search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
102,109 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • other engineering and technologies
  • GB
  • DE
  • CA

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Eric S. Fraga;
    Eric S. Fraga
    ORCID
    Harvested from ORCID Public Data File

    Eric S. Fraga in OpenAIRE
    orcid Lingjian Yang;
    Lingjian Yang
    ORCID
    Harvested from ORCID Public Data File

    Lingjian Yang in OpenAIRE
    orcid Lazaros G. Papageorgiou;
    Lazaros G. Papageorgiou
    ORCID
    Harvested from ORCID Public Data File

    Lazaros G. Papageorgiou in OpenAIRE

    Abstract Electricity dispatch is a difficult optimisation problem that aims at minimising total fuel cost while satisfying system power demand and certain thermal unit constraints. Modelling valve point effects, multiple fuel options or transmission losses brings non-convexity and non-smoothness into the mathematical models. This paper proposes mathematical programming-based models for valve point effects, multiple fuel options and transmission loss problems respectively. Mathematical programming leads to robust and rigorous optimisation methods for these problems. The applicability of the proposed methods is demonstrated through a number of case studies. For all the case studies, the corresponding methods identify power schedules at least as good as or better than the best known in literature.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electric Power Syste...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electric Power Systems Research
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    28
    citations28
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electric Power Syste...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electric Power Systems Research
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dana Abi Ghanem; Sarah Mander; orcid Philippa Calver;
    Philippa Calver
    ORCID
    Harvested from ORCID Public Data File

    Philippa Calver in OpenAIRE

    Abstract In the context of climate change, global industrialised nations are grappling with transforming energy networks to support a low carbon future. Using an energy justice framework this work aims to understand holistic outcomes of one low-carbon energy network intervention: demand-side response enacted on domestic heat pumps. By exploring participants’ lived experience of a pilot project, from recruitment to installation and use, this work reveals how injustices were reduced, introduced and amplified. Choice, consent, cost, comfort, disruption, and control are highlighted as key aspects of interest when considering the distributive, procedural, and recognition implications of this domestic innovation. For a net reduction of energy injustices to be realised, we highlight the need for project designers to work in partnership with end users to optimise the benefits for the household and the electricity system. Whilst this is a UK study, the themes and findings are internationally applicable for interventions that aim to harness the flexibility of heating, the largest global energy end-use.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    download55
    downloaddownloads55
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Research & So...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marsden, Simon;

    Utilising the theory of the ‘Energy Law and Policy Triangle’, this article analyses the consequences of not having a comprehensive national energy policy, whereby economics, environment and politics are all included. While focusing on two of the three points of the Triangle—economics and environment—the Australian 2015 Energy White Paper has not incorporated the third fully—the politics of energy security—and environmental protection is also inadequate. The article argues that the absence of a comprehensive national energy policy leaves Australia open to piecemeal, reactive approaches to critical issues. Using the example of the South Australian Nuclear Fuel Cycle Royal Commission it highlights the implications of a federal policy vacuum, as whatever decisions the South Australian Government takes on waste disposal, it is unclear whether the Australian Government will support them. It recommends the development of a comprehensive policy, clearer links between aspects, and to apply strategic environmental assessment to significant environmental effects of policy.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Law
    Article
    License: CC 0
    Data sources: UnpayWall
    Journal of Environmental Law
    Article . 2017 . Peer-reviewed
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Law
      Article
      License: CC 0
      Data sources: UnpayWall
      Journal of Environmental Law
      Article . 2017 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Cristina Sarasa;
    Cristina Sarasa
    ORCID
    Harvested from ORCID Public Data File

    Cristina Sarasa in OpenAIRE
    Karen Turner;

    The increasing depletion of natural resources, combined with a wider set of pressures on the environment, has, in recent years, highlighted the need for a more efficient use of energy and a development process that involves alternative energy sources. Energy efficiency has received much attention as a solution, implying both monetary and emissions savings. However, the latter may be partially offset by the income and demand effects of the former, both in more efficient sectors and in spreading to the wider economy. This is the problem of rebound effects. Taking Spain as a case study, and introducing an energy-related CGE model that develops the inclusion of renewables, this paper evaluates a combination of efficiency initiatives to deliver both reduced energy use by households and a more sustainable supply of energy. Our findings suggest that a package aimed at improving efficiency in household electricity and petroleum use, combined with a more competitive supply of energy from renewable sources, may be the only way to get reductions in all energy use, and thus benefit the economy. Specifically, we consider how this package may lead to positive economic impacts and associated rebound effects, where the latter are focused on a greener energy supply.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy
    Article . 2021 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    addClaim
    Access Routes
    Green
    hybrid
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility7
    visibilityviews7
    downloaddownloads7
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy
      Article . 2021 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Jingda Wu;
    Jingda Wu
    ORCID
    Harvested from ORCID Public Data File

    Jingda Wu in OpenAIRE
    orcid Zhongbao Wei;
    Zhongbao Wei
    ORCID
    Harvested from ORCID Public Data File

    Zhongbao Wei in OpenAIRE
    orcid Kailong Liu;
    Kailong Liu
    ORCID
    Harvested from ORCID Public Data File

    Kailong Liu in OpenAIRE
    orcid bw Zhongyi Quan;
    Zhongyi Quan
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Zhongyi Quan in OpenAIRE
    +1 Authors

    Energy management is an enabling technique to guarantee the reliability and economy of hybrid electric systems. This paper proposes a novel machine learning-based energy management strategy for a hybrid electric bus (HEB), with an emphasized consciousness of both thermal safety and degradation of the onboard lithium-ion battery (LIB) system. Firstly, the deep deterministic policy gradient (DDPG) algorithm is combined with an expert-assistance system, for the first time, to enhance the “cold start” performance and optimize the power allocation of HEB. Secondly, in the framework of the proposed algorithm, the penalties to over-temperature and LIB degradation are embedded to improve the management quality in terms of the thermal safety enforcement and overall driving cost reduction. The proposed strategy is tested under different road missions to validate its superiority over state-of-the-art techniques in terms of training efficiency and optimization performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Vehicular Technology
    Article . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    116
    citations116
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Vehicular Technology
      Article . 2020 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • Authors: S. Kiakojoori; Khashayar Khorasani;

    In this paper, fault prognosis of aircraft jet engines are considered using computationally intelligent-based methodologies to ensure flight safety and performance. Two different dynamic neural networks namely, the nonlinear autoregressive neural networks with exogenous input (NARX) and the Elman neural networks are developed and designed for this purpose. The proposed dynamic neural networks are designed to capture the dynamics of two main degradations in the jet engine, namely the compressor fouling and the turbine erosion. The health status and condition of the engine is then predicted subject to occurrence of these deteriorations. In both proposed approaches, two scenarios are considered. For each scenario, several neural networks are trained and their performance in predicting multi-flights ahead turbine output temperature are evaluated. Finally, the most suitable neural network for prediction is selected by using the normalized Bayesian information criterion model selection. Simulation results presented demonstrate and illustrate the effective performance of our proposed neural network-based prediction and prognosis strategies.

    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Giampieri, Alessandro;
    Giampieri, Alessandro
    ORCID
    Harvested from ORCID Public Data File

    Giampieri, Alessandro in OpenAIRE
    orcid Ma, Zhiwei;
    Ma, Zhiwei
    ORCID
    Harvested from ORCID Public Data File

    Ma, Zhiwei in OpenAIRE
    orcid Smallbone, Andrew;
    Smallbone, Andrew
    ORCID
    Harvested from ORCID Public Data File

    Smallbone, Andrew in OpenAIRE
    orcid Roskilly, Anthony Paul;
    Roskilly, Anthony Paul
    ORCID
    Harvested from ORCID Public Data File

    Roskilly, Anthony Paul in OpenAIRE

    Abstract In an effort to minimise electricity consumption and greenhouse gases emissions, the heating, ventilation and air-conditioning sector has focused its attention on developing alternative solutions to electrically-driven vapour-compression cooling. Liquid desiccant air-conditioning systems represent an energy-efficient and more environmentally friendly alternative technology for dehumidification and cooling, particularly in those cases with high latent loads to maintain indoor air quality and comfort conditions. This technology is considered particularly efficient in hot and humid climates. As a matter of fact, the choice of the desiccant solution influences the overall performance of the system. The current paper reviews the working principle of liquid desiccant systems, focusing on the thermodynamic properties of the desiccant solutions and describes an evaluation of the reference thermodynamic properties of different desiccant solutions to identify which thermodynamic, physical, transport property influences the liquid desiccant process and to what extent. The comparison of these thermodynamic properties for the commonly used desiccants is conducted to estimate which fluid could perform most favourably in the system. The economic factors and the effect of different applications and climatic conditions on the system performance are also described. The paper is intended to be the first step in the evaluation of alternative desiccant fluids able to overcome the problems related to the use of the common desiccant solutions, such as crystallization and corrosion to metals. Ionic liquids seem a promising alternative working fluid in liquid desiccant air-conditioning systems and their characteristics and cost are discussed.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Durham University: D...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Energy
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Applied Energy
    Article . 2018 . Peer-reviewed
    addClaim
    Access Routes
    Green
    hybrid
    92
    citations92
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Durham University: D...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Energy
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Applied Energy
      Article . 2018 . Peer-reviewed
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shengtao Fan; Aniruddha M. Gole; Huanfeng Zhao;

    This paper extends the analysis of the stability of electromagnetic transient simulation algorithms to non-linear systems with switching elements and non-linear inductor branches. A theoretical analysis based on common quadratic Lyapunov function (CQLF) theory is used to investigate the stability of numerical algorithms for the simulation of lumped strictly passive switched circuits (LSPSC). It is proved that only when certain fundamental physical properties, i.e., passivity and invariance of Lyapunov energy function are satisfied, does the widely used trapezoidal method result in stable simulations of such networks for any time-step size. This is different from the simulation of linear time invariant (LTI) systems where any real world stable system has a stable simulation if an A-stable integration method (e.g., trapezoidal rule) is used. Subsequently, it is shown that the problem of simulating a piecewise linear inductor can be equivalent to simulating a LSPSC; and ergo its simulation with the trapezoidal rule is also stable.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/pesgm4...
    Conference object . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/pesgm4...
      Conference object . 2020 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • Authors: Davide Laera; W.P. Jones; Jim Rogerson; Aimee S. Morgans; +1 Authors

    This article presents numerical prediction of a thermoacoustic limit cycle in an industrial gas turbine combustor. The case corresponds to an experimental high pressure test rig equipped with the full-scale Siemens SGT-100 combustor operated at two mean pressure levels of 3 bar and 6 bar. The Flame Transfer Function (FTF) characterising the global unsteady response of the flame to velocity perturbations is obtained for both operating pressures by means of incompressible Large Eddy Simulations (LES). A linear stability analysis is then performed by coupling the FTFs with a wave-based low order thermoacoustic network solver. All the thermoacoustic modes predicted at 3 bar pressure are stable; whereas one of the modes at 6 bar is found to be unstable at a frequency of 231 Hz, which agrees with the experiments. A weakly nonlinear stability analysis is carried out by combining the Flame Describing Function (FDF) predicted by LES with the low order thermoacoustic network solver. The frequency, mode shape and velocity amplitude corresponding to the predicted limit cycle at 209 Hz are used to compute the absolute pressure fluctuation amplitude in the combustor. The numerically reconstructed amplitude is found to be reasonably close to the measured dynamics.

    addClaim
    5
    citations5
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rehan Sadiq; Kasun Hewage; Piyaruwan Perera;

    Abstract Recharging infrastructure (RI) deployment plays a vital role in improving the public recharging availability for transport electrification. Decarbonizing transportation using low-emission electricity requires massive RI network. Even though the consumers are reluctant to purchase electric vehicles (EVs) until RIs are sufficiently placed, the investors are not willing to invest in RIs due to recharging demand uncertainties. Therefore, a scientific planning framework is needed to ensure the sustainable deployment of EV-RIs in complex networks. In this study, a lifecycle thinking-based multi-period infrastructure-planning framework is proposed to develop sustainable public EV-RIs in an urban context. This framework consists of a temporal model to find the dynamic EV-RI demands, a stochastic model to obtain travel distances, and a multi-objective optimization model to select the best desirable capacities and locations for potential EV-RIs. A case study of a typical medium-scale municipality in Canada was assessed using the proposed framework and validated using conventional infrastructure planning scenarios. The geo-processing data, regional travel behaviors, and recharging characteristics were used as model inputs. The results of the case study showed that the proposed framework can be used to estimate multi-period public recharging demands, minimize lifecycle costs, maximize service coverage and infrastructure utilization, and ensure reasonable paybacks compared to conventional planning approaches. Moreover, this framework can be used to compare different investment assistances, which are required in the early stages of the RI deployment process to encourage investors. Furthermore, government and private institutions can use this framework to identify recharging demands, permitting, and developing RIs in the long-run.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim