting decisions in the test and control screenings were included among the 556. The possibly relevant papers were then equally divided between the authors. These papers were read completely and again scrutinized for conformation to criteria, resulting in a final list of 218 papers relevant for review. Data from these papers were then tabulated and systemized per demographics (species, location, season, etc.), deer responses and climate factor. Further details on this data collection are specified in Appendix S3. The table here in Dryad includes the detailed tabulations used to produce Table 1, Figure 1, Figure in the main article, and Table S3 in the Appendix.  Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short-term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. We systematically reviewed literature (published 2000-2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation) and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use and population dynamics. We targeted deer species which inhabit relevant biomes in North America, Europe and Asia: moose, roe deer, elk, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou and reindeer. Our review (218 papers) shows that many deer populations will likely benefit in-part from warmer winters, but hotter and drier summers may exceed their physiological tolerances. We found support for deer expressing both morphological, physiological, and behavioral plasticity in response to climate variability. For example, some deer species can limit the effects of harsh weather conditions by modifying habitat use and daily activity patterns, while the physiological responses of female deer can lead to long-lasting effects on population dynamics. We identified 20 patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the influence of local variables (eg. population density and predation) for how deer will respond to climatic conditions. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type and wetter autumns. The patterns we have identified in this literature review should help managers understand how populations of deer may be affected by regionally projected futures regarding temperature, rainfall and snow. # Literature review protocol: Climate change and deer in boreal and temperate regions [https://doi.org/10.5061/dryad.jh9w0vtmd](https://doi.org/10.5061/dryad.jh9w0vtmd) ## Description of the data and file structure We systematically reviewed literature (published 2000-2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation) and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use and population dynamics. We targeted deer species which inhabit relevant biomes in North America, Europe and Asia: moose, roe deer, elk, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou and reindeer. After screening, 218 articles remained. The data made available here pertains to these articles. ### Files and variables #### File: Felton\_et\_al\_2024\_GCB\_Protocol\_literature\_review\_Dryad 30 aug no hidden columns.xlsx **Description:** protocol for tabulating relevant information from published literature. ##### Variables * Column B-G: Climatic variables that the studies assessed (temperature, rainfall, snow, combined measures, extreme climatic events) * Column H: animal species * Column I: extreme events * Column K-AF: registration whether information is presented that relate to the three larger topics of the review (Physiology, Spatial use, Population dynamics) and to any of the 20 Patterns Found, which are summarised in Table 2 in the main article. Abbreviations refer to details of such patterns, which are explained in the heading of Table 2 in the main article. * Blank cells = no relevant information exist. Data was derived from the following sources: * We searched for relevant literature with publication month and years Jan 2000- Nov 2022 in two databases: Web of Science ([https://www.webofscience.com/](https://www.webofscience.com/); The Core Collection) and Scopus ([https://www.scopus.com](https://www.scopus.com/)).

    DRYADarrow_drop_down
    DRYAD
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      DRYADarrow_drop_down
      DRYAD
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Matteo, Nigro; Michele, Barsanti; Roberto, Giannecchini;

    The version 1.0 contains the supporting data for the work (still under submission) "Last century changes in annual precipitation in a Mediterranean area and their spatial variability. Insights from northern Tuscany (Italy)". The following files are here available (all file are georeferenced in EPSG: 3003): - AVG_Rainfall_1990-2019.tif -> Raster map of the mean annual precipitation for the northern Tuscany, Italy. It encompasses the portion of the Tuscany region northern of the cities of Livorno - Florence. The interpolation was validated via a leave one out cross-validation procedure. - D3-1_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1921 to 1950 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - D3-2_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1951 to 1980 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - DeltaSHP_Points_AVG_Annual_Rainfall.zip -> Shape file of the raingauges locations with the mean annual precipitation values of the period 1990 to 2019. - RaingaugesSHP_Points_AVG_Annual_Rainfall_1990-2019.zip -> Shape file of the raingauges locations with the following information: differences in the mean annual precipitation values between the two 3-decades periods 1951 to 1980 and 1990 to 2019 (named D3-2); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1951 to 1980 and 1990 to 2019; difference in the mean annual precipitation values between the two 3-decades periods 1921 to 1950 and 1990 to 2019 (named D3-1); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1921 to 1950 and 1990 to 2019.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: O’Gorman, E.J.; Warner, E.; Marteinsdóttir, B.; Helmutsdóttir, V.F.; +2 Authors

    Herbivory assessments were made at the plant community and species levels. We focused on three plant species with a widespread occurrence across the temperature gradient: cuckooflower (Cardamine pratensis, Linnaeus), common mouse-ear (Cerastium fontanum, Baumgerten), and marsh violet (Viola palustris, Linnaeus). For assessments of invertebrate herbivory at the species level, thirty individuals per species of C. pratensis, C. fontanum, and V. palustris were marked in each of ten plots, using a stratified random sampling method where individuals were randomly selected, but the full range of within-plot soil temperatures was represented. For assessments of invertebrate herbivory at the community level, five 50 × 50 cm quadrats were marked at random points in eight of the plots that best captured the full temperature gradient. The community-level herbivory assessment was conducted on 19th June. The number of damaged plants was recorded out of 100 random individuals, selected using a 10 × 10 grid within each 50 × 50 cm quadrat. For the species-level herbivory assessment, individual marked plants were surveyed for signs of invertebrate herbivory every two weeks from 30th May to 2nd July, generating three time-points per species. At each survey, all marked individuals for each species were assessed within a 48-hour period. Plants were recorded as damaged or not damaged by invertebrate herbivores at each time-point. Further details of how phenological stage of development, vegetation community composition, soil temperature, moisture, pH, nitrate, ammonium, and phosphate were recorded are provided in the supporting documentation. This is a dataset of environmental data, vegetation cover, and community- and species-level invertebrate herbivory, sampled at 14 experimental soil plots in the Hengill geothermal valley, Iceland, from May to July 2017. The plots span a temperature gradient of 5-35 °C on average over the sampling period, yet they occur within 1 km of each other and have similar soil moisture, pH, nitrate, ammonium, and phosphate.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Coni, Ericka O C; Nagelkerken, Ivan; Ferreira, Camilo M; Connell, Sean D; +1 Authors

    Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-07-26.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2021
    Data sources: B2FIND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2021
    License: CC BY
    Data sources: PANGAEA
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2021
    Data sources: PANGAEA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEA - Data Publi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2021
      Data sources: B2FIND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2021
      License: CC BY
      Data sources: PANGAEA
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2021
      Data sources: PANGAEA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.