- home
- Search
Filters
Clear All- Energy Research
- 2025-2025
- 7. Clean energy
- CA
- US
- Energy Research
- 2025-2025
- 7. Clean energy
- CA
- US
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Bentham Science Publishers Ltd. Samira Abousaid; Loubna Benabbou; Hanane Dagdougui; Ismail Belhaj; Hicham Bouzekri; Abdelaziz Berrado;Background: In recent years, the integration of renewable energy sources into the grid has increased exponentially. However, one significant challenge in integrating these renewable sources into the grid is intermittency. Objective: To address this challenge, accurate PV power forecasting techniques are crucial for operations and maintenance and day-to-day operations monitoring in solar plants. Methods: In the present work, a hybrid approach that combines Deep Learning (DL) and Numerical Weather Prediction (NWP) with electrical models for PV power forecasting is proposed Results: The outcomes of the study involve evaluating the performance of the proposed model in comparison to a Physical model and a DL model for predicting solar PV power one day ahead and two days ahead. The results indicate that the prediction accuracy of PV power decreases and the error rates increase when forecasting two days ahead, as compared to one day ahead. Conclusion: The obtained results demonstrate that DL models combined with NWP and electrical models can improve PV Power forecasting compared to a Physical model and a DL model.
Recent Advances in E... arrow_drop_down Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)Article . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0123520965264083230926105355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recent Advances in E... arrow_drop_down Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)Article . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0123520965264083230926105355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Funded by:NSF | DESC: Type I: Minimizing ...NSF| DESC: Type I: Minimizing Carbon Footprint by Co-designing Data Centers with Sustainable Power GridsAuthors: Osten Anderson; Mikhail A. Bragin; Nanpeng Yu;With California's ambitious goal to achieve decarbonization of the electrical grid by the year 2045, significant challenges arise in power system investment planning. Existing modeling methods and software focus on computational efficiency, which is currently achieved by simplifying the associated unit commitment formulation. This may lead to unjustifiable inaccuracies in the cost and constraints of gas-fired generation operations, and may affect both the timing and the extent of investment in new resources, such as renewable energy and energy storage. To address this issue, this paper develops a more detailed and rigorous mixed-integer model, and more importantly, a solution methodology utilizing surrogate level-based Lagrangian relaxation to overcome the combinatorial complexity that results from the enhanced level of model detail. This allows us to optimize a model with approximately 12 million binary and 100 million total variables in under 48 hours. The investment plan is compared with those produced by E3's RESOLVE software, which is currently employed by the California Energy Commission and California Public Utilities Commission. Our model produces an investment plan that differs substantially from that of the existing method and saves California over 12 billion dollars over the investment horizon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Bentham Science Publishers Ltd. Samira Abousaid; Loubna Benabbou; Hanane Dagdougui; Ismail Belhaj; Hicham Bouzekri; Abdelaziz Berrado;Background: In recent years, the integration of renewable energy sources into the grid has increased exponentially. However, one significant challenge in integrating these renewable sources into the grid is intermittency. Objective: To address this challenge, accurate PV power forecasting techniques are crucial for operations and maintenance and day-to-day operations monitoring in solar plants. Methods: In the present work, a hybrid approach that combines Deep Learning (DL) and Numerical Weather Prediction (NWP) with electrical models for PV power forecasting is proposed Results: The outcomes of the study involve evaluating the performance of the proposed model in comparison to a Physical model and a DL model for predicting solar PV power one day ahead and two days ahead. The results indicate that the prediction accuracy of PV power decreases and the error rates increase when forecasting two days ahead, as compared to one day ahead. Conclusion: The obtained results demonstrate that DL models combined with NWP and electrical models can improve PV Power forecasting compared to a Physical model and a DL model.
Recent Advances in E... arrow_drop_down Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)Article . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0123520965264083230926105355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recent Advances in E... arrow_drop_down Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)Article . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0123520965264083230926105355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Funded by:NSF | DESC: Type I: Minimizing ...NSF| DESC: Type I: Minimizing Carbon Footprint by Co-designing Data Centers with Sustainable Power GridsAuthors: Osten Anderson; Mikhail A. Bragin; Nanpeng Yu;With California's ambitious goal to achieve decarbonization of the electrical grid by the year 2045, significant challenges arise in power system investment planning. Existing modeling methods and software focus on computational efficiency, which is currently achieved by simplifying the associated unit commitment formulation. This may lead to unjustifiable inaccuracies in the cost and constraints of gas-fired generation operations, and may affect both the timing and the extent of investment in new resources, such as renewable energy and energy storage. To address this issue, this paper develops a more detailed and rigorous mixed-integer model, and more importantly, a solution methodology utilizing surrogate level-based Lagrangian relaxation to overcome the combinatorial complexity that results from the enhanced level of model detail. This allows us to optimize a model with approximately 12 million binary and 100 million total variables in under 48 hours. The investment plan is compared with those produced by E3's RESOLVE software, which is currently employed by the California Energy Commission and California Public Utilities Commission. Our model produces an investment plan that differs substantially from that of the existing method and saves California over 12 billion dollars over the investment horizon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu