search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2025-2025
  • 7. Clean energy
  • 13. Climate action
  • MA
  • CA

  • Authors: Aicha Bouzem; Othmane Bendaou; Ali El Yaakoubi;

    Background: Machine Learning (ML) techniques have successfully replaced traditional control algorithms in recent years due to their ability to carry out complicated tasks with significant efficiency and accuracy. Objective: The main objective of the current work is to investigate and compare the performances of different ML models in modeling Maximum Power Point Tracking (MPPT) control for a wind turbine system. The main advantage of the designed MPPT based on ML is that it does not require any detailed mathematical model or prior knowledge of the system, such as turbine parameters or aerodynamic properties, unlike traditional MPPT techniques. Methods: The ML models included in this study were Support Vector Machines, Regression Trees, and Ensemble Trees. Their design was performed through a training process, and their performances were evaluated based on various metrics. During the training phase, the ML models were selected to understand the basic concept of the control strategy and extract essential hidden connections between the inputs and the output of the system. Results: The effectiveness of the control method was investigated using MATLAB/Simulink. The findings of this study revealed that ML models were effective in modeling the MPPT for the studied wind power system, which provides an interesting and sophisticated alternative to classical control methods for wind systems. Conclusion: The ML models designed allow for optimal operation of the system with a simple structure that is independent of system parameters and wind speed measurement and is adaptable for any kind of system.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Samira Abousaid; Loubna Benabbou; Hanane Dagdougui; Ismail Belhaj; +2 Authors

    Background: In recent years, the integration of renewable energy sources into the grid has increased exponentially. However, one significant challenge in integrating these renewable sources into the grid is intermittency. Objective: To address this challenge, accurate PV power forecasting techniques are crucial for operations and maintenance and day-to-day operations monitoring in solar plants. Methods: In the present work, a hybrid approach that combines Deep Learning (DL) and Numerical Weather Prediction (NWP) with electrical models for PV power forecasting is proposed Results: The outcomes of the study involve evaluating the performance of the proposed model in comparison to a Physical model and a DL model for predicting solar PV power one day ahead and two days ahead. The results indicate that the prediction accuracy of PV power decreases and the error rates increase when forecasting two days ahead, as compared to one day ahead. Conclusion: The obtained results demonstrate that DL models combined with NWP and electrical models can improve PV Power forecasting compared to a Physical model and a DL model.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • Authors: Aicha Bouzem; Othmane Bendaou; Ali El Yaakoubi;

    Background: Machine Learning (ML) techniques have successfully replaced traditional control algorithms in recent years due to their ability to carry out complicated tasks with significant efficiency and accuracy. Objective: The main objective of the current work is to investigate and compare the performances of different ML models in modeling Maximum Power Point Tracking (MPPT) control for a wind turbine system. The main advantage of the designed MPPT based on ML is that it does not require any detailed mathematical model or prior knowledge of the system, such as turbine parameters or aerodynamic properties, unlike traditional MPPT techniques. Methods: The ML models included in this study were Support Vector Machines, Regression Trees, and Ensemble Trees. Their design was performed through a training process, and their performances were evaluated based on various metrics. During the training phase, the ML models were selected to understand the basic concept of the control strategy and extract essential hidden connections between the inputs and the output of the system. Results: The effectiveness of the control method was investigated using MATLAB/Simulink. The findings of this study revealed that ML models were effective in modeling the MPPT for the studied wind power system, which provides an interesting and sophisticated alternative to classical control methods for wind systems. Conclusion: The ML models designed allow for optimal operation of the system with a simple structure that is independent of system parameters and wind speed measurement and is adaptable for any kind of system.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Samira Abousaid; Loubna Benabbou; Hanane Dagdougui; Ismail Belhaj; +2 Authors

    Background: In recent years, the integration of renewable energy sources into the grid has increased exponentially. However, one significant challenge in integrating these renewable sources into the grid is intermittency. Objective: To address this challenge, accurate PV power forecasting techniques are crucial for operations and maintenance and day-to-day operations monitoring in solar plants. Methods: In the present work, a hybrid approach that combines Deep Learning (DL) and Numerical Weather Prediction (NWP) with electrical models for PV power forecasting is proposed Results: The outcomes of the study involve evaluating the performance of the proposed model in comparison to a Physical model and a DL model for predicting solar PV power one day ahead and two days ahead. The results indicate that the prediction accuracy of PV power decreases and the error rates increase when forecasting two days ahead, as compared to one day ahead. Conclusion: The obtained results demonstrate that DL models combined with NWP and electrical models can improve PV Power forecasting compared to a Physical model and a DL model.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph