- home
- Search
- Energy Research
- 7. Clean energy
- 9. Industry and infrastructure
- 14. Life underwater
- CN
- AU
- Energy Research
- 7. Clean energy
- 9. Industry and infrastructure
- 14. Life underwater
- CN
- AU
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Mar 2023Publisher:Dryad Authors: Wolfe, Kennedy David; Desbiens, Amelia; Mumby, Peter;Patterns of movement of marine species can reflect strategies of reproduction and dispersal, species’ interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa is greatest in dead coral and rubble, which is suggested to fuel food webs from the bottom-up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels. We address the bioavailability of motile coral reef cryptofauna based on small-scale patterns of emigration in rubble. We deployed modified RUbble Biodiversity Samplers (RUBS) and emergence traps in a shallow rubble patch at Heron Island, Great Barrier Reef, to detect community-level differences in the directional influx of motile cryptofauna under five habitat accessibility regimes. The mean density (0.13–4.5 ind.cm-3) and biomass (0.14–5.2 mg.cm-3) of cryptofauna were high and varied depending on microhabitat accessibility. Emergent zooplankton represented a distinct community (dominated by the Appendicularia and Calanoida) with the lowest density and biomass, indicating constraints on nocturnal resource availability. Mean cryptofauna density and biomass were greatest when interstitial access within rubble was blocked, driven by the rapid proliferation of small harpacticoid copepods from the rubble surface, leading to trophic simplification. Individuals with high biomass (e.g., decapods, gobies, and echinoderms) were greatest when interstitial access within rubble was unrestricted. Treatments with a closed rubble surface did not differ from those completely open, suggesting that top-down predation does not diminish rubble-derived resources. Our results show that conspecific cues and species’ interactions (e.g., competition and predation) within rubble are most critical in shaping ecological outcomes within the cryptobiome. These findings have implications for prey accessibility through trophic and community size structuring in rubble, which may become increasingly relevant as benthic reef complexity shifts in the Anthropocene. We address the bioavailability of coral reef cryptofauna in rubble based on small-scale patterns of emigration. We adapted the accessibility of Rubble Biodiversity Samplers (RUBS), models used to standardise biodiversity sampling in rubble (Wolfe and Mumby 2020), to explore the local movement patterns of rubble-dwelling fauna, with inference to predation processes within and beyond the cryptobenthos. Five treatments were developed to detect community-level differences in the directional influx of motile cryptofauna under various habitat accessibility regimes. Four of these treatments were developed by modifying accessibility into RUBS (https://www.thingiverse.com/thing:4176644/files) to understand limitations on the directional influx and movement of cryptofauna within coral rubble patches using four treatments; (1) open (completely accessible), (2) interstitial access (top closed), (3) surficial access (sides and bottom closed), and (4) raised (above rubble substratum). The fifth treatment involved a series of emergence plankton traps, designed to target demersal cryptofauna that vertically migrate from within the rubble benthos at night, given emergent zooplankton biomass and diversity are greatest at night. Fieldwork was conducted over several weeks (11th September to 5th October 2021) in a shallow (~3–5 m depth) reef slope site on the southern margin of Heron Island (-23˚26.845’ S, 151˚54.732’ E), Great Barrier Reef, Australia (Fig. 1). All collections were conducted under the Great Barrier Reef Marine Park Authority permit G20/44613.1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Yuan, Wei; Wang, Jie;Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran..., ARC | Ocean acidification and r...ARC| Discovery Projects - Grant ID: DP170101722 ,ARC| Discovery Projects - Grant ID: DP150104263 ,ARC| Ocean acidification and rising sea temperature effect on fishConi, Ericka O C; Nagelkerken, Ivan; Ferreira, Camilo M; Connell, Sean D; Booth, David J;Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-07-26.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 24 Sep 2023Publisher:Dryad Cresswell, Anna; Renton, Michael; Langlois, Timothy; Thomson, Damian; Lynn, Jasmine; Claudet, Joachim;# Coral reef state influences resilience to acute climate-mediated disturbances\_Table S1 [https://doi.org/10.5061/dryad.rfj6q57gz](https://doi.org/10.5061/dryad.rfj6q57gz) The dataset provides a summary of all publications included in the analysis for this study and the key statistics obtained from the studies and used in the analyses. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. ## Description of the data and file structure Each column provides the following information: | Column | Detail | | ------ | ------ | | Realm | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Province | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Ecoregion | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Unique study identifier | Unique identifiers for the lowest sampling unit in the dataset. In cases where there were data for different regions, reefs, islands/atolls, sites, reef zones, depths, and/or multiple disturbances within a publication or time-series, data from these publications were divided into separate ‘studies’. | | Publication/Dataset | Unique identifiers for the publication or dataset (generally the surname of the first author followed by the year of publication). | | Publication title | Title of the publication or dataset from which the data were sourced. | | Publication year | Year the publication from the which the data were sourced was published. | | Country/Territory | Name of the country or location from which the data came. | | Site latitude | Latitude of the study site from where the data came. | | Site longitude | Longitude of the study site from where the data came. | | Disturbance type | Classification of disturbance: Temperature stress, Cyclone/ severe storm, Runoff or Multiple. | | Disturbance.year | Year of the disturbance. | | Mean coral cover pre-disturbance | Pre-disturbance coral cover as extracted from the publication or dataset as the closest data point prior to disturbance. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Mean coral cover post-disturbance | Post-disturbance coral cover as extracted from the publication or dataset as the closest data point prior to disturbance. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Impact (lnRR) | Impact measure: the log response ratio of pre- to post-disturbance percentage coral cover. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Time-averaged recovery rate | Recovery rate as percentage coral cover per year in the approximate 5-year time window following disturbance. See main Methods text in manuscript for more detail. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in the calculation of recovery rate. | | Recovery shape | Recovery shape category: linear, accelerating, decelerating, logistic, flatline or null. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in classification of recovery shape. | | Recovery completeness | Recovery completeness category: complete recovery – coral is observed to reach its pre-disturbance coral cover, signs of recovery – a positive trajectory but not reaching pre-disturbance cover in the time period examined, undetermined – no clear pattern in recovery, the null model was the top model, no recovery – the null model was the top model but the linear model had slope and standard error in slope near zero and further decline – the top model had a negative trend. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in classification of recovery shape. | | Reference | Source for the data. | ## Sharing/Access information Data was derived from the following sources: **Appendix 1. Full list of references providing the data used in impact and recovery analyses supporting Table S1** Arceo, H. O., Quibilan, M. C., Aliño, P. M., Lim, G., & Licuanan, W. Y. (2001). Coral bleaching in Philippine reefs: Coincident evidences with mesoscale thermal anomalies. Bulletin of Marine Science, 69(2), 579-593. Aronson, R. B., Precht, W. F., Toscano, M. A., & Koltes, K. H. (2002). The 1998 bleaching event and its aftermath on a coral reef in Belize. Marine Biology, 141(3), 435-447. Aronson, R. B., Sebens, K. P., & Ebersole, J. P. (1994). Hurricane Hugo's impact on Salt River submarine canyon, St. Croix, US Virgin Islands. Proceedings of the colloquium on global aspects of coral reefs, Miami, 1993, 189-195. Bahr, K. D., Rodgers, K. S., & Jokiel, P. L. (2017). Impact of three bleaching events on the reef resiliency of Kāne'ohe Bay, Hawai'i. Frontiers in Marine Science, 4(DEC). Baird, A. H., Álvarez-Noriega, M., Cumbo, V. R., Connolly, S. R., Dornelas, M., & Madin, J. S. (2018). Effects of tropical storms on the demography of reef corals. Marine Ecology Progress Series, 606, 29-38. Barranco, L. M., Carriquiry, J. D., Rodríguez-Zaragoza, F. A., Cupul-Magaña, A. L., Villaescusa, J. A., & Calderón-Aguilera, L. E. (2016). Spatiotemporal variations of live coral cover in the Northern Mesoamerican reef system, Yucatan Peninsula, Mexico. Scientia Marina, 80(2), 143-150. Bastidas, C., Bone, D., Croquer, A., Debrot, D., Garcia, E., Humanes, A., . . . Rodríguez, S. (2012). Massive hard coral loss after a severe bleaching event in 2010 at Los Roques, Venezuela. Revista de Biologia Tropical, 60(SUPPL. 1), 29-37. Booth, D. J., & Beretta, G. A. (2002). Changes in a fish assemblage after a coral bleaching event. Marine Ecology Progress Series, 245, 205-212. Brandl, S. J., Emslie, M. J., & Ceccarelli, D. M. (2016). Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere, 7(11). Brown, D., & Edmunds, P. J. (2013). Long-term changes in the population dynamics of the Caribbean hydrocoral Millepora spp. Journal of Experimental Marine Biology and Ecology, 441, 62-70. Brown, V. B., Davies, S. A., & Synnot, R. N. (1990). Long-term Monitoring of the Effects of Treated Sewage Effluent on the Intertidal Macroalgal Community Near Cape Schanck, Victoria, Australia. Botanica Marina, 33(1), 85-98. Bruckner, A. W., Coward, G., Bimson, K., & Rattanawongwan, T. (2017). Predation by feeding aggregations of Drupella spp. inhibits the recovery of reefs damaged by a mass bleaching event. Coral Reefs, 36(4), 1181-1187. Burt, J. A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A., & Al-Jailani, H. (2019). Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs. Bythell, J. (1997). Assessment of the impacts of hurricanes Marilyn and Luis and post-hurricane community dynamics at Buck Island Reef National Monument as part of the long-term coral reef monitoring program in the north-eastern Caribbean. Retrieved from Newcastle, United Kingdom: Coles, S. L., & Brown, E. K. (2007). Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai'i: The importance of recruitment. Coral Reefs, 26(3), 705-717. Connell, J. H., Hughes, T. P., Wallace, C. C., Tanner, J. E., Harms, K. E., & Kerr, A. M. (2004). A long‐term study of competition and diversity of corals. Ecological Monographs, 74(2), 179-210. Couch, C. S., Burns, J. H. R., Liu, G., Steward, K., Gutlay, T. N., Kenyon, J., . . . Kosaki, R. K. (2017). Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE, 12(9). Crabbe, M. J. C. (2014). Evidence of initial coral community recovery at Discovery Bay on Jamaica’s north coast. Revista de Biologia Tropical, 62, 137-140. Crosbie, A. J., Bridge, T. C., Jones, G., & Baird, A. H. (2019). Response of reef corals and fish at Osprey Reef to a thermal anomaly across a 30 m depth gradient. Marine Ecology Progress Series, 622, 93-102. Darling, E. S., McClanahan, T. R., & Côté, I. M. (2010). Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conservation Letters, 3(2), 122-130. De Bakker, D. M., Meesters, E. H., Bak, R. P. M., Nieuwland, G., & Van Duyl, F. C. (2016). Long-term Shifts in Coral Communities On Shallow to Deep Reef Slopes of Curaçao and Bonaire: Are There Any Winners? Frontiers in Marine Science, 3(247). Depczynski, M., Gilmour, J. P., Ridgway, T., Barnes, H., Heyward, A. J., Holmes, T. H., . . . Wilson, S. K. (2013). Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs, 32(1), 233-238. Diaz-Pulido, G., McCook, L. J., Dove, S., Berkelmans, R., Roff, G., Kline, D. I., . . . Hoegh-Guldberg, O. (2009). Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery. PLoS ONE, 4(4). Dollar, S. J., & Tribble, G. W. (1993). Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii. Coral Reefs, 12(3-4), 223-233. Donner, S. D., Kirata, T., & Vieux, C. (2010). Recovery from the 2004 coral bleaching event in the Gilbert Islands, Kiribati. Atoll Research Bulletin(587), 1-25. Edmunds, P. J. (2013). Decadal-scale changes in the community structure of coral reefs of St. John, US Virgin Islands. Marine Ecology Progress Series, 489, 107-123. Edmunds, P. J. (2018). Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Scientific Reports, 8(1). Edmunds, P. J. (2019). Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology, 100(3). Edward, J. K. P., Mathews, G., Diraviya Raj, K., Laju, R. L., Selva Bharath, M., Arasamuthu, A., . . . Malleshappa, H. (2018). Coral mortality in the Gulf of Mannar, southeastern India, due to bleaching caused by elevated sea temperature in 2016. Current Science, 114(9), 1967-1972. Edwards, A. J., Clark, S., Zahir, H., Rajasuriya, A., Naseer, A., & Rubens, J. (2001). Coral bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface temperature anomalies and initial recovery. Marine Pollution Bulletin, 42(1), 7-15. Emslie, M. J., Bray, P., Cheal, A. J., Johns, K. A., Osborne, K., Sinclair-Taylor, T., & Thompson, C. A. (2020). Decades of monitoring have informed the stewardship and ecological understanding of Australia's Great Barrier Reef. Biological Conservation, 252, 108854. Fenner, D. P. (1991). Effects of Hurricane Gilbert on coral reefs, fishes and sponges at Cozumel, Mexico. Bulletin of Marine Science, 48(3), 719-730. Fox, M. D., Carter, A. L., Edwards, C. B., Takeshita, Y., Johnson, M. D., Petrovic, V., . . . Smith, J. E. (2019). Limited coral mortality following acute thermal stress and widespread bleaching on Palmyra Atoll, central Pacific. Coral Reefs. García-Sais, J. R., Williams, S. M., & Amirrezvani, A. (2017). Mortality, recovery, and community shifts of scleractinian corals in Puerto Rico one decade after the 2005 regional bleaching event. PeerJ, 2017(7). Garpe, K. C., Yahya, S. A. S., Lindahl, U., & Öhman, M. C. (2006). Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Marine Ecology Progress Series, 315, 237-247. Gilmour, J. P., Cook, K. L., Ryan, N. M., Puotinen, M. L., Green, R. H., Shedrawi, G., . . . Oades, D. (2019). The state of Western Australia’s coral reefs. Coral Reefs. Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H., & Pratchett, M. S. (2013). Recovery of an isolated coral reef system following severe disturbance. Science, 340(6128), 69-71. Glynn, P. W. (1984). Widespread coral mortality and the 1982-1983 El Niño warming event. Environmental Conservation, 11(2), 133-146. Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W., & Serafy, J. E. (2014). Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Marine Ecology Progress Series, 495, 233-247. Gouezo, M., Golbuu, Y., Van Woesik, R., Rehm, L., Koshiba, S., & Doropoulos, C. (2015). Impact of two sequential super typhoons on coral reef communities in Palau. Marine Ecology Progress Series, 540, 73-85. Guest, J. R., Tun, K., Low, J., Vergés, A., Marzinelli, E. M., Campbell, A. H., . . . Steinberg, P. D. (2016). 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Scientific Reports, 6. Guillemot, N., Chabanet, P., & Le Pape, O. (2010). Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs, 29(2), 445-453. Guzmán, H. M., & Cortés, J. (2001). Changes in reef community structure after fifteen years of natural disturbances in the Eastern Pacific (Costa Rica). Bulletin of Marine Science, 69(1), 133-149. Guzman, H. M., Cortes, J., Richmond, R. H., & Glynn, P. W. (1987). Effects of "El Nino - Southern oscillation' 1982/83 in the coral reefs at Isla del Cano, Costa Rica. Revista de Biologia Tropical, 35(2), 325-332. Haapkylä, J., Melbourne-Thomas, J., Flavell, M., & Willis, B. L. (2013). Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef. Coral Reefs, 32(3), 815-824. Hagan, A., & Spencer, T. (2008). Reef resilience and change 1998–2007, Alphonse Atoll, Seychelles. Paper presented at the Proc 11th Int Coral Reef Symp. Harii, S., Hongo, C., Ishihara, M., Ide, Y., & Kayanne, H. (2014). Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey. Marine Ecology Progress Series, 509, 171-180. Harrison, H. B., Álvarez-Noriega, M., Baird, A. H., Heron, S. F., MacDonald, C., & Hughes, T. P. (2018). Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs. Holbrook, S. J., Adam, T. C., Edmunds, P. J., Schmitt, R. J., Carpenter, R. C., Brooks, A. J., . . . Briggs, C. J. (2018). Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Scientific Reports, 8(1). Hongo, C., & Yamano, H. (2013). Species-Specific Responses of Corals to Bleaching Events on Anthropogenically Turbid Reefs on Okinawa Island, Japan, over a 15-year Period (1995-2009). PLoS ONE, 8(4). Huang, H., Yang, Y., Li, X., Yang, J., Lian, J., Lei, X., . . . Zhang, J. (2014). Benthic community changes following the 2010 Hainan flood: Implications for reef resilience. Marine Biology Research, 10(6), 601-611. Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265(5178), 1547-1551. Jokiel, P. L., Hunter, C. L., Taguchi, S., & Watarai, L. (1993). Ecological impact of a fresh-water "reef kill" in Kaneohe Bay, Oahu, Hawaii. Coral Reefs, 12(3-4), 177-184. Jones, A. M., & Berkelmans, R. (2014). Flood impacts in Keppel Bay, Southern Great Barrier Reef in the aftermath of cyclonic rainfall. PLoS ONE, 9(1). Jonker, M., Johns, K., & Osborne, K. (2008). Surveys of benthic reef communities using underwater digital photography and counts of juveniles. Long-term monitoring of the Great Barrier Reef Standard Operation Procedure Number 10. Retrieved from Townsville: Kuo, C. Y., Yuen, Y. S., Meng, P. J., Ho, P. H., Wang, J. T., Liu, P. J., . . . Chen, C. A. (2012). Recurrent Disturbances and the Degradation of Hard Coral Communities in Taiwan. PLoS ONE, 7(8). Lam, V. Y. Y., Chaloupka, M., Thompson, A., Doropoulos, C., & Mumby, P. J. (2018). Acute drivers influence recent inshore Great Barrier Reef dynamics. Proceedings of the Royal Society B: Biological Sciences, 285(1890). Lambo, A. L., & Ormond, R. F. G. (2006). Continued post-bleaching decline and changed benthic community of a Kenyan coral reef. Marine Pollution Bulletin, 52(12), 1617-1624. Lamy, T., Galzin, R., Kulbicki, M., Lison de Loma, T., & Claudet, J. (2016). Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages. Coral Reefs, 35(1), 293-302. Lamy, T., Legendre, P., Chancerelle, Y., Siu, G., & Claudet, J. (2015). Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: Insights from beta-diversity decomposition. PLoS ONE, 10(9). Liddell, W. D., & Ohlhorst, S. L. (1992). Ten years of disturbance and change on a Jamaican fringing reef. Paper presented at the 7th Int. Coral Reef Symp. Lirman, D., Glynn, P. W., Baker, A. C., & Morales, G. E. L. (2001). Combined effects of three sequential storms on the huatulco coral reef tract, mexico. Bulletin of Marine Science, 69(1), 267-278. Lovell, E., & Sykes, H. Rapid recovery from bleaching events-Fiji Coral Reef Monitoring Network Assessment of hard coral cover from. Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., & Van Woesik, R. (2001). Coral bleaching: The winners and the losers. Ecology Letters, 4(2), 122-131. Lozano-Montes, H. M., Keesing, J. K., Grol, M. G., Haywood, M. D. E., Vanderklift, M. A., Babcock, R. C., & Bancroft, K. (2017). Limited effects of an extreme flood event on corals at Ningaloo Reef. Estuarine, Coastal and Shelf Science, 191, 234-238. Madin, J. S., Baird, A. H., Bridge, T. C. L., Connolly, S. R., Zawada, K. J. A., & Dornelas, M. (2018). Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Marine Ecology Progress Series, 604, 263-268. Magdaong, E. T., Fujii, M., Yamano, H., Licuanan, W. Y., Maypa, A., Campos, W. L., . . . Martinez, R. (2014). Long-term change in coral cover and the effectiveness of marine protected areas in the Philippines: A meta-analysis. Hydrobiologia, 733(1), 5-17. McField, M. (2000). Influence of disturbance on coral reef community structure in Belize. Paper presented at the Proc 9th Int Coral Reef Symp. Monaco, M. E., Friedlander, A. M., Caldow, C., Hile, S. D., Menza, C., & Boulon, R. H. (2009). Long-term monitoring of habitats and reef fish found inside and outside the U.S. Virgin Islands Coral Reef National Monument: A comparative assessment. Caribbean Journal of Science, 45(2-3), 338-347. Montefalcone, M., Morri, C., & Bianchi, C. N. (2018). Long-term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies. Global Change Biology, 24(12), 5629-5641. Morgan, K. M., Perry, C. T., Johnson, J. A., & Smithers, S. G. (2017). Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Frontiers in Marine Science, 4. Obura, D., Gudka, M., Rabi, F. A., Gian, S. B., Bijoux, J., Freed, S., . . . Sola, E. (2017). Coral Reef Status Report for the Western Indian Ocean (2017). Paper presented at the Nairobi Convention. Obura, D., & Mangubhai, S. (2011). Coral mortality associated with thermal fluctuations in the Phoenix Islands, 2002-2005. Coral Reefs, 30(3), 607-619. Ostrander, G. K., Armstrong, K. M., Knobbe, E. T., Gerace, D., & Scully, E. P. (2000). Rapid transition the structure of a coral reef community: The effects of coral bleaching and physical disturbance. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5297-5302. Pereira, M. A. M., & Gonçalves, P. M. B. (2004). Effects of the 2000 southern Mozambique floods on a marginal coral community: The case at Xai-Xai. African Journal of Aquatic Science, 29(1), 113-116. Perry, C. T. (2003). Reef development at Inhaca Island, Mozambique: Coral communities and impacts of the 1999/2000 southern African floods. Ambio, 32(2), 134-139. Phongsuwan, N., Chankong, A., Yamarunpatthana, C., Chansang, H., Boonprakob, R., Petchkumnerd, P., . . . Bundit, O. A. (2013). Status and changing patterns on coral reefs in Thailand during the last two decades. Deep-Sea Research Part II: Topical Studies in Oceanography, 96, 19-24. Reyes-Bonilla, H., Carriquiry, J. D., Leyte-Morales, G. E., & Cupul-Magaña, A. L. (2002). Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997-1999) on coral reefs of the western coast of México. Coral Reefs, 21(4), 368-372. Ridgway, T., Inostroza, K., Synnot, L., Trapon, M., Twomey, L., & Westera, M. (2016). Temporal patterns of coral cover in the offshore Pilbara, Western Australia. Marine Biology, 163(9). Riegl, B. (2002). Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Marine Biology, 140(1), 29-40. Rioja-Nieto, R., Chiappa-Carrara, X., & Sheppard, C. (2012). Effects of hurricanes on the stability of reef-associated landscapes. Ciencias Marinas, 38(1), 47-55. Rogers, C. S., Gilnack, M., & Fitz Iii, H. C. (1983). Monitoring of coral reefs with linear transects: A study of storm damage. Journal of Experimental Marine Biology and Ecology, 66(3), 285-300. Rousseau, Y., Galzin, R., & Maréchal, J. P. (2010). Impact of hurricane Dean on coral reef benthic and fish structure of Martinique, French West Indies. Cybium, 34(3), 243-256. Russ, G. R., & Leahy, S. M. (2017). Rapid decline and decadal-scale recovery of corals and Chaetodon butterflyfish on Philippine coral reefs. Marine Biology, 164(1). Ruzicka, R. R., Colella, M. A., Porter, J. W., Morrison, J. M., Kidney, J. A., Brinkhuis, V., . . . Colee, J. (2013). Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Marine Ecology Progress Series, 489, 125-141. Sheppard, C. R. C. (1999). Coral decline and weather patterns over 20 years in the Chagos Archipelago, central Indian Ocean. Ambio, 28(6), 472-478. Shulman, M. J., & Robertson, D. R. (1996). Changes in the coral reefs of San Bias, Caribbean Panama: 1983 to 1990. Coral Reefs, 15(4), 231-236. Smith, T. B., Brandt, M. E., Calnan, J. M., Nemeth, R. S., Blondeau, J., Kadison, E., . . . Rothenberger, P. (2013). Convergent mortality responses of Caribbean coral species to seawater warming. Ecosphere, 4(7). Steneck, R. S., Arnold, S. N., Boenish, R., de León, R., Mumby, P. J., Rasher, D. B., & Wilson, M. W. (2019). Managing Recovery Resilience in Coral Reefs Against Climate-Induced Bleaching and Hurricanes: A 15 Year Case Study From Bonaire, Dutch Caribbean. Frontiers in Marine Science, 6(265). Stobart, B., Teleki, K., Buckley, R., Downing, N., & Callow, M. (2005). Coral recovery at Aldabra Atoll, Seychelles: Five years after the 1998 bleaching event. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1826), 251-255. Torda, G., Sambrook, K., Cross, P., Sato, Y., Bourne, D. G., Lukoschek, V., . . . Willis, B. L. (2018). Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Scientific Reports, 8(1). Trapon, M. L., Pratchett, M. S., & Penin, L. (2011). Comparative effects of different disturbances in coral reef habitats in Moorea, French Polynesia. Journal of Marine Biology, 2011. Tsounis, G., & Edmunds, P. J. (2017). Three decades of coral reef community dynamics in St. John, USVI: A contrast of scleractinians and octocorals. Ecosphere, 8(1). Van Woesik, R., De Vantier, L. M., & Glazebrook, J. S. (1995). Effects of Cyclone "Joy' on nearshore coral communities of the Great Barrier Reef. Marine Ecology Progress Series, 128(1-3), 261-270. Van Woesik, R., Sakai, K., Ganase, A., & Loya, Y. (2011). Revisiting the winners and the losers a decade after coral bleaching. Marine Ecology Progress Series, 434, 67-76. Vercelloni, J., Kayal, M., Chancerelle, Y., & Planes, S. (2019). Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Scientific Reports, 9(1). Walsh, W. J. (1983). Stability of a coral reef fish community following a catastrophic storm. Coral Reefs, 2(1), 49-63. Wilkinson, C. (2004). Status of coral reefs of the world: 2004 (Vol. 2). Queensland, Australia: Global Coral Reef Monitoring Network. Wilkinson, C. R., & Souter, D. (2008). Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Wismer, S., Tebbett, S. B., Streit, R. P., & Bellwood, D. R. (2019). Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Science of the Total Environment, 650, 1487-1498. Woolsey, E., Bainbridge, S. J., Kingsford, M. J., & Byrne, M. (2012). Impacts of cyclone Hamish at One Tree Reef: Integrating environmental and benthic habitat data. Marine Biology, 159(4), 793-803. Aim: Understand the interplay between resistance and recovery on coral reefs, and investigate dependence on pre- and post-disturbance states, to inform generalisable reef resilience theory across large spatial and temporal scales. Location: Tropical coral reefs globally. Time period: 1966 to 2017. Major taxa studied: Scleratinian hard corals. Methods: We conducted a literature search to compile a global dataset of total coral cover before and after acute storms, temperature stress, and coastal runoff from flooding events. We used meta-regression to identify variables that explained significant variation in disturbance impact, including disturbance type, year, depth, and pre-disturbance coral cover. We further investigated the influence of these same variables, as well as post-disturbance coral cover and disturbance impact, on recovery rate. We examined the shape of recovery, assigning qualitatively distinct, ecologically relevant, population growth trajectories: linear, logistic, logarithmic (decelerating), and a second-order quadratic (accelerating). Results: We analysed 427 disturbance impacts and 117 recovery trajectories. Accelerating and logistic were the most common recovery shapes, underscoring non-linearities and recovery lags. A complex but meaningful relationship between the state of a reef pre- and post-disturbance, disturbance impact magnitude, and recovery rate was identified. Fastest recovery rates were predicted for intermediate to large disturbance impacts, but a decline in this rate was predicted when more than ~75% of pre-disturbance cover was lost. We identified a shifting baseline, with declines in both pre-and post-disturbance coral cover over the 50 year study period. Main conclusions: We breakdown the complexities of coral resilience, showing interplay between resistance and recovery, as well as dependence on both pre- and post-disturbance states, alongside documenting a chronic decline in these states. This has implications for predicting coral reef futures and implementing actions to enhance resilience. The dataset provides a summary of all studies included in the analysis and the key statistics obtained from the studies and used in the analyses for the manuscript entitled "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rfj6q57gz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rfj6q57gz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Sun, Shouchen; Wang, Jiandong;Matlab program and data for the paper “An energy consumption rectification method based on Bayesian linear regression and heating degree-days". "simulation model.zip" is the heating house model in Trnsys simulation software. "Example1" and "Example2" is the Matlab program and data in this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/bn8pss2g3z.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/bn8pss2g3z.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 AustraliaPublisher:Mendeley Authors: Castrejón Campos, O; Aye, L; Hui, KF;handle: 11343/258762
This dataset includes input data to estimate learning-by-doing (LbD) and learning-by-researching (LbR) rates for onshore wind and solar PV in the United States. Using different learning curve approaches the simulated technology cost developments are also presented. Coefficient of determination (R square) and Root Mean Square Error (RMSE) were applied for quantification of the agreement between simulated and observed technology costs.
Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)The University of Melbourne: Digital RepositoryDataset . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9spxxny27f.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)The University of Melbourne: Digital RepositoryDataset . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9spxxny27f.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: QI R., H.; LU, L.; HUANG, Y.;By using a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, the liquid desiccant cooling system (LDCS) system became a promising alternative for traditional technology. Solar thermal energy is suitable to deal with the heat requirement of LDCS in buildings, especially in the areas with abundant solar radiation. The energy saving of solar-assisted liquid desiccant air-conditioning system is significantly affected by various operation conditions, and multi-parameter optimization was necessary to improve the system applicability. In this paper, we investigated the impact of five main parameters on the system performance via self-developed system modelling, including the solution mass flow rate, concentration, cooling tower flow rate, and solar water flow rate and installation area of solar collector. A typical commercial building in Hong Kong was selected as a case study, which air-conditioning load was obtained by Energy-plus. The results indicated that the installation area of solar collector showed the greatest impact, and the effect of heating water flow rate was also important. The effect of desiccant flow rate was significant, but the influence of solution concentration was slight. Then, the multi-parameter optimization was conducted for obtaining a maximum annual electricity saving rate based on the Multi-Population Genetic Algorithm. The optimized installation area of solar collector was 72 m2, and the heating water flow rate was 0.66 kg/s. The optimized solution flow rate was 0.17 kg/s. The required cooling water flow rate was around 0.8 kg/s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Garner, Gregory; Hermans, Tim H.J.; Kopp, Robert; Slangen, Aimée; Edwards, Tasmin; Levermann, Anders; Nowicki, Sophie; Palmer, Matthew D.; Smith, Chris; Fox-Kemper, Baylor; Hewitt, Helene; Xiao, Cunde; Aðalgeirsdóttir, Guðfinna; Drijfhout, Sybren; Golledge, Nicholas; Hemer, Marc; Krinner, Gerhard; Mix, Alan; Notz, Dirk; Nurhati, Intan; Ruiz, Lucas; Sallée, Jean-Baptiste; Yu, Yongqiang; Hua, L.; Palmer, Tamzin; Pearson, Brodie;Project: IPCC Data Distribution Centre : Supplementary data sets for the Sixth Assessment Report - For the Sixth Assessment Report of the IPCC (AR6) input/source and intermediate datasets underlying the AR6 were collected and long-term archived. This project compliments CMIP6 data subset and snapshot analyzed for the WGI AR6. Summary: This data set contains detailed elements the sea level projections associated with the Intergovernmental Panel on Climate Change Sixth Assessment Report. In particular, it contains relative sea level projections that exclude the background term (representing primarily land subsidence or uplift). It includes probability distributions for all the workflows described in AR6 WGI 9.6.3.2. P-boxes derived from these distributions are available in the sister entry 'IPCC-DDC_AR6_Sup_PBox'. These data may be of use for users who want to substitute their own estimates of the background term. Regional projections can also be accessed through the NASA/IPCC Sea Level Projections Tool at https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool. See https://zenodo.org/communities/ipcc-ar6-sea-level-projections for additional related data sets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Mar 2023Publisher:Dryad Authors: Wolfe, Kennedy David; Desbiens, Amelia; Mumby, Peter;Patterns of movement of marine species can reflect strategies of reproduction and dispersal, species’ interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa is greatest in dead coral and rubble, which is suggested to fuel food webs from the bottom-up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels. We address the bioavailability of motile coral reef cryptofauna based on small-scale patterns of emigration in rubble. We deployed modified RUbble Biodiversity Samplers (RUBS) and emergence traps in a shallow rubble patch at Heron Island, Great Barrier Reef, to detect community-level differences in the directional influx of motile cryptofauna under five habitat accessibility regimes. The mean density (0.13–4.5 ind.cm-3) and biomass (0.14–5.2 mg.cm-3) of cryptofauna were high and varied depending on microhabitat accessibility. Emergent zooplankton represented a distinct community (dominated by the Appendicularia and Calanoida) with the lowest density and biomass, indicating constraints on nocturnal resource availability. Mean cryptofauna density and biomass were greatest when interstitial access within rubble was blocked, driven by the rapid proliferation of small harpacticoid copepods from the rubble surface, leading to trophic simplification. Individuals with high biomass (e.g., decapods, gobies, and echinoderms) were greatest when interstitial access within rubble was unrestricted. Treatments with a closed rubble surface did not differ from those completely open, suggesting that top-down predation does not diminish rubble-derived resources. Our results show that conspecific cues and species’ interactions (e.g., competition and predation) within rubble are most critical in shaping ecological outcomes within the cryptobiome. These findings have implications for prey accessibility through trophic and community size structuring in rubble, which may become increasingly relevant as benthic reef complexity shifts in the Anthropocene. We address the bioavailability of coral reef cryptofauna in rubble based on small-scale patterns of emigration. We adapted the accessibility of Rubble Biodiversity Samplers (RUBS), models used to standardise biodiversity sampling in rubble (Wolfe and Mumby 2020), to explore the local movement patterns of rubble-dwelling fauna, with inference to predation processes within and beyond the cryptobenthos. Five treatments were developed to detect community-level differences in the directional influx of motile cryptofauna under various habitat accessibility regimes. Four of these treatments were developed by modifying accessibility into RUBS (https://www.thingiverse.com/thing:4176644/files) to understand limitations on the directional influx and movement of cryptofauna within coral rubble patches using four treatments; (1) open (completely accessible), (2) interstitial access (top closed), (3) surficial access (sides and bottom closed), and (4) raised (above rubble substratum). The fifth treatment involved a series of emergence plankton traps, designed to target demersal cryptofauna that vertically migrate from within the rubble benthos at night, given emergent zooplankton biomass and diversity are greatest at night. Fieldwork was conducted over several weeks (11th September to 5th October 2021) in a shallow (~3–5 m depth) reef slope site on the southern margin of Heron Island (-23˚26.845’ S, 151˚54.732’ E), Great Barrier Reef, Australia (Fig. 1). All collections were conducted under the Great Barrier Reef Marine Park Authority permit G20/44613.1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Yuan, Wei; Wang, Jie;Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02347&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran..., ARC | Ocean acidification and r...ARC| Discovery Projects - Grant ID: DP170101722 ,ARC| Discovery Projects - Grant ID: DP150104263 ,ARC| Ocean acidification and rising sea temperature effect on fishConi, Ericka O C; Nagelkerken, Ivan; Ferreira, Camilo M; Connell, Sean D; Booth, David J;Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-07-26.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 24 Sep 2023Publisher:Dryad Cresswell, Anna; Renton, Michael; Langlois, Timothy; Thomson, Damian; Lynn, Jasmine; Claudet, Joachim;# Coral reef state influences resilience to acute climate-mediated disturbances\_Table S1 [https://doi.org/10.5061/dryad.rfj6q57gz](https://doi.org/10.5061/dryad.rfj6q57gz) The dataset provides a summary of all publications included in the analysis for this study and the key statistics obtained from the studies and used in the analyses. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. ## Description of the data and file structure Each column provides the following information: | Column | Detail | | ------ | ------ | | Realm | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Province | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Ecoregion | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Unique study identifier | Unique identifiers for the lowest sampling unit in the dataset. In cases where there were data for different regions, reefs, islands/atolls, sites, reef zones, depths, and/or multiple disturbances within a publication or time-series, data from these publications were divided into separate ‘studies’. | | Publication/Dataset | Unique identifiers for the publication or dataset (generally the surname of the first author followed by the year of publication). | | Publication title | Title of the publication or dataset from which the data were sourced. | | Publication year | Year the publication from the which the data were sourced was published. | | Country/Territory | Name of the country or location from which the data came. | | Site latitude | Latitude of the study site from where the data came. | | Site longitude | Longitude of the study site from where the data came. | | Disturbance type | Classification of disturbance: Temperature stress, Cyclone/ severe storm, Runoff or Multiple. | | Disturbance.year | Year of the disturbance. | | Mean coral cover pre-disturbance | Pre-disturbance coral cover as extracted from the publication or dataset as the closest data point prior to disturbance. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Mean coral cover post-disturbance | Post-disturbance coral cover as extracted from the publication or dataset as the closest data point prior to disturbance. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Impact (lnRR) | Impact measure: the log response ratio of pre- to post-disturbance percentage coral cover. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Time-averaged recovery rate | Recovery rate as percentage coral cover per year in the approximate 5-year time window following disturbance. See main Methods text in manuscript for more detail. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in the calculation of recovery rate. | | Recovery shape | Recovery shape category: linear, accelerating, decelerating, logistic, flatline or null. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in classification of recovery shape. | | Recovery completeness | Recovery completeness category: complete recovery – coral is observed to reach its pre-disturbance coral cover, signs of recovery – a positive trajectory but not reaching pre-disturbance cover in the time period examined, undetermined – no clear pattern in recovery, the null model was the top model, no recovery – the null model was the top model but the linear model had slope and standard error in slope near zero and further decline – the top model had a negative trend. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in classification of recovery shape. | | Reference | Source for the data. | ## Sharing/Access information Data was derived from the following sources: **Appendix 1. Full list of references providing the data used in impact and recovery analyses supporting Table S1** Arceo, H. O., Quibilan, M. C., Aliño, P. M., Lim, G., & Licuanan, W. Y. (2001). Coral bleaching in Philippine reefs: Coincident evidences with mesoscale thermal anomalies. Bulletin of Marine Science, 69(2), 579-593. Aronson, R. B., Precht, W. F., Toscano, M. A., & Koltes, K. H. (2002). The 1998 bleaching event and its aftermath on a coral reef in Belize. Marine Biology, 141(3), 435-447. Aronson, R. B., Sebens, K. P., & Ebersole, J. P. (1994). Hurricane Hugo's impact on Salt River submarine canyon, St. Croix, US Virgin Islands. Proceedings of the colloquium on global aspects of coral reefs, Miami, 1993, 189-195. Bahr, K. D., Rodgers, K. S., & Jokiel, P. L. (2017). Impact of three bleaching events on the reef resiliency of Kāne'ohe Bay, Hawai'i. Frontiers in Marine Science, 4(DEC). Baird, A. H., Álvarez-Noriega, M., Cumbo, V. R., Connolly, S. R., Dornelas, M., & Madin, J. S. (2018). Effects of tropical storms on the demography of reef corals. Marine Ecology Progress Series, 606, 29-38. Barranco, L. M., Carriquiry, J. D., Rodríguez-Zaragoza, F. A., Cupul-Magaña, A. L., Villaescusa, J. A., & Calderón-Aguilera, L. E. (2016). Spatiotemporal variations of live coral cover in the Northern Mesoamerican reef system, Yucatan Peninsula, Mexico. Scientia Marina, 80(2), 143-150. Bastidas, C., Bone, D., Croquer, A., Debrot, D., Garcia, E., Humanes, A., . . . Rodríguez, S. (2012). Massive hard coral loss after a severe bleaching event in 2010 at Los Roques, Venezuela. Revista de Biologia Tropical, 60(SUPPL. 1), 29-37. Booth, D. J., & Beretta, G. A. (2002). Changes in a fish assemblage after a coral bleaching event. Marine Ecology Progress Series, 245, 205-212. Brandl, S. J., Emslie, M. J., & Ceccarelli, D. M. (2016). Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere, 7(11). Brown, D., & Edmunds, P. J. (2013). Long-term changes in the population dynamics of the Caribbean hydrocoral Millepora spp. Journal of Experimental Marine Biology and Ecology, 441, 62-70. Brown, V. B., Davies, S. A., & Synnot, R. N. (1990). Long-term Monitoring of the Effects of Treated Sewage Effluent on the Intertidal Macroalgal Community Near Cape Schanck, Victoria, Australia. Botanica Marina, 33(1), 85-98. Bruckner, A. W., Coward, G., Bimson, K., & Rattanawongwan, T. (2017). Predation by feeding aggregations of Drupella spp. inhibits the recovery of reefs damaged by a mass bleaching event. Coral Reefs, 36(4), 1181-1187. Burt, J. A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A., & Al-Jailani, H. (2019). Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs. Bythell, J. (1997). Assessment of the impacts of hurricanes Marilyn and Luis and post-hurricane community dynamics at Buck Island Reef National Monument as part of the long-term coral reef monitoring program in the north-eastern Caribbean. Retrieved from Newcastle, United Kingdom: Coles, S. L., & Brown, E. K. (2007). Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai'i: The importance of recruitment. Coral Reefs, 26(3), 705-717. Connell, J. H., Hughes, T. P., Wallace, C. C., Tanner, J. E., Harms, K. E., & Kerr, A. M. (2004). A long‐term study of competition and diversity of corals. Ecological Monographs, 74(2), 179-210. Couch, C. S., Burns, J. H. R., Liu, G., Steward, K., Gutlay, T. N., Kenyon, J., . . . Kosaki, R. K. (2017). Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE, 12(9). Crabbe, M. J. C. (2014). Evidence of initial coral community recovery at Discovery Bay on Jamaica’s north coast. Revista de Biologia Tropical, 62, 137-140. Crosbie, A. J., Bridge, T. C., Jones, G., & Baird, A. H. (2019). Response of reef corals and fish at Osprey Reef to a thermal anomaly across a 30 m depth gradient. Marine Ecology Progress Series, 622, 93-102. Darling, E. S., McClanahan, T. R., & Côté, I. M. (2010). Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conservation Letters, 3(2), 122-130. De Bakker, D. M., Meesters, E. H., Bak, R. P. M., Nieuwland, G., & Van Duyl, F. C. (2016). Long-term Shifts in Coral Communities On Shallow to Deep Reef Slopes of Curaçao and Bonaire: Are There Any Winners? Frontiers in Marine Science, 3(247). Depczynski, M., Gilmour, J. P., Ridgway, T., Barnes, H., Heyward, A. J., Holmes, T. H., . . . Wilson, S. K. (2013). Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs, 32(1), 233-238. Diaz-Pulido, G., McCook, L. J., Dove, S., Berkelmans, R., Roff, G., Kline, D. I., . . . Hoegh-Guldberg, O. (2009). Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery. PLoS ONE, 4(4). Dollar, S. J., & Tribble, G. W. (1993). Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii. Coral Reefs, 12(3-4), 223-233. Donner, S. D., Kirata, T., & Vieux, C. (2010). Recovery from the 2004 coral bleaching event in the Gilbert Islands, Kiribati. Atoll Research Bulletin(587), 1-25. Edmunds, P. J. (2013). Decadal-scale changes in the community structure of coral reefs of St. John, US Virgin Islands. Marine Ecology Progress Series, 489, 107-123. Edmunds, P. J. (2018). Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Scientific Reports, 8(1). Edmunds, P. J. (2019). Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology, 100(3). Edward, J. K. P., Mathews, G., Diraviya Raj, K., Laju, R. L., Selva Bharath, M., Arasamuthu, A., . . . Malleshappa, H. (2018). Coral mortality in the Gulf of Mannar, southeastern India, due to bleaching caused by elevated sea temperature in 2016. Current Science, 114(9), 1967-1972. Edwards, A. J., Clark, S., Zahir, H., Rajasuriya, A., Naseer, A., & Rubens, J. (2001). Coral bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface temperature anomalies and initial recovery. Marine Pollution Bulletin, 42(1), 7-15. Emslie, M. J., Bray, P., Cheal, A. J., Johns, K. A., Osborne, K., Sinclair-Taylor, T., & Thompson, C. A. (2020). Decades of monitoring have informed the stewardship and ecological understanding of Australia's Great Barrier Reef. Biological Conservation, 252, 108854. Fenner, D. P. (1991). Effects of Hurricane Gilbert on coral reefs, fishes and sponges at Cozumel, Mexico. Bulletin of Marine Science, 48(3), 719-730. Fox, M. D., Carter, A. L., Edwards, C. B., Takeshita, Y., Johnson, M. D., Petrovic, V., . . . Smith, J. E. (2019). Limited coral mortality following acute thermal stress and widespread bleaching on Palmyra Atoll, central Pacific. Coral Reefs. García-Sais, J. R., Williams, S. M., & Amirrezvani, A. (2017). Mortality, recovery, and community shifts of scleractinian corals in Puerto Rico one decade after the 2005 regional bleaching event. PeerJ, 2017(7). Garpe, K. C., Yahya, S. A. S., Lindahl, U., & Öhman, M. C. (2006). Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Marine Ecology Progress Series, 315, 237-247. Gilmour, J. P., Cook, K. L., Ryan, N. M., Puotinen, M. L., Green, R. H., Shedrawi, G., . . . Oades, D. (2019). The state of Western Australia’s coral reefs. Coral Reefs. Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H., & Pratchett, M. S. (2013). Recovery of an isolated coral reef system following severe disturbance. Science, 340(6128), 69-71. Glynn, P. W. (1984). Widespread coral mortality and the 1982-1983 El Niño warming event. Environmental Conservation, 11(2), 133-146. Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W., & Serafy, J. E. (2014). Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Marine Ecology Progress Series, 495, 233-247. Gouezo, M., Golbuu, Y., Van Woesik, R., Rehm, L., Koshiba, S., & Doropoulos, C. (2015). Impact of two sequential super typhoons on coral reef communities in Palau. Marine Ecology Progress Series, 540, 73-85. Guest, J. R., Tun, K., Low, J., Vergés, A., Marzinelli, E. M., Campbell, A. H., . . . Steinberg, P. D. (2016). 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Scientific Reports, 6. Guillemot, N., Chabanet, P., & Le Pape, O. (2010). Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs, 29(2), 445-453. Guzmán, H. M., & Cortés, J. (2001). Changes in reef community structure after fifteen years of natural disturbances in the Eastern Pacific (Costa Rica). Bulletin of Marine Science, 69(1), 133-149. Guzman, H. M., Cortes, J., Richmond, R. H., & Glynn, P. W. (1987). Effects of "El Nino - Southern oscillation' 1982/83 in the coral reefs at Isla del Cano, Costa Rica. Revista de Biologia Tropical, 35(2), 325-332. Haapkylä, J., Melbourne-Thomas, J., Flavell, M., & Willis, B. L. (2013). Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef. Coral Reefs, 32(3), 815-824. Hagan, A., & Spencer, T. (2008). Reef resilience and change 1998–2007, Alphonse Atoll, Seychelles. Paper presented at the Proc 11th Int Coral Reef Symp. Harii, S., Hongo, C., Ishihara, M., Ide, Y., & Kayanne, H. (2014). Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey. Marine Ecology Progress Series, 509, 171-180. Harrison, H. B., Álvarez-Noriega, M., Baird, A. H., Heron, S. F., MacDonald, C., & Hughes, T. P. (2018). Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs. Holbrook, S. J., Adam, T. C., Edmunds, P. J., Schmitt, R. J., Carpenter, R. C., Brooks, A. J., . . . Briggs, C. J. (2018). Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Scientific Reports, 8(1). Hongo, C., & Yamano, H. (2013). Species-Specific Responses of Corals to Bleaching Events on Anthropogenically Turbid Reefs on Okinawa Island, Japan, over a 15-year Period (1995-2009). PLoS ONE, 8(4). Huang, H., Yang, Y., Li, X., Yang, J., Lian, J., Lei, X., . . . Zhang, J. (2014). Benthic community changes following the 2010 Hainan flood: Implications for reef resilience. Marine Biology Research, 10(6), 601-611. Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265(5178), 1547-1551. Jokiel, P. L., Hunter, C. L., Taguchi, S., & Watarai, L. (1993). Ecological impact of a fresh-water "reef kill" in Kaneohe Bay, Oahu, Hawaii. Coral Reefs, 12(3-4), 177-184. Jones, A. M., & Berkelmans, R. (2014). Flood impacts in Keppel Bay, Southern Great Barrier Reef in the aftermath of cyclonic rainfall. PLoS ONE, 9(1). Jonker, M., Johns, K., & Osborne, K. (2008). Surveys of benthic reef communities using underwater digital photography and counts of juveniles. Long-term monitoring of the Great Barrier Reef Standard Operation Procedure Number 10. Retrieved from Townsville: Kuo, C. Y., Yuen, Y. S., Meng, P. J., Ho, P. H., Wang, J. T., Liu, P. J., . . . Chen, C. A. (2012). Recurrent Disturbances and the Degradation of Hard Coral Communities in Taiwan. PLoS ONE, 7(8). Lam, V. Y. Y., Chaloupka, M., Thompson, A., Doropoulos, C., & Mumby, P. J. (2018). Acute drivers influence recent inshore Great Barrier Reef dynamics. Proceedings of the Royal Society B: Biological Sciences, 285(1890). Lambo, A. L., & Ormond, R. F. G. (2006). Continued post-bleaching decline and changed benthic community of a Kenyan coral reef. Marine Pollution Bulletin, 52(12), 1617-1624. Lamy, T., Galzin, R., Kulbicki, M., Lison de Loma, T., & Claudet, J. (2016). Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages. Coral Reefs, 35(1), 293-302. Lamy, T., Legendre, P., Chancerelle, Y., Siu, G., & Claudet, J. (2015). Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: Insights from beta-diversity decomposition. PLoS ONE, 10(9). Liddell, W. D., & Ohlhorst, S. L. (1992). Ten years of disturbance and change on a Jamaican fringing reef. Paper presented at the 7th Int. Coral Reef Symp. Lirman, D., Glynn, P. W., Baker, A. C., & Morales, G. E. L. (2001). Combined effects of three sequential storms on the huatulco coral reef tract, mexico. Bulletin of Marine Science, 69(1), 267-278. Lovell, E., & Sykes, H. Rapid recovery from bleaching events-Fiji Coral Reef Monitoring Network Assessment of hard coral cover from. Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., & Van Woesik, R. (2001). Coral bleaching: The winners and the losers. Ecology Letters, 4(2), 122-131. Lozano-Montes, H. M., Keesing, J. K., Grol, M. G., Haywood, M. D. E., Vanderklift, M. A., Babcock, R. C., & Bancroft, K. (2017). Limited effects of an extreme flood event on corals at Ningaloo Reef. Estuarine, Coastal and Shelf Science, 191, 234-238. Madin, J. S., Baird, A. H., Bridge, T. C. L., Connolly, S. R., Zawada, K. J. A., & Dornelas, M. (2018). Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Marine Ecology Progress Series, 604, 263-268. Magdaong, E. T., Fujii, M., Yamano, H., Licuanan, W. Y., Maypa, A., Campos, W. L., . . . Martinez, R. (2014). Long-term change in coral cover and the effectiveness of marine protected areas in the Philippines: A meta-analysis. Hydrobiologia, 733(1), 5-17. McField, M. (2000). Influence of disturbance on coral reef community structure in Belize. Paper presented at the Proc 9th Int Coral Reef Symp. Monaco, M. E., Friedlander, A. M., Caldow, C., Hile, S. D., Menza, C., & Boulon, R. H. (2009). Long-term monitoring of habitats and reef fish found inside and outside the U.S. Virgin Islands Coral Reef National Monument: A comparative assessment. Caribbean Journal of Science, 45(2-3), 338-347. Montefalcone, M., Morri, C., & Bianchi, C. N. (2018). Long-term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies. Global Change Biology, 24(12), 5629-5641. Morgan, K. M., Perry, C. T., Johnson, J. A., & Smithers, S. G. (2017). Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Frontiers in Marine Science, 4. Obura, D., Gudka, M., Rabi, F. A., Gian, S. B., Bijoux, J., Freed, S., . . . Sola, E. (2017). Coral Reef Status Report for the Western Indian Ocean (2017). Paper presented at the Nairobi Convention. Obura, D., & Mangubhai, S. (2011). Coral mortality associated with thermal fluctuations in the Phoenix Islands, 2002-2005. Coral Reefs, 30(3), 607-619. Ostrander, G. K., Armstrong, K. M., Knobbe, E. T., Gerace, D., & Scully, E. P. (2000). Rapid transition the structure of a coral reef community: The effects of coral bleaching and physical disturbance. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5297-5302. Pereira, M. A. M., & Gonçalves, P. M. B. (2004). Effects of the 2000 southern Mozambique floods on a marginal coral community: The case at Xai-Xai. African Journal of Aquatic Science, 29(1), 113-116. Perry, C. T. (2003). Reef development at Inhaca Island, Mozambique: Coral communities and impacts of the 1999/2000 southern African floods. Ambio, 32(2), 134-139. Phongsuwan, N., Chankong, A., Yamarunpatthana, C., Chansang, H., Boonprakob, R., Petchkumnerd, P., . . . Bundit, O. A. (2013). Status and changing patterns on coral reefs in Thailand during the last two decades. Deep-Sea Research Part II: Topical Studies in Oceanography, 96, 19-24. Reyes-Bonilla, H., Carriquiry, J. D., Leyte-Morales, G. E., & Cupul-Magaña, A. L. (2002). Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997-1999) on coral reefs of the western coast of México. Coral Reefs, 21(4), 368-372. Ridgway, T., Inostroza, K., Synnot, L., Trapon, M., Twomey, L., & Westera, M. (2016). Temporal patterns of coral cover in the offshore Pilbara, Western Australia. Marine Biology, 163(9). Riegl, B. (2002). Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Marine Biology, 140(1), 29-40. Rioja-Nieto, R., Chiappa-Carrara, X., & Sheppard, C. (2012). Effects of hurricanes on the stability of reef-associated landscapes. Ciencias Marinas, 38(1), 47-55. Rogers, C. S., Gilnack, M., & Fitz Iii, H. C. (1983). Monitoring of coral reefs with linear transects: A study of storm damage. Journal of Experimental Marine Biology and Ecology, 66(3), 285-300. Rousseau, Y., Galzin, R., & Maréchal, J. P. (2010). Impact of hurricane Dean on coral reef benthic and fish structure of Martinique, French West Indies. Cybium, 34(3), 243-256. Russ, G. R., & Leahy, S. M. (2017). Rapid decline and decadal-scale recovery of corals and Chaetodon butterflyfish on Philippine coral reefs. Marine Biology, 164(1). Ruzicka, R. R., Colella, M. A., Porter, J. W., Morrison, J. M., Kidney, J. A., Brinkhuis, V., . . . Colee, J. (2013). Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Marine Ecology Progress Series, 489, 125-141. Sheppard, C. R. C. (1999). Coral decline and weather patterns over 20 years in the Chagos Archipelago, central Indian Ocean. Ambio, 28(6), 472-478. Shulman, M. J., & Robertson, D. R. (1996). Changes in the coral reefs of San Bias, Caribbean Panama: 1983 to 1990. Coral Reefs, 15(4), 231-236. Smith, T. B., Brandt, M. E., Calnan, J. M., Nemeth, R. S., Blondeau, J., Kadison, E., . . . Rothenberger, P. (2013). Convergent mortality responses of Caribbean coral species to seawater warming. Ecosphere, 4(7). Steneck, R. S., Arnold, S. N., Boenish, R., de León, R., Mumby, P. J., Rasher, D. B., & Wilson, M. W. (2019). Managing Recovery Resilience in Coral Reefs Against Climate-Induced Bleaching and Hurricanes: A 15 Year Case Study From Bonaire, Dutch Caribbean. Frontiers in Marine Science, 6(265). Stobart, B., Teleki, K., Buckley, R., Downing, N., & Callow, M. (2005). Coral recovery at Aldabra Atoll, Seychelles: Five years after the 1998 bleaching event. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1826), 251-255. Torda, G., Sambrook, K., Cross, P., Sato, Y., Bourne, D. G., Lukoschek, V., . . . Willis, B. L. (2018). Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Scientific Reports, 8(1). Trapon, M. L., Pratchett, M. S., & Penin, L. (2011). Comparative effects of different disturbances in coral reef habitats in Moorea, French Polynesia. Journal of Marine Biology, 2011. Tsounis, G., & Edmunds, P. J. (2017). Three decades of coral reef community dynamics in St. John, USVI: A contrast of scleractinians and octocorals. Ecosphere, 8(1). Van Woesik, R., De Vantier, L. M., & Glazebrook, J. S. (1995). Effects of Cyclone "Joy' on nearshore coral communities of the Great Barrier Reef. Marine Ecology Progress Series, 128(1-3), 261-270. Van Woesik, R., Sakai, K., Ganase, A., & Loya, Y. (2011). Revisiting the winners and the losers a decade after coral bleaching. Marine Ecology Progress Series, 434, 67-76. Vercelloni, J., Kayal, M., Chancerelle, Y., & Planes, S. (2019). Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Scientific Reports, 9(1). Walsh, W. J. (1983). Stability of a coral reef fish community following a catastrophic storm. Coral Reefs, 2(1), 49-63. Wilkinson, C. (2004). Status of coral reefs of the world: 2004 (Vol. 2). Queensland, Australia: Global Coral Reef Monitoring Network. Wilkinson, C. R., & Souter, D. (2008). Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Wismer, S., Tebbett, S. B., Streit, R. P., & Bellwood, D. R. (2019). Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Science of the Total Environment, 650, 1487-1498. Woolsey, E., Bainbridge, S. J., Kingsford, M. J., & Byrne, M. (2012). Impacts of cyclone Hamish at One Tree Reef: Integrating environmental and benthic habitat data. Marine Biology, 159(4), 793-803. Aim: Understand the interplay between resistance and recovery on coral reefs, and investigate dependence on pre- and post-disturbance states, to inform generalisable reef resilience theory across large spatial and temporal scales. Location: Tropical coral reefs globally. Time period: 1966 to 2017. Major taxa studied: Scleratinian hard corals. Methods: We conducted a literature search to compile a global dataset of total coral cover before and after acute storms, temperature stress, and coastal runoff from flooding events. We used meta-regression to identify variables that explained significant variation in disturbance impact, including disturbance type, year, depth, and pre-disturbance coral cover. We further investigated the influence of these same variables, as well as post-disturbance coral cover and disturbance impact, on recovery rate. We examined the shape of recovery, assigning qualitatively distinct, ecologically relevant, population growth trajectories: linear, logistic, logarithmic (decelerating), and a second-order quadratic (accelerating). Results: We analysed 427 disturbance impacts and 117 recovery trajectories. Accelerating and logistic were the most common recovery shapes, underscoring non-linearities and recovery lags. A complex but meaningful relationship between the state of a reef pre- and post-disturbance, disturbance impact magnitude, and recovery rate was identified. Fastest recovery rates were predicted for intermediate to large disturbance impacts, but a decline in this rate was predicted when more than ~75% of pre-disturbance cover was lost. We identified a shifting baseline, with declines in both pre-and post-disturbance coral cover over the 50 year study period. Main conclusions: We breakdown the complexities of coral resilience, showing interplay between resistance and recovery, as well as dependence on both pre- and post-disturbance states, alongside documenting a chronic decline in these states. This has implications for predicting coral reef futures and implementing actions to enhance resilience. The dataset provides a summary of all studies included in the analysis and the key statistics obtained from the studies and used in the analyses for the manuscript entitled "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rfj6q57gz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rfj6q57gz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Sun, Shouchen; Wang, Jiandong;Matlab program and data for the paper “An energy consumption rectification method based on Bayesian linear regression and heating degree-days". "simulation model.zip" is the heating house model in Trnsys simulation software. "Example1" and "Example2" is the Matlab program and data in this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/bn8pss2g3z.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/bn8pss2g3z.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 AustraliaPublisher:Mendeley Authors: Castrejón Campos, O; Aye, L; Hui, KF;handle: 11343/258762
This dataset includes input data to estimate learning-by-doing (LbD) and learning-by-researching (LbR) rates for onshore wind and solar PV in the United States. Using different learning curve approaches the simulated technology cost developments are also presented. Coefficient of determination (R square) and Root Mean Square Error (RMSE) were applied for quantification of the agreement between simulated and observed technology costs.
Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)The University of Melbourne: Digital RepositoryDataset . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9spxxny27f.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)The University of Melbourne: Digital RepositoryDataset . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/9spxxny27f.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: QI R., H.; LU, L.; HUANG, Y.;By using a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, the liquid desiccant cooling system (LDCS) system became a promising alternative for traditional technology. Solar thermal energy is suitable to deal with the heat requirement of LDCS in buildings, especially in the areas with abundant solar radiation. The energy saving of solar-assisted liquid desiccant air-conditioning system is significantly affected by various operation conditions, and multi-parameter optimization was necessary to improve the system applicability. In this paper, we investigated the impact of five main parameters on the system performance via self-developed system modelling, including the solution mass flow rate, concentration, cooling tower flow rate, and solar water flow rate and installation area of solar collector. A typical commercial building in Hong Kong was selected as a case study, which air-conditioning load was obtained by Energy-plus. The results indicated that the installation area of solar collector showed the greatest impact, and the effect of heating water flow rate was also important. The effect of desiccant flow rate was significant, but the influence of solution concentration was slight. Then, the multi-parameter optimization was conducted for obtaining a maximum annual electricity saving rate based on the Multi-Population Genetic Algorithm. The optimized installation area of solar collector was 72 m2, and the heating water flow rate was 0.66 kg/s. The optimized solution flow rate was 0.17 kg/s. The required cooling water flow rate was around 0.8 kg/s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Garner, Gregory; Hermans, Tim H.J.; Kopp, Robert; Slangen, Aimée; Edwards, Tasmin; Levermann, Anders; Nowicki, Sophie; Palmer, Matthew D.; Smith, Chris; Fox-Kemper, Baylor; Hewitt, Helene; Xiao, Cunde; Aðalgeirsdóttir, Guðfinna; Drijfhout, Sybren; Golledge, Nicholas; Hemer, Marc; Krinner, Gerhard; Mix, Alan; Notz, Dirk; Nurhati, Intan; Ruiz, Lucas; Sallée, Jean-Baptiste; Yu, Yongqiang; Hua, L.; Palmer, Tamzin; Pearson, Brodie;Project: IPCC Data Distribution Centre : Supplementary data sets for the Sixth Assessment Report - For the Sixth Assessment Report of the IPCC (AR6) input/source and intermediate datasets underlying the AR6 were collected and long-term archived. This project compliments CMIP6 data subset and snapshot analyzed for the WGI AR6. Summary: This data set contains detailed elements the sea level projections associated with the Intergovernmental Panel on Climate Change Sixth Assessment Report. In particular, it contains relative sea level projections that exclude the background term (representing primarily land subsidence or uplift). It includes probability distributions for all the workflows described in AR6 WGI 9.6.3.2. P-boxes derived from these distributions are available in the sister entry 'IPCC-DDC_AR6_Sup_PBox'. These data may be of use for users who want to substitute their own estimates of the background term. Regional projections can also be accessed through the NASA/IPCC Sea Level Projections Tool at https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool. See https://zenodo.org/communities/ipcc-ar6-sea-level-projections for additional related data sets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.ipcc-ddc_ar6_sup_distbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu