- home
- Search
- Energy Research
- 12. Responsible consumption
- CN
- University of North Texas
- Energy Research
- 12. Responsible consumption
- CN
- University of North Texas
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Optica Publishing Group Adewole, Murthada; Cui, Jingbiao; Lowell, David; Hassan, Safaa; Jiang, Yan; Singh, Abhay; Ding, Jun; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun;doi: 10.1364/ome.9.001095
Graphene has been used as an electrically tunable material for switchable devices. A large area fabrication of Al-doped ZnO/Al2O3/graphene/Al2O3/gold/silicon device was enabled by a spin-processible hydrophilic mono-layer graphene oxide. The graphene was obtained directly from graphene oxide during the atomic layer deposition without other extra steps. A significant shift of Raman frequency up to 360 cm−1 was observed from graphene in the fabricated device, indicating a structural change in graphene. The absorption from the device was tunable with a negative voltage applied on the Al-doped ZnO side. The generated absorption change was sustainable when the voltage was off and erasable when a positive voltage was applied. The sustainability of tuned optical property in the graphene under investigation can lead to a design of device with less power consumption and many other applications.
Optical Materials Ex... arrow_drop_down University of North Texas: UNT Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/ome.9.001095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Optical Materials Ex... arrow_drop_down University of North Texas: UNT Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/ome.9.001095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Huayun He; Qi Hu; Feifei Pan; Xuebiao Pan;Quantification of the trade-offs among greenhouse gas (GHG) emissions, yield, and farmers’ incomes is essential for proposing economic and environmental nitrogen (N) management strategies for optimizing agricultural production. A four-year (2017–2020) field experiment (including four treatments: basic N fertilizer treatment (BF), suitable utilization of fertilization (SU), emission reduction treatment (ER), and high fertilization (HF)) was conducted on maize (Zea mays L.) in the North China Plain. The Life Cycle Assessment (LCA) method was used in this study to quantify the GHG emissions and farmers’ incomes during the whole maize production process. The total GHG emissions of BF, SU, ER, and HF treatments in the process of maize production are 10,755.2, 12,908.7, 11,950.1, and 14,274.5 kg CO2-eq ha−1, respectively, of which the direct emissions account for 84.8%, 76.8%, 74.9%, and 71.0%, respectively. Adding inhibitors significantly reduced direct GHG emissions, and the N2O and CO2 emissions from the maize fields in the ER treatment decreased by 30.0% and 7.9% compared to those in the SU treatment. Insignificant differences in yield were found between the SU and ER treatments, indicating that adding fertilizer inhibitors did not affect farmers’ incomes while reducing GHG emissions. The yield for SU, ER, and HF treatments all significantly increased by 12.9–24.0%, 10.0–20.7%, and 2.1–17.4% compared to BF, respectively. In comparison with BF, both SU and ER significantly promoted agricultural net profit (ANP) by 16.6% and 12.2%, with mean ANP values of 3101.0 USD ha−1 and 2980.0 USD ha−1, respectively. Due to the high agricultural inputs, the ANP values in the HF treatment were 11.2%, 16.6%, and 12.4% lower than those in the SU treatment in 2018–2020. In conclusion, the combination of N fertilizer and inhibitors proved to be an environmentally friendly, high-profit, and low-emissions production technology while sustaining or even increasing maize yields in the North China Plain, which was conducive to achieving agricultural sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants12213749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants12213749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Wenliang Wang; Wenliang Wang; Yonghao Ni; Yonghao Ni; Liping Cai; Lei Chen; Sheldon Q. Shi; Min Wang; Xinping Li; Huang Jiale; Yong Cui;Abstract As a type of solid waste, the used cigarette filters (UCF) were utilized to produce ester-rich bio-oil via a cleaner production process, namely, microwave-assisted pyrolysis (MAP). The pyrolysis efficiency was significantly enhanced owing to the high heating rate under MAP conditions with assistance of microwave absorber silicon carbide (SiC) in reactor and adding methanol into N2 carrier gas. Compared with the traditional tubular muffle furnace heating method yielding 0% of bio-oil, the MAP heating method obtained 29.17% of bio-oil from UCF. The bio-oil yield from UCF increased from 29.17% to 46.71% due to the introduction of methanol. Results of the gas chromatography/mass spectrometry showed that esters were the main components in the bio-oils (over 40%), especially of methyl acetate (over 12%). The aromatic compounds of phenols and polycyclic aromatic hydrocarbons (PAHs) were also produced from the MAP of UCF. The bio-char from MAP of UCF exhibited the mesoporous property (e.g., over 500 m2/g of specific surface area). It is expected to produce over 350000 metric tons ester-rich bio-oil if the proposed technology can be scaled up globally. It will be a preeminent contribution for the conversion of UCF to the cleaner production and our environments.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.120596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.120596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 2010 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Sathaye, Jayant; Price, Lynn; McNeil, Michael; De La Rue Du Can, Stephane;doi: 10.2172/985845
This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/985845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/985845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type , Article 1995 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Watt, E.; Sathaye, J.; Buen, O. de; Masera, O.; Gelil, I.A.; Ravindranath, N.H.; Zhou, D.; Li, J.; Intarapravich, D.;doi: 10.2172/179239
In this paper, the authors discuss options for developing institutions for joint implementation (JI) projects. They focus on the tasks which are unique to JI projects or require additional institutional needs--accepting the project by the host and investor countries and assessing the project`s greenhouse gas (GHG) emission reduction or sequestration--and they suggest the types of institutions that would enhance their performance. The evaluation is based on four sets of governmental and international criteria for JI projects, the experiences of ten pilot JI projects, and the perspectives of seven collaborating authors from China, Egypt, India, Mexico, and Thailand, who interviewed relevant government and non-government staff involved in JI issue assessment in their countries. After examining the roles for potential JI institutions, they present early findings arguing for a decentralized national JI structure, which includes: (1) national governmental panels providing host country acceptance of proposed JI projects; (2) project parties providing the assessment data on the GHG reduction or sequestration for the projects; (3) technical experts calculating these GHG flows; (4) certified verification teams checking the GHG calculations; and (5) members of an international JI Secretariat training and certifying the assessors, as well as resolving challenges to the verifications. 86 refs.
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 1995Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/179239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 1995Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/179239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:Greenwave Publishing of Canada Lei Zuo; Su Shiung Lam; Changlei Xia; Changlei Xia; Haifeng Zhang; Liping Cai; Liping Cai; Sheldon Q. Shi;Modeling is regarded as a suitable tool to improve biomass pyrolysis in terms of efficiency, product yield, and controllability. However, it is crucial to develop advanced models to estimate products' yield and composition as functions of biomass type/characteristics and process conditions. Despite many developed models, most of them suffer from insufficient validation due to the complexity in determining the chemical compounds and their quantity. To this end, the present paper reviewed the modeling and verification of products derived from biomass pyrolysis. Besides, the possible solutions towards more accurate modeling of biomass pyrolysis were discussed. First of all, the paper commenced reviewing current models and validating methods of biomass pyrolysis. Afterward, the influences of biomass characteristics, particle size, and heat transfer on biomass pyrolysis, particle motion, reaction kinetics, product prediction, experimental validation, current gas sensors, and potential applications were reviewed and discussed comprehensively. There are some difficulties with using current pyrolysis gas chromatography and mass spectrometry (Py-GC/MS) for modeling and validation purposes due to its bulkiness, fragility, slow detection, and high cost. On account of this, the applications of Py-GC/MS in industries are limited, particularly for online product yield and composition measurements. In the final stage, a recommendation was provided to utilize high-temperature sensors with high potentials to precisely validate the models for product yield and composition (especially CO, CO2, and H2) during biomass pyrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18331/brj2021.8.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18331/brj2021.8.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Switzerland, China (People's Republic of), China (People's Republic of), United States, United States, Finland, China (People's Republic of)Publisher:Elsevier BV Authors: Vladimirova, Katia; Henninger, Claudia Elisabeth; Joyner-Martinez, Cosette; Iran, Samira; +12 AuthorsVladimirova, Katia; Henninger, Claudia Elisabeth; Joyner-Martinez, Cosette; Iran, Samira; Diddi, Sonali; Durrani, Marium; Iyer, Kavitha; Jestratijevic, Iva; McCormick, Helen; Niinimäki, Kirsi; Thangavelu, Priyadarshini; Sauerwein, Meike; Singh, Renu; Simek , Petr; Wallaschkowski; Stephan;The COVID-19 pandemic caused and still causes unprecedented disruptions in daily lives of billions of people globally. It affects practices and routines across all household consumption domains, including clothing consumption. Drawing on Social Practice Theory, this article explores and compares changes in clothing acquisition practices during COVID-19 across nine countries: the USA, the UK, Finland, Germany, Switzerland, Iran, Czech Republic, India, and Hong Kong SAR. Data was obtained through a standardized survey containing rated and open-ended questions, which were analyzed through descriptive quantitative analysis and inductive qualitative content analysis of open-ended questions. The results of this cross-country research indicate that all forms of fashion consumption, including more sustainable practices, have decreased during the pandemic. The most visible impacts have occurred in the material arrangements associated with fashion acquisition practices (e.g., closed physical shops, shipping disruptions, cancelled events, remote work, etc.). However, changes that result from these disruptions may be shorter-lived that changes that happened as a result of changing meanings associated with fashion consumption and its more sustainable forms and new competencies and skills acquired during the pandemic that could ensure more lasting practicing of more sustainable forms of fashion consumption.
Cleaner and Responsi... arrow_drop_down Cleaner and Responsible ConsumptionArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of North Texas: UNT Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clrc.2022.100056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cleaner and Responsi... arrow_drop_down Cleaner and Responsible ConsumptionArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of North Texas: UNT Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clrc.2022.100056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), China (People's Republic of), China (People's Republic of), United KingdomPublisher:Elsevier BV Yuli Shan; Xueqin Cui; Dabo Guan; Liangliang Cheng; Liang Zhao; Yuqi Bai; Sanmei Wen; Ian Hamilton; Bawuerjiang Danna; Jingbo Zhou; Shuhan Lou; Yujuan Yue; Yanlin Niu; Huan Liu; Peng Gong; Borong Lin; Yuan Gao; Gregor Kiesewetter; Wenxuan Dong; Piyu Ke; Jianbin Huang; Zhe Zhao; Yu Yan; Tong Gao; Taochun Sun; Lianping Yang; Hong Huang; Hancheng Dai; Qiyong Liu; Weicheng Fan; Shaohui Zhang; Xiaopeng Jiang; Qiaolei Jiang; Jiyao Zhao; Chi Zhang; Dejing Dou; Zhongchen Zhang; Xiaobo Liu; Chao Ren; Xinyuan Liu; Yang Geng; Wei Dong; Xiaoyi Fang; Xiu Yang; Wei Ma; Shihui Zhang; Yang Xie; Bing Xu; Jing Su; Xing Fan; Mengzhen Zhao; Hui Xiong; Bin Chen; Chenxi Lu; Yiping Zeng; Yong Luo; Yufu Liu; Huiqi Chen; Jun Yang; Zengliang Ruan; Zhenyu Luo; Zhenghong Zhu; Margaret Chan Fung Fu-Chun; Junyi Hua; Yafei Guo; Le Yu; Chuanxi Li; Wolfgang Schöpp; Wenjia Cai; Lu Liang; Nan Chang; Yixin Hu; Shuangli Li; Siqi Ai; Zhu Liu; Zhao Liu; Can Wang; Ruiqi Li; Qian Di; Qiong Wang; Alice McGushin; Qi Zhao; Pete Lampard; Junzhe Bao; Hualiang Lin; Cunrui Huang; Meng Xu; Yao Zhang; Jing Zhang;pmid: 34758286
China, with its growing population and economic development, faces increasing risks to health from climate change, but also opportunities to address these risks and protect health for generations to come. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate. In 2020, the Lancet Countdown Regional Centre in Asia, led by Tsinghua University, built on the work of the global Lancet Countdown and began its assessment of the health profile of climate change in China with the aim of triggering rapid and health-responsive actions. This 2021 report is the first annual update, presenting 25 indicators within five domains: climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. The report represents the contributions of 88 experts from 25 leading institutions in, and outside of, China. From 2020 to 2021, five new indicators have been added and methods have been improved for many indicators. Where possible, the indicator results are presented at national and provincial levels to facilitate local understanding and policy making. In a year marked by COVID-19, this report also endeavours to reflect on China's pathway for a green recovery, ensuring it aligns with the carbon neutrality goal, for the health of the current and future generations.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2468-2667(21)00209-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2468-2667(21)00209-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Christian Sonne; Christian Sonne; Changlei Xia; Shengbo Ge; Shi Yang; Hongzhi Ma; Su Shiung Lam; Su Shiung Lam; Shu Zhang; Liping Cai; Liping Cai; Jianchun Jiang; Zhenhua Huang; Maurizio Manzo;Abstract This work emphases the influence of using different heating sources (direct thermal, solar, infrared, microwave heating) on the pyro-oil yield. The effect of the dominating process parameters, namely the heating rate and final temperature, are thoroughly discussed with respect to the heating and reaction mechanism involved. Emphasis is then placed on reviewing the application of microwave (MW) heating in pyrolysis as a relatively new technology with many promising features, particularly the little-known mechanisms of MW heating, new MW heating pattern and pathway using MW absorbents for pyrolysis of waste materials. Machine learning (ML) techniques were then used to statistically analyze the 182 observations in 59 pyrolysis cases obtained from previous pyrolysis practices. The ML linear regression model was developed to predict oil yield by five input variables (feedstock type, feedstock size, heating rate, final temperature, and heating source), which can be used as a guideline for pyrolysis production management. By comparing three heating sources (direct, solar and MW), MW heating is found to be the most efficient method to achieve the highest oil yield. The Decision Tree Analysis demonstrates that the importance order for key variables is as: Log feedstock size > Log heating rate > Heating rate > Temperature > Feedstock size > Heating sources > Feedstock type. Future work should focus on optimizing the heating method and heating rate to achieve optimal yield and quality of pyro-oil. The findings are envisaged to be useful for scaling up the pyrolysis of waste materials for industrial energy applications.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Wenliang Wang; Wenliang Wang; Yonghao Ni; Yonghao Ni; Hailong Yu; Liping Cai; Chao Duan; Zhenhao Ma; Xinping Li; Xubiao Wang; Shiwei Liu; Sheldon Q. Shi;Abstract Lignin is considered as a renewable and sustainable resource for producing value-added aromatic chemicals and functional carbon materials. Herein, we develop a one-step catalyst-free depolymerization strategy to convert lignin into aryl monomers and carbon nanospheres simultaneously. Importantly, microwave-assisted depolymerization (MAD) in conjunction with dichloromethane (CH2Cl2) vapors is developed. The total mass yield of guaiacols reached the highest amount of 225.1 mg/g at 600 °C, and the highest yields of phenols (49.0 mg/g) and aromatic hydrocarbons (155.1 mg/g) were obtained at 700 °C. Hydrogen radicals and hydrogen chloride (HCl) are in-situ formed from CH2Cl2, significantly decreasing the activation barrier and reforming pyrolysis vapors to promote the formation of aryl monomers. Interestingly, uniform carbon nanospheres with an average size of 140 nm were produced as co-products at 700 °C. The microwave “hot-spots”, allied with the continuous surface erosion and the decrease in surface energy of lignin-derived carbon precursors by CH2Cl2 vapor, can be considered the driving force for the ultimate formation of carbon nanospheres. The CH2Cl2/MAD system produces aryl monomers (26.8 wt% yield) and carbon nanospheres (36.6 wt% yield) at 700 °C. We provide a facile, intriguing and scalable approach to convert lignin to valuable aryl monomers and sustainable carbon materials that can be applied in the chemistry, energy and environmental fields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.119211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.119211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Optica Publishing Group Adewole, Murthada; Cui, Jingbiao; Lowell, David; Hassan, Safaa; Jiang, Yan; Singh, Abhay; Ding, Jun; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun;doi: 10.1364/ome.9.001095
Graphene has been used as an electrically tunable material for switchable devices. A large area fabrication of Al-doped ZnO/Al2O3/graphene/Al2O3/gold/silicon device was enabled by a spin-processible hydrophilic mono-layer graphene oxide. The graphene was obtained directly from graphene oxide during the atomic layer deposition without other extra steps. A significant shift of Raman frequency up to 360 cm−1 was observed from graphene in the fabricated device, indicating a structural change in graphene. The absorption from the device was tunable with a negative voltage applied on the Al-doped ZnO side. The generated absorption change was sustainable when the voltage was off and erasable when a positive voltage was applied. The sustainability of tuned optical property in the graphene under investigation can lead to a design of device with less power consumption and many other applications.
Optical Materials Ex... arrow_drop_down University of North Texas: UNT Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/ome.9.001095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Optical Materials Ex... arrow_drop_down University of North Texas: UNT Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/ome.9.001095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Huayun He; Qi Hu; Feifei Pan; Xuebiao Pan;Quantification of the trade-offs among greenhouse gas (GHG) emissions, yield, and farmers’ incomes is essential for proposing economic and environmental nitrogen (N) management strategies for optimizing agricultural production. A four-year (2017–2020) field experiment (including four treatments: basic N fertilizer treatment (BF), suitable utilization of fertilization (SU), emission reduction treatment (ER), and high fertilization (HF)) was conducted on maize (Zea mays L.) in the North China Plain. The Life Cycle Assessment (LCA) method was used in this study to quantify the GHG emissions and farmers’ incomes during the whole maize production process. The total GHG emissions of BF, SU, ER, and HF treatments in the process of maize production are 10,755.2, 12,908.7, 11,950.1, and 14,274.5 kg CO2-eq ha−1, respectively, of which the direct emissions account for 84.8%, 76.8%, 74.9%, and 71.0%, respectively. Adding inhibitors significantly reduced direct GHG emissions, and the N2O and CO2 emissions from the maize fields in the ER treatment decreased by 30.0% and 7.9% compared to those in the SU treatment. Insignificant differences in yield were found between the SU and ER treatments, indicating that adding fertilizer inhibitors did not affect farmers’ incomes while reducing GHG emissions. The yield for SU, ER, and HF treatments all significantly increased by 12.9–24.0%, 10.0–20.7%, and 2.1–17.4% compared to BF, respectively. In comparison with BF, both SU and ER significantly promoted agricultural net profit (ANP) by 16.6% and 12.2%, with mean ANP values of 3101.0 USD ha−1 and 2980.0 USD ha−1, respectively. Due to the high agricultural inputs, the ANP values in the HF treatment were 11.2%, 16.6%, and 12.4% lower than those in the SU treatment in 2018–2020. In conclusion, the combination of N fertilizer and inhibitors proved to be an environmentally friendly, high-profit, and low-emissions production technology while sustaining or even increasing maize yields in the North China Plain, which was conducive to achieving agricultural sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants12213749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/plants12213749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Wenliang Wang; Wenliang Wang; Yonghao Ni; Yonghao Ni; Liping Cai; Lei Chen; Sheldon Q. Shi; Min Wang; Xinping Li; Huang Jiale; Yong Cui;Abstract As a type of solid waste, the used cigarette filters (UCF) were utilized to produce ester-rich bio-oil via a cleaner production process, namely, microwave-assisted pyrolysis (MAP). The pyrolysis efficiency was significantly enhanced owing to the high heating rate under MAP conditions with assistance of microwave absorber silicon carbide (SiC) in reactor and adding methanol into N2 carrier gas. Compared with the traditional tubular muffle furnace heating method yielding 0% of bio-oil, the MAP heating method obtained 29.17% of bio-oil from UCF. The bio-oil yield from UCF increased from 29.17% to 46.71% due to the introduction of methanol. Results of the gas chromatography/mass spectrometry showed that esters were the main components in the bio-oils (over 40%), especially of methyl acetate (over 12%). The aromatic compounds of phenols and polycyclic aromatic hydrocarbons (PAHs) were also produced from the MAP of UCF. The bio-char from MAP of UCF exhibited the mesoporous property (e.g., over 500 m2/g of specific surface area). It is expected to produce over 350000 metric tons ester-rich bio-oil if the proposed technology can be scaled up globally. It will be a preeminent contribution for the conversion of UCF to the cleaner production and our environments.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.120596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.120596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 2010 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Sathaye, Jayant; Price, Lynn; McNeil, Michael; De La Rue Du Can, Stephane;doi: 10.2172/985845
This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/985845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/985845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type , Article 1995 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Watt, E.; Sathaye, J.; Buen, O. de; Masera, O.; Gelil, I.A.; Ravindranath, N.H.; Zhou, D.; Li, J.; Intarapravich, D.;doi: 10.2172/179239
In this paper, the authors discuss options for developing institutions for joint implementation (JI) projects. They focus on the tasks which are unique to JI projects or require additional institutional needs--accepting the project by the host and investor countries and assessing the project`s greenhouse gas (GHG) emission reduction or sequestration--and they suggest the types of institutions that would enhance their performance. The evaluation is based on four sets of governmental and international criteria for JI projects, the experiences of ten pilot JI projects, and the perspectives of seven collaborating authors from China, Egypt, India, Mexico, and Thailand, who interviewed relevant government and non-government staff involved in JI issue assessment in their countries. After examining the roles for potential JI institutions, they present early findings arguing for a decentralized national JI structure, which includes: (1) national governmental panels providing host country acceptance of proposed JI projects; (2) project parties providing the assessment data on the GHG reduction or sequestration for the projects; (3) technical experts calculating these GHG flows; (4) certified verification teams checking the GHG calculations; and (5) members of an international JI Secretariat training and certifying the assessors, as well as resolving challenges to the verifications. 86 refs.
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 1995Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/179239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 1995Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/179239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United StatesPublisher:Greenwave Publishing of Canada Lei Zuo; Su Shiung Lam; Changlei Xia; Changlei Xia; Haifeng Zhang; Liping Cai; Liping Cai; Sheldon Q. Shi;Modeling is regarded as a suitable tool to improve biomass pyrolysis in terms of efficiency, product yield, and controllability. However, it is crucial to develop advanced models to estimate products' yield and composition as functions of biomass type/characteristics and process conditions. Despite many developed models, most of them suffer from insufficient validation due to the complexity in determining the chemical compounds and their quantity. To this end, the present paper reviewed the modeling and verification of products derived from biomass pyrolysis. Besides, the possible solutions towards more accurate modeling of biomass pyrolysis were discussed. First of all, the paper commenced reviewing current models and validating methods of biomass pyrolysis. Afterward, the influences of biomass characteristics, particle size, and heat transfer on biomass pyrolysis, particle motion, reaction kinetics, product prediction, experimental validation, current gas sensors, and potential applications were reviewed and discussed comprehensively. There are some difficulties with using current pyrolysis gas chromatography and mass spectrometry (Py-GC/MS) for modeling and validation purposes due to its bulkiness, fragility, slow detection, and high cost. On account of this, the applications of Py-GC/MS in industries are limited, particularly for online product yield and composition measurements. In the final stage, a recommendation was provided to utilize high-temperature sensors with high potentials to precisely validate the models for product yield and composition (especially CO, CO2, and H2) during biomass pyrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18331/brj2021.8.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18331/brj2021.8.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Switzerland, China (People's Republic of), China (People's Republic of), United States, United States, Finland, China (People's Republic of)Publisher:Elsevier BV Authors: Vladimirova, Katia; Henninger, Claudia Elisabeth; Joyner-Martinez, Cosette; Iran, Samira; +12 AuthorsVladimirova, Katia; Henninger, Claudia Elisabeth; Joyner-Martinez, Cosette; Iran, Samira; Diddi, Sonali; Durrani, Marium; Iyer, Kavitha; Jestratijevic, Iva; McCormick, Helen; Niinimäki, Kirsi; Thangavelu, Priyadarshini; Sauerwein, Meike; Singh, Renu; Simek , Petr; Wallaschkowski; Stephan;The COVID-19 pandemic caused and still causes unprecedented disruptions in daily lives of billions of people globally. It affects practices and routines across all household consumption domains, including clothing consumption. Drawing on Social Practice Theory, this article explores and compares changes in clothing acquisition practices during COVID-19 across nine countries: the USA, the UK, Finland, Germany, Switzerland, Iran, Czech Republic, India, and Hong Kong SAR. Data was obtained through a standardized survey containing rated and open-ended questions, which were analyzed through descriptive quantitative analysis and inductive qualitative content analysis of open-ended questions. The results of this cross-country research indicate that all forms of fashion consumption, including more sustainable practices, have decreased during the pandemic. The most visible impacts have occurred in the material arrangements associated with fashion acquisition practices (e.g., closed physical shops, shipping disruptions, cancelled events, remote work, etc.). However, changes that result from these disruptions may be shorter-lived that changes that happened as a result of changing meanings associated with fashion consumption and its more sustainable forms and new competencies and skills acquired during the pandemic that could ensure more lasting practicing of more sustainable forms of fashion consumption.
Cleaner and Responsi... arrow_drop_down Cleaner and Responsible ConsumptionArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of North Texas: UNT Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clrc.2022.100056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cleaner and Responsi... arrow_drop_down Cleaner and Responsible ConsumptionArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of North Texas: UNT Digital LibraryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clrc.2022.100056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 China (People's Republic of), China (People's Republic of), China (People's Republic of), United KingdomPublisher:Elsevier BV Yuli Shan; Xueqin Cui; Dabo Guan; Liangliang Cheng; Liang Zhao; Yuqi Bai; Sanmei Wen; Ian Hamilton; Bawuerjiang Danna; Jingbo Zhou; Shuhan Lou; Yujuan Yue; Yanlin Niu; Huan Liu; Peng Gong; Borong Lin; Yuan Gao; Gregor Kiesewetter; Wenxuan Dong; Piyu Ke; Jianbin Huang; Zhe Zhao; Yu Yan; Tong Gao; Taochun Sun; Lianping Yang; Hong Huang; Hancheng Dai; Qiyong Liu; Weicheng Fan; Shaohui Zhang; Xiaopeng Jiang; Qiaolei Jiang; Jiyao Zhao; Chi Zhang; Dejing Dou; Zhongchen Zhang; Xiaobo Liu; Chao Ren; Xinyuan Liu; Yang Geng; Wei Dong; Xiaoyi Fang; Xiu Yang; Wei Ma; Shihui Zhang; Yang Xie; Bing Xu; Jing Su; Xing Fan; Mengzhen Zhao; Hui Xiong; Bin Chen; Chenxi Lu; Yiping Zeng; Yong Luo; Yufu Liu; Huiqi Chen; Jun Yang; Zengliang Ruan; Zhenyu Luo; Zhenghong Zhu; Margaret Chan Fung Fu-Chun; Junyi Hua; Yafei Guo; Le Yu; Chuanxi Li; Wolfgang Schöpp; Wenjia Cai; Lu Liang; Nan Chang; Yixin Hu; Shuangli Li; Siqi Ai; Zhu Liu; Zhao Liu; Can Wang; Ruiqi Li; Qian Di; Qiong Wang; Alice McGushin; Qi Zhao; Pete Lampard; Junzhe Bao; Hualiang Lin; Cunrui Huang; Meng Xu; Yao Zhang; Jing Zhang;pmid: 34758286
China, with its growing population and economic development, faces increasing risks to health from climate change, but also opportunities to address these risks and protect health for generations to come. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate. In 2020, the Lancet Countdown Regional Centre in Asia, led by Tsinghua University, built on the work of the global Lancet Countdown and began its assessment of the health profile of climate change in China with the aim of triggering rapid and health-responsive actions. This 2021 report is the first annual update, presenting 25 indicators within five domains: climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. The report represents the contributions of 88 experts from 25 leading institutions in, and outside of, China. From 2020 to 2021, five new indicators have been added and methods have been improved for many indicators. Where possible, the indicator results are presented at national and provincial levels to facilitate local understanding and policy making. In a year marked by COVID-19, this report also endeavours to reflect on China's pathway for a green recovery, ensuring it aligns with the carbon neutrality goal, for the health of the current and future generations.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2468-2667(21)00209-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2468-2667(21)00209-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Christian Sonne; Christian Sonne; Changlei Xia; Shengbo Ge; Shi Yang; Hongzhi Ma; Su Shiung Lam; Su Shiung Lam; Shu Zhang; Liping Cai; Liping Cai; Jianchun Jiang; Zhenhua Huang; Maurizio Manzo;Abstract This work emphases the influence of using different heating sources (direct thermal, solar, infrared, microwave heating) on the pyro-oil yield. The effect of the dominating process parameters, namely the heating rate and final temperature, are thoroughly discussed with respect to the heating and reaction mechanism involved. Emphasis is then placed on reviewing the application of microwave (MW) heating in pyrolysis as a relatively new technology with many promising features, particularly the little-known mechanisms of MW heating, new MW heating pattern and pathway using MW absorbents for pyrolysis of waste materials. Machine learning (ML) techniques were then used to statistically analyze the 182 observations in 59 pyrolysis cases obtained from previous pyrolysis practices. The ML linear regression model was developed to predict oil yield by five input variables (feedstock type, feedstock size, heating rate, final temperature, and heating source), which can be used as a guideline for pyrolysis production management. By comparing three heating sources (direct, solar and MW), MW heating is found to be the most efficient method to achieve the highest oil yield. The Decision Tree Analysis demonstrates that the importance order for key variables is as: Log feedstock size > Log heating rate > Heating rate > Temperature > Feedstock size > Heating sources > Feedstock type. Future work should focus on optimizing the heating method and heating rate to achieve optimal yield and quality of pyro-oil. The findings are envisaged to be useful for scaling up the pyrolysis of waste materials for industrial energy applications.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Wenliang Wang; Wenliang Wang; Yonghao Ni; Yonghao Ni; Hailong Yu; Liping Cai; Chao Duan; Zhenhao Ma; Xinping Li; Xubiao Wang; Shiwei Liu; Sheldon Q. Shi;Abstract Lignin is considered as a renewable and sustainable resource for producing value-added aromatic chemicals and functional carbon materials. Herein, we develop a one-step catalyst-free depolymerization strategy to convert lignin into aryl monomers and carbon nanospheres simultaneously. Importantly, microwave-assisted depolymerization (MAD) in conjunction with dichloromethane (CH2Cl2) vapors is developed. The total mass yield of guaiacols reached the highest amount of 225.1 mg/g at 600 °C, and the highest yields of phenols (49.0 mg/g) and aromatic hydrocarbons (155.1 mg/g) were obtained at 700 °C. Hydrogen radicals and hydrogen chloride (HCl) are in-situ formed from CH2Cl2, significantly decreasing the activation barrier and reforming pyrolysis vapors to promote the formation of aryl monomers. Interestingly, uniform carbon nanospheres with an average size of 140 nm were produced as co-products at 700 °C. The microwave “hot-spots”, allied with the continuous surface erosion and the decrease in surface energy of lignin-derived carbon precursors by CH2Cl2 vapor, can be considered the driving force for the ultimate formation of carbon nanospheres. The CH2Cl2/MAD system produces aryl monomers (26.8 wt% yield) and carbon nanospheres (36.6 wt% yield) at 700 °C. We provide a facile, intriguing and scalable approach to convert lignin to valuable aryl monomers and sustainable carbon materials that can be applied in the chemistry, energy and environmental fields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.119211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.119211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu