- home
- Search
- Energy Research
- medical and health sciences
- 13. Climate action
- CN
- DE
- CA
- Energy Research
- medical and health sciences
- 13. Climate action
- CN
- DE
- CA
description Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 CanadaPublisher:Wiley Authors: Takaro, Tim K.; Henderson, Sarah B.;doi: 10.1155/2015/361687
Climate change is already affecting the cardiorespiratory health of populations around the world, and these impacts are expected to increase. The present overview serves as a primer for respirologists who are concerned about how these profound environmental changes may affect their patients. The authors consider recent peer‐reviewed literature with a focus on climate interactions with air pollution. They do not discuss in detail cardiorespiratory health effects for which the potential link to climate change is poorly understood. For example, pneumonia and influenza, which affect >500 million people per year, are not addressed, although clear seasonal variation suggests climate‐related effects. Additionally, large global health impacts in low‐resource countries, including migration precipitated by environmental change, are omitted. The major cardiorespiratory health impacts addressed are due to heat, air pollution and wildfires, shifts in allergens and infectious diseases along with respiratory impacts from flooding. Personal and societal choices about carbon use and fossil energy infrastructure should be informed by their impacts on health, and respirologists can play an important role in this discussion.
Canadian Respiratory... arrow_drop_down Simon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2015/361687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Canadian Respiratory... arrow_drop_down Simon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2015/361687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 CanadaPublisher:Wiley Authors: Takaro, Tim K.; Henderson, Sarah B.;doi: 10.1155/2015/361687
Climate change is already affecting the cardiorespiratory health of populations around the world, and these impacts are expected to increase. The present overview serves as a primer for respirologists who are concerned about how these profound environmental changes may affect their patients. The authors consider recent peer‐reviewed literature with a focus on climate interactions with air pollution. They do not discuss in detail cardiorespiratory health effects for which the potential link to climate change is poorly understood. For example, pneumonia and influenza, which affect >500 million people per year, are not addressed, although clear seasonal variation suggests climate‐related effects. Additionally, large global health impacts in low‐resource countries, including migration precipitated by environmental change, are omitted. The major cardiorespiratory health impacts addressed are due to heat, air pollution and wildfires, shifts in allergens and infectious diseases along with respiratory impacts from flooding. Personal and societal choices about carbon use and fossil energy infrastructure should be informed by their impacts on health, and respirologists can play an important role in this discussion.
Canadian Respiratory... arrow_drop_down Simon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2015/361687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Canadian Respiratory... arrow_drop_down Simon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2015/361687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Eliudi S. Eliakimu; Linda Mans;Sustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Eliudi S. Eliakimu; Linda Mans;Sustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Authors: Chaopin Li; Mu You; Jun Lu; Yunhu Hu;doi: 10.1002/ep.12105
The transformation and environmental characteristics of natural radionuclides in a coal‐fired power plant were investigated. The coal, bottom ash, fly ash, and soil samples were collected. The activity concentrations of natural radionuclides (226Ra, 232Th, and 40K) were determined by a high‐purity germanium gamma ray spectrometer. The radiological hazard factors include radium equivalent activity, external hazard index, air absorbed dose rates, and annual effective dose that were used to evaluate the potential environmental and health risk. The results show that these natural radionuclides are enriched in bottom ash and fly ash during coal combustion. The activity concentrations of these radionuclides at the southeast and northwest soil samples are generally higher than those of the southwest and northeast. 226Ra is mainly enriched at the distance of 200 m, while 232Th is primarily higher in the power plant. Based on the radiological risk assessment, the environmental effect of natural radionuclides caused by coal‐fired power plant is considered to be negligible because the radium equivalent activity and external hazard index values of the measured samples are below the acceptance limitations of 370 Bq kg−1 and 1. The bottom ash and fly ash could be used as construction materials under high management and regularization. © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1080–1084, 2015
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Authors: Chaopin Li; Mu You; Jun Lu; Yunhu Hu;doi: 10.1002/ep.12105
The transformation and environmental characteristics of natural radionuclides in a coal‐fired power plant were investigated. The coal, bottom ash, fly ash, and soil samples were collected. The activity concentrations of natural radionuclides (226Ra, 232Th, and 40K) were determined by a high‐purity germanium gamma ray spectrometer. The radiological hazard factors include radium equivalent activity, external hazard index, air absorbed dose rates, and annual effective dose that were used to evaluate the potential environmental and health risk. The results show that these natural radionuclides are enriched in bottom ash and fly ash during coal combustion. The activity concentrations of these radionuclides at the southeast and northwest soil samples are generally higher than those of the southwest and northeast. 226Ra is mainly enriched at the distance of 200 m, while 232Th is primarily higher in the power plant. Based on the radiological risk assessment, the environmental effect of natural radionuclides caused by coal‐fired power plant is considered to be negligible because the radium equivalent activity and external hazard index values of the measured samples are below the acceptance limitations of 370 Bq kg−1 and 1. The bottom ash and fly ash could be used as construction materials under high management and regularization. © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1080–1084, 2015
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hamideh Moradi; Shuobo Shi; Farshad Darvishi; Farshad Darvishi; Zihe Liu;Abstract Sustainable production of biofuels has provided an attractive alternative to fossil fuels, which has relieved the concern regarding energy supply and global climate change. Currently, interest in metabolic engineering of yeasts as microbial cell factories for biofuel production, which varies from short-chain ethanol to long-chain fatty acid-derived molecules, is growing. The commercial production of new energy-dense biofuels using yeasts and new synthetic biology tools is now possible due to recent developments in metabolic engineering. Here, it is attempted to comprehensively and critically review the latest advances in metabolism-targeted strategies and the production of different types of biofuels using yeasts. Furthermore, the key challenges and perspectives have been discussed for improving yeast biorefineries for the production of biofuels, such as host compatibility of heterologous genes, substrate extension for alternative feedstocks, better tools for reprogramming cell metabolism, host robustness for tolerating or alleviating toxicity induced by end products, and new design principles with predictable behaviors for the constructed biological systems.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hamideh Moradi; Shuobo Shi; Farshad Darvishi; Farshad Darvishi; Zihe Liu;Abstract Sustainable production of biofuels has provided an attractive alternative to fossil fuels, which has relieved the concern regarding energy supply and global climate change. Currently, interest in metabolic engineering of yeasts as microbial cell factories for biofuel production, which varies from short-chain ethanol to long-chain fatty acid-derived molecules, is growing. The commercial production of new energy-dense biofuels using yeasts and new synthetic biology tools is now possible due to recent developments in metabolic engineering. Here, it is attempted to comprehensively and critically review the latest advances in metabolism-targeted strategies and the production of different types of biofuels using yeasts. Furthermore, the key challenges and perspectives have been discussed for improving yeast biorefineries for the production of biofuels, such as host compatibility of heterologous genes, substrate extension for alternative feedstocks, better tools for reprogramming cell metabolism, host robustness for tolerating or alleviating toxicity induced by end products, and new design principles with predictable behaviors for the constructed biological systems.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 China (People's Republic of)Publisher:Proceedings of the National Academy of Sciences Authors: Bonebrake, TC; Mastrandrea, MD;Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0911841107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0911841107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 China (People's Republic of)Publisher:Proceedings of the National Academy of Sciences Authors: Bonebrake, TC; Mastrandrea, MD;Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0911841107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0911841107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Feng Zhao; Jörg Durner; J. Barbro Winkler; Claudia Traidl-Hoffmann; Tim-Matthias Strom; Dieter Ernst; Ulrike Frank;pmid: 28284545
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic annual ruderal plant and native to Northern America, but now also spreading across Europe. Air pollution and climate change will not only affect plant growth, pollen production and duration of the whole pollen season, but also the amount of allergenic encoding transcripts and proteins of the pollen. The objective of this study was to get a better understanding of transcriptional changes in ragweed pollen upon NO2 and O3 fumigation. This will also contribute to a systems biology approach to understand the reaction of the allergenic pollen to air pollution and climate change. Ragweed plants were grown in climate chambers under controlled conditions and fumigated with enhanced levels of NO2 and O3. Illumina sequencing and de novo assembly revealed significant differentially expressed transcripts, belonging to different gene ontology (GO) terms that were grouped into biological process and molecular function. Transcript levels of the known Amb a ragweed encoding allergens were clearly up-regulated under elevated NO2, whereas the amount of allergen encoding transcripts was more variable under elevated O3 conditions. Moreover transcripts encoding allergen known from other plants could be identified. The transcriptional changes in ragweed pollen upon elevated NO2 fumigation indicates that air pollution will alter the transcriptome of the pollen. The changed levels of allergenic encoding transcripts may have an influence on the total allergenic potential of ragweed pollen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Feng Zhao; Jörg Durner; J. Barbro Winkler; Claudia Traidl-Hoffmann; Tim-Matthias Strom; Dieter Ernst; Ulrike Frank;pmid: 28284545
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic annual ruderal plant and native to Northern America, but now also spreading across Europe. Air pollution and climate change will not only affect plant growth, pollen production and duration of the whole pollen season, but also the amount of allergenic encoding transcripts and proteins of the pollen. The objective of this study was to get a better understanding of transcriptional changes in ragweed pollen upon NO2 and O3 fumigation. This will also contribute to a systems biology approach to understand the reaction of the allergenic pollen to air pollution and climate change. Ragweed plants were grown in climate chambers under controlled conditions and fumigated with enhanced levels of NO2 and O3. Illumina sequencing and de novo assembly revealed significant differentially expressed transcripts, belonging to different gene ontology (GO) terms that were grouped into biological process and molecular function. Transcript levels of the known Amb a ragweed encoding allergens were clearly up-regulated under elevated NO2, whereas the amount of allergen encoding transcripts was more variable under elevated O3 conditions. Moreover transcripts encoding allergen known from other plants could be identified. The transcriptional changes in ragweed pollen upon elevated NO2 fumigation indicates that air pollution will alter the transcriptome of the pollen. The changed levels of allergenic encoding transcripts may have an influence on the total allergenic potential of ragweed pollen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Springer Science and Business Media LLC Publicly fundedJunfeng Jim Zhang; Zhengmin Qian; Fusheng Wei; Leo R. Korn; Robert S. Chapman;pmid: 15118749
Data collected in a large epidemiologic study were analyzed to examine respiratory health effects of residential coal use in 7058 school children living in the four Chinese cities of Chongqing, Guangzhou, Lanzhou, and Wuhan. A Scenario Evaluation Approach was used to develop two exposure variables, heating coal smoke and cooking coal smoke. Estimated lifetime exposures to heating coal smoke and cooking coal smoke were both classified into four-level ordinal scales, as follows: no reported exposure (control); lightly exposed; moderately exposed; and heavily exposed. Zero-one dummy variables were constructed for each exposure level other than the control level (total six variables). These variables were entered into the analytical model. We tested for exposure-response relationships using logistic regression models, while controlling for other relevant covariates, including an indicator variable of ambient air pollution levels. We observed monotonic and positive exposure-response relationships of exposure to heating coal smoke with modeled odds ratios (ORs) of phlegm, cough with phlegm, and bronchitis. Other health outcomes were not associated with such exposure in a monotonic exposure-response pattern. However, ORs for cough, wheeze, and asthma were all higher in the exposed groups than in the control group. We observed no consistent associations between cooking coal smoke and the examined health outcomes. We conclude that exposure to heating coal smoke could have adverse effects on children's respiratory symptoms and illnesses in these four Chinese cities.
Journal of Exposure ... arrow_drop_down Journal of Exposure Science & Environmental EpidemiologyArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Exposure Analysis and Environmental EpidemiologyArticle . 2004Data sources: Europe PubMed CentralJournal of Exposure Science & Environmental EpidemiologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sj.jea.7500362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Exposure ... arrow_drop_down Journal of Exposure Science & Environmental EpidemiologyArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Exposure Analysis and Environmental EpidemiologyArticle . 2004Data sources: Europe PubMed CentralJournal of Exposure Science & Environmental EpidemiologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sj.jea.7500362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Springer Science and Business Media LLC Publicly fundedJunfeng Jim Zhang; Zhengmin Qian; Fusheng Wei; Leo R. Korn; Robert S. Chapman;pmid: 15118749
Data collected in a large epidemiologic study were analyzed to examine respiratory health effects of residential coal use in 7058 school children living in the four Chinese cities of Chongqing, Guangzhou, Lanzhou, and Wuhan. A Scenario Evaluation Approach was used to develop two exposure variables, heating coal smoke and cooking coal smoke. Estimated lifetime exposures to heating coal smoke and cooking coal smoke were both classified into four-level ordinal scales, as follows: no reported exposure (control); lightly exposed; moderately exposed; and heavily exposed. Zero-one dummy variables were constructed for each exposure level other than the control level (total six variables). These variables were entered into the analytical model. We tested for exposure-response relationships using logistic regression models, while controlling for other relevant covariates, including an indicator variable of ambient air pollution levels. We observed monotonic and positive exposure-response relationships of exposure to heating coal smoke with modeled odds ratios (ORs) of phlegm, cough with phlegm, and bronchitis. Other health outcomes were not associated with such exposure in a monotonic exposure-response pattern. However, ORs for cough, wheeze, and asthma were all higher in the exposed groups than in the control group. We observed no consistent associations between cooking coal smoke and the examined health outcomes. We conclude that exposure to heating coal smoke could have adverse effects on children's respiratory symptoms and illnesses in these four Chinese cities.
Journal of Exposure ... arrow_drop_down Journal of Exposure Science & Environmental EpidemiologyArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Exposure Analysis and Environmental EpidemiologyArticle . 2004Data sources: Europe PubMed CentralJournal of Exposure Science & Environmental EpidemiologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sj.jea.7500362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Exposure ... arrow_drop_down Journal of Exposure Science & Environmental EpidemiologyArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Exposure Analysis and Environmental EpidemiologyArticle . 2004Data sources: Europe PubMed CentralJournal of Exposure Science & Environmental EpidemiologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sj.jea.7500362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Kai Xu; Osbert Jianxin Sun; Xiangping Wang; Chao Jiang;Abstract Background Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index (MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways (RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model. Results (1) Future (2017–2100) climate change will leave 7.4% (under RCP 4.5) and 57.4% of (under RCP 8.5) of areas under high or very high vulnerable climate exposure; (2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage (vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability; (3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future; (4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid- and high-vulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively. Conclusion Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-020-00239-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-020-00239-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Kai Xu; Osbert Jianxin Sun; Xiangping Wang; Chao Jiang;Abstract Background Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index (MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways (RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model. Results (1) Future (2017–2100) climate change will leave 7.4% (under RCP 4.5) and 57.4% of (under RCP 8.5) of areas under high or very high vulnerable climate exposure; (2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage (vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability; (3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future; (4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid- and high-vulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively. Conclusion Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-020-00239-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-020-00239-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 CanadaPublisher:Wiley Authors: Takaro, Tim K.; Henderson, Sarah B.;doi: 10.1155/2015/361687
Climate change is already affecting the cardiorespiratory health of populations around the world, and these impacts are expected to increase. The present overview serves as a primer for respirologists who are concerned about how these profound environmental changes may affect their patients. The authors consider recent peer‐reviewed literature with a focus on climate interactions with air pollution. They do not discuss in detail cardiorespiratory health effects for which the potential link to climate change is poorly understood. For example, pneumonia and influenza, which affect >500 million people per year, are not addressed, although clear seasonal variation suggests climate‐related effects. Additionally, large global health impacts in low‐resource countries, including migration precipitated by environmental change, are omitted. The major cardiorespiratory health impacts addressed are due to heat, air pollution and wildfires, shifts in allergens and infectious diseases along with respiratory impacts from flooding. Personal and societal choices about carbon use and fossil energy infrastructure should be informed by their impacts on health, and respirologists can play an important role in this discussion.
Canadian Respiratory... arrow_drop_down Simon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2015/361687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Canadian Respiratory... arrow_drop_down Simon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2015/361687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 CanadaPublisher:Wiley Authors: Takaro, Tim K.; Henderson, Sarah B.;doi: 10.1155/2015/361687
Climate change is already affecting the cardiorespiratory health of populations around the world, and these impacts are expected to increase. The present overview serves as a primer for respirologists who are concerned about how these profound environmental changes may affect their patients. The authors consider recent peer‐reviewed literature with a focus on climate interactions with air pollution. They do not discuss in detail cardiorespiratory health effects for which the potential link to climate change is poorly understood. For example, pneumonia and influenza, which affect >500 million people per year, are not addressed, although clear seasonal variation suggests climate‐related effects. Additionally, large global health impacts in low‐resource countries, including migration precipitated by environmental change, are omitted. The major cardiorespiratory health impacts addressed are due to heat, air pollution and wildfires, shifts in allergens and infectious diseases along with respiratory impacts from flooding. Personal and societal choices about carbon use and fossil energy infrastructure should be informed by their impacts on health, and respirologists can play an important role in this discussion.
Canadian Respiratory... arrow_drop_down Simon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2015/361687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Canadian Respiratory... arrow_drop_down Simon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2015Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2015/361687&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Eliudi S. Eliakimu; Linda Mans;Sustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Eliudi S. Eliakimu; Linda Mans;Sustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Authors: Chaopin Li; Mu You; Jun Lu; Yunhu Hu;doi: 10.1002/ep.12105
The transformation and environmental characteristics of natural radionuclides in a coal‐fired power plant were investigated. The coal, bottom ash, fly ash, and soil samples were collected. The activity concentrations of natural radionuclides (226Ra, 232Th, and 40K) were determined by a high‐purity germanium gamma ray spectrometer. The radiological hazard factors include radium equivalent activity, external hazard index, air absorbed dose rates, and annual effective dose that were used to evaluate the potential environmental and health risk. The results show that these natural radionuclides are enriched in bottom ash and fly ash during coal combustion. The activity concentrations of these radionuclides at the southeast and northwest soil samples are generally higher than those of the southwest and northeast. 226Ra is mainly enriched at the distance of 200 m, while 232Th is primarily higher in the power plant. Based on the radiological risk assessment, the environmental effect of natural radionuclides caused by coal‐fired power plant is considered to be negligible because the radium equivalent activity and external hazard index values of the measured samples are below the acceptance limitations of 370 Bq kg−1 and 1. The bottom ash and fly ash could be used as construction materials under high management and regularization. © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1080–1084, 2015
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Authors: Chaopin Li; Mu You; Jun Lu; Yunhu Hu;doi: 10.1002/ep.12105
The transformation and environmental characteristics of natural radionuclides in a coal‐fired power plant were investigated. The coal, bottom ash, fly ash, and soil samples were collected. The activity concentrations of natural radionuclides (226Ra, 232Th, and 40K) were determined by a high‐purity germanium gamma ray spectrometer. The radiological hazard factors include radium equivalent activity, external hazard index, air absorbed dose rates, and annual effective dose that were used to evaluate the potential environmental and health risk. The results show that these natural radionuclides are enriched in bottom ash and fly ash during coal combustion. The activity concentrations of these radionuclides at the southeast and northwest soil samples are generally higher than those of the southwest and northeast. 226Ra is mainly enriched at the distance of 200 m, while 232Th is primarily higher in the power plant. Based on the radiological risk assessment, the environmental effect of natural radionuclides caused by coal‐fired power plant is considered to be negligible because the radium equivalent activity and external hazard index values of the measured samples are below the acceptance limitations of 370 Bq kg−1 and 1. The bottom ash and fly ash could be used as construction materials under high management and regularization. © 2015 American Institute of Chemical Engineers Environ Prog, 34: 1080–1084, 2015
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hamideh Moradi; Shuobo Shi; Farshad Darvishi; Farshad Darvishi; Zihe Liu;Abstract Sustainable production of biofuels has provided an attractive alternative to fossil fuels, which has relieved the concern regarding energy supply and global climate change. Currently, interest in metabolic engineering of yeasts as microbial cell factories for biofuel production, which varies from short-chain ethanol to long-chain fatty acid-derived molecules, is growing. The commercial production of new energy-dense biofuels using yeasts and new synthetic biology tools is now possible due to recent developments in metabolic engineering. Here, it is attempted to comprehensively and critically review the latest advances in metabolism-targeted strategies and the production of different types of biofuels using yeasts. Furthermore, the key challenges and perspectives have been discussed for improving yeast biorefineries for the production of biofuels, such as host compatibility of heterologous genes, substrate extension for alternative feedstocks, better tools for reprogramming cell metabolism, host robustness for tolerating or alleviating toxicity induced by end products, and new design principles with predictable behaviors for the constructed biological systems.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hamideh Moradi; Shuobo Shi; Farshad Darvishi; Farshad Darvishi; Zihe Liu;Abstract Sustainable production of biofuels has provided an attractive alternative to fossil fuels, which has relieved the concern regarding energy supply and global climate change. Currently, interest in metabolic engineering of yeasts as microbial cell factories for biofuel production, which varies from short-chain ethanol to long-chain fatty acid-derived molecules, is growing. The commercial production of new energy-dense biofuels using yeasts and new synthetic biology tools is now possible due to recent developments in metabolic engineering. Here, it is attempted to comprehensively and critically review the latest advances in metabolism-targeted strategies and the production of different types of biofuels using yeasts. Furthermore, the key challenges and perspectives have been discussed for improving yeast biorefineries for the production of biofuels, such as host compatibility of heterologous genes, substrate extension for alternative feedstocks, better tools for reprogramming cell metabolism, host robustness for tolerating or alleviating toxicity induced by end products, and new design principles with predictable behaviors for the constructed biological systems.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 China (People's Republic of)Publisher:Proceedings of the National Academy of Sciences Authors: Bonebrake, TC; Mastrandrea, MD;Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0911841107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0911841107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 China (People's Republic of)Publisher:Proceedings of the National Academy of Sciences Authors: Bonebrake, TC; Mastrandrea, MD;Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0911841107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2010 . Peer-reviewedData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0911841107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Feng Zhao; Jörg Durner; J. Barbro Winkler; Claudia Traidl-Hoffmann; Tim-Matthias Strom; Dieter Ernst; Ulrike Frank;pmid: 28284545
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic annual ruderal plant and native to Northern America, but now also spreading across Europe. Air pollution and climate change will not only affect plant growth, pollen production and duration of the whole pollen season, but also the amount of allergenic encoding transcripts and proteins of the pollen. The objective of this study was to get a better understanding of transcriptional changes in ragweed pollen upon NO2 and O3 fumigation. This will also contribute to a systems biology approach to understand the reaction of the allergenic pollen to air pollution and climate change. Ragweed plants were grown in climate chambers under controlled conditions and fumigated with enhanced levels of NO2 and O3. Illumina sequencing and de novo assembly revealed significant differentially expressed transcripts, belonging to different gene ontology (GO) terms that were grouped into biological process and molecular function. Transcript levels of the known Amb a ragweed encoding allergens were clearly up-regulated under elevated NO2, whereas the amount of allergen encoding transcripts was more variable under elevated O3 conditions. Moreover transcripts encoding allergen known from other plants could be identified. The transcriptional changes in ragweed pollen upon elevated NO2 fumigation indicates that air pollution will alter the transcriptome of the pollen. The changed levels of allergenic encoding transcripts may have an influence on the total allergenic potential of ragweed pollen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Feng Zhao; Jörg Durner; J. Barbro Winkler; Claudia Traidl-Hoffmann; Tim-Matthias Strom; Dieter Ernst; Ulrike Frank;pmid: 28284545
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic annual ruderal plant and native to Northern America, but now also spreading across Europe. Air pollution and climate change will not only affect plant growth, pollen production and duration of the whole pollen season, but also the amount of allergenic encoding transcripts and proteins of the pollen. The objective of this study was to get a better understanding of transcriptional changes in ragweed pollen upon NO2 and O3 fumigation. This will also contribute to a systems biology approach to understand the reaction of the allergenic pollen to air pollution and climate change. Ragweed plants were grown in climate chambers under controlled conditions and fumigated with enhanced levels of NO2 and O3. Illumina sequencing and de novo assembly revealed significant differentially expressed transcripts, belonging to different gene ontology (GO) terms that were grouped into biological process and molecular function. Transcript levels of the known Amb a ragweed encoding allergens were clearly up-regulated under elevated NO2, whereas the amount of allergen encoding transcripts was more variable under elevated O3 conditions. Moreover transcripts encoding allergen known from other plants could be identified. The transcriptional changes in ragweed pollen upon elevated NO2 fumigation indicates that air pollution will alter the transcriptome of the pollen. The changed levels of allergenic encoding transcripts may have an influence on the total allergenic potential of ragweed pollen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.02.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Springer Science and Business Media LLC Publicly fundedJunfeng Jim Zhang; Zhengmin Qian; Fusheng Wei; Leo R. Korn; Robert S. Chapman;pmid: 15118749
Data collected in a large epidemiologic study were analyzed to examine respiratory health effects of residential coal use in 7058 school children living in the four Chinese cities of Chongqing, Guangzhou, Lanzhou, and Wuhan. A Scenario Evaluation Approach was used to develop two exposure variables, heating coal smoke and cooking coal smoke. Estimated lifetime exposures to heating coal smoke and cooking coal smoke were both classified into four-level ordinal scales, as follows: no reported exposure (control); lightly exposed; moderately exposed; and heavily exposed. Zero-one dummy variables were constructed for each exposure level other than the control level (total six variables). These variables were entered into the analytical model. We tested for exposure-response relationships using logistic regression models, while controlling for other relevant covariates, including an indicator variable of ambient air pollution levels. We observed monotonic and positive exposure-response relationships of exposure to heating coal smoke with modeled odds ratios (ORs) of phlegm, cough with phlegm, and bronchitis. Other health outcomes were not associated with such exposure in a monotonic exposure-response pattern. However, ORs for cough, wheeze, and asthma were all higher in the exposed groups than in the control group. We observed no consistent associations between cooking coal smoke and the examined health outcomes. We conclude that exposure to heating coal smoke could have adverse effects on children's respiratory symptoms and illnesses in these four Chinese cities.
Journal of Exposure ... arrow_drop_down Journal of Exposure Science & Environmental EpidemiologyArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Exposure Analysis and Environmental EpidemiologyArticle . 2004Data sources: Europe PubMed CentralJournal of Exposure Science & Environmental EpidemiologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sj.jea.7500362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Exposure ... arrow_drop_down Journal of Exposure Science & Environmental EpidemiologyArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Exposure Analysis and Environmental EpidemiologyArticle . 2004Data sources: Europe PubMed CentralJournal of Exposure Science & Environmental EpidemiologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sj.jea.7500362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Springer Science and Business Media LLC Publicly fundedJunfeng Jim Zhang; Zhengmin Qian; Fusheng Wei; Leo R. Korn; Robert S. Chapman;pmid: 15118749
Data collected in a large epidemiologic study were analyzed to examine respiratory health effects of residential coal use in 7058 school children living in the four Chinese cities of Chongqing, Guangzhou, Lanzhou, and Wuhan. A Scenario Evaluation Approach was used to develop two exposure variables, heating coal smoke and cooking coal smoke. Estimated lifetime exposures to heating coal smoke and cooking coal smoke were both classified into four-level ordinal scales, as follows: no reported exposure (control); lightly exposed; moderately exposed; and heavily exposed. Zero-one dummy variables were constructed for each exposure level other than the control level (total six variables). These variables were entered into the analytical model. We tested for exposure-response relationships using logistic regression models, while controlling for other relevant covariates, including an indicator variable of ambient air pollution levels. We observed monotonic and positive exposure-response relationships of exposure to heating coal smoke with modeled odds ratios (ORs) of phlegm, cough with phlegm, and bronchitis. Other health outcomes were not associated with such exposure in a monotonic exposure-response pattern. However, ORs for cough, wheeze, and asthma were all higher in the exposed groups than in the control group. We observed no consistent associations between cooking coal smoke and the examined health outcomes. We conclude that exposure to heating coal smoke could have adverse effects on children's respiratory symptoms and illnesses in these four Chinese cities.
Journal of Exposure ... arrow_drop_down Journal of Exposure Science & Environmental EpidemiologyArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Exposure Analysis and Environmental EpidemiologyArticle . 2004Data sources: Europe PubMed CentralJournal of Exposure Science & Environmental EpidemiologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sj.jea.7500362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Exposure ... arrow_drop_down Journal of Exposure Science & Environmental EpidemiologyArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Exposure Analysis and Environmental EpidemiologyArticle . 2004Data sources: Europe PubMed CentralJournal of Exposure Science & Environmental EpidemiologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sj.jea.7500362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Kai Xu; Osbert Jianxin Sun; Xiangping Wang; Chao Jiang;Abstract Background Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index (MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways (RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model. Results (1) Future (2017–2100) climate change will leave 7.4% (under RCP 4.5) and 57.4% of (under RCP 8.5) of areas under high or very high vulnerable climate exposure; (2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage (vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability; (3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future; (4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid- and high-vulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively. Conclusion Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-020-00239-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-020-00239-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Kai Xu; Osbert Jianxin Sun; Xiangping Wang; Chao Jiang;Abstract Background Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index (MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways (RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model. Results (1) Future (2017–2100) climate change will leave 7.4% (under RCP 4.5) and 57.4% of (under RCP 8.5) of areas under high or very high vulnerable climate exposure; (2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage (vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability; (3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future; (4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid- and high-vulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively. Conclusion Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-020-00239-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40663-020-00239-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu