Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forest Ecosystemsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forest Ecosystems
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forest Ecosystems
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Forest Ecosystems
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity

Authors: Kai Xu; Osbert Jianxin Sun; Xiangping Wang; Chao Jiang;

Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity

Abstract

Abstract Background Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index (MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways (RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model. Results (1) Future (2017–2100) climate change will leave 7.4% (under RCP 4.5) and 57.4% of (under RCP 8.5) of areas under high or very high vulnerable climate exposure; (2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage (vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability; (3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future; (4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid- and high-vulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively. Conclusion Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.

Related Organizations
Keywords

Ecosystem vulnerability, Ecology, Dynamic global vegetation model, Vegetation productivity, Vegetation stability, Southwestern China, Climate change, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
gold