- home
- Search
- Energy Research
- Restricted
- DE
- CNR ExploRA
- Energy Research
- Restricted
- DE
- CNR ExploRA
description Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Authors:A. Frazzica;
A. Frazzica
A. Frazzica in OpenAIREV. Palomba;
V. Palomba
V. Palomba in OpenAIREB. Dawoud;
G. Gullì; +6 AuthorsB. Dawoud
B. Dawoud in OpenAIREA. Frazzica;
A. Frazzica
A. Frazzica in OpenAIREV. Palomba;
V. Palomba
V. Palomba in OpenAIREB. Dawoud;
G. Gullì;B. Dawoud
B. Dawoud in OpenAIREV. Brancato;
A. Sapienza; S. Vasta; A. Freni; F. Costa;V. Brancato
V. Brancato in OpenAIREG. Restuccia;
G. Restuccia
G. Restuccia in OpenAIREIn the present paper design, realization and testing of a novel small scale adsorption refrigerator prototype based on activated carbon/ethanol working pair is described. Firstly, experimental activity has been carried out for identification of the best performing activated carbon available on the market, through the evaluation of the achievable thermodynamic performance both under air conditioning and refrigeration conditions. Once identified the best performing activated carbon, the design of the adsorber was developed by experimental dynamic performance analysis, carried out by means of the Gravimetric-Large Temperature Jump (G-LTJ) apparatus available at CNR ITAE lab. Finally, the whole 0.5 kW refrigerator prototype was designed and built. First experimental results both under reference air conditioning and refrigeration cycles have been reported, to check the achievable performance. High Specific Cooling Powers (SCPs), 95 W/kg and 50 W/kg, for air conditioning and refrigeration respectively, were obtained, while the COP ranged between 0.09 and 0.11, thus showing an improvement of the current state of the art.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.04.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.04.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Hannah Neumann;Valeria Palomba;
Valeria Palomba
Valeria Palomba in OpenAIREAndrea Frazzica;
Dominik Seiler; +3 AuthorsAndrea Frazzica
Andrea Frazzica in OpenAIREHannah Neumann;Valeria Palomba;
Valeria Palomba
Valeria Palomba in OpenAIREAndrea Frazzica;
Dominik Seiler;Andrea Frazzica
Andrea Frazzica in OpenAIREUrsula Wittstadt;
Stefan Gschwander;Ursula Wittstadt
Ursula Wittstadt in OpenAIREGiovanni Restuccia;
Giovanni Restuccia
Giovanni Restuccia in OpenAIRELatent thermal energy storage systems represent a promising alternative to traditional sensible storages, but their exploitation requires a careful design of the system. The present paper reports a mathematical model for the simulation of thermal energy storage systems with phase change materials (PCMs). The model is suitable for the description of a latent heat storage using a fin-and-tube heat exchanger. Accuracy and computational effort are both taken into consideration, by coupling a 1D model for the tubes of the heat exchanger and a reduced 3D model for the material and fin domains. The developed model has been validated for two systems, realised at ITAE and ISE, differing for the PCM employed and the constructive characteristics of the heat exchanger. Results show that the model has a good accuracy and could predict the behaviour of the storages within 40 W error in case of powers and 1 K in case of heat transfer fluid temperatures. When a stable PCM was used, the average deviation between the PCM temperature in experiments and simulation was lower than 0.6 K.
CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.06.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.06.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Authors:Antonio Menghini;
Antonio Menghini
Antonio Menghini in OpenAIREDomenico Montanari;
Andrea Viezzoli;Domenico Montanari
Domenico Montanari in OpenAIREAssunta Donato;
+8 AuthorsAssunta Donato
Assunta Donato in OpenAIREAntonio Menghini;
Antonio Menghini
Antonio Menghini in OpenAIREDomenico Montanari;
Andrea Viezzoli;Domenico Montanari
Domenico Montanari in OpenAIREAssunta Donato;
Assunta Donato;Assunta Donato
Assunta Donato in OpenAIREAdele Manzella;
Adele Manzella
Adele Manzella in OpenAIREEloisa Di Sipio;
Alessandro Santilano; Alessandro Santilano; Antonio Galgaro; Antonio Galgaro; Elisa Destro;Eloisa Di Sipio
Eloisa Di Sipio in OpenAIREThis paper presents a multidisciplinary methodology to estimate the underground heat-exchange potential for Borehole Heat Exchangers (BHEs) coupled with Ground Source Heat Pumps (GSHPs) over wide areas. The proposed methodology was tested in four sites in western Sicily (southern Italy) where the shortage of subsurface geological data, in addition to the undefined authorization processes for this kind of system, is probably the main barrier to planning and exploiting geothermal heat for heating and cooling purposes. Reliable high-resolution 3D geological and petrophysical models were built based on the integration of airborne electromagnetic data and laboratory measurements of the thermal properties of rock samples. A GIS-based procedure was applied to assess the geothermal heat-exchange potential using 3D models of thermal conductivity as the main input. The results of the analyses are represented by thematic maps of the underground heat exchange potential for BHEs coupled with GSHPs. The study areas show a generally high suitability for the use of this technology and several municipalities in the area could take advantage of the resulting maps for energy planning.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.05.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.05.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Wiley Funded by:MIURMIURGou; Q.; Favero; L.B.; Feng; G.; Evangelisti; L.; Perez; C.; Caminati; W.;pmid: 28608548
AbstractThe rotational spectra of two isotopologues of the 1:1 complex formed between acetone and ethanol have been recorded and analyzed by using Fourier‐transform microwave spectroscopy. One rotamer was detected, in which ethanol adopts the gauche form. The two subunits are linked by a conventional O−H⋅⋅⋅O and a weak C−H⋅⋅⋅O hydrogen bond, forming a six‐membered ring. Each rotational transition is split into five component lines due to the internal rotations of two nonequivalent acetone methyl groups. The V3 barriers to internal rotation of the two CH3 tops of acetone were determined to be 252(4) and 220(1) cm−1, which are noticeably lower than the value for the monomer (266 cm−1).
CNR ExploRA arrow_drop_down Chemistry - A European JournalArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.201702090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemistry - A European JournalArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chem.201702090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Bosio A.; Ciprian R.;Lamperti A.;
Lamperti A.
Lamperti A. in OpenAIRERago I.;
Ressel B.; Rosa G.;Stupar M.;
Weschke E.;Stupar M.
Stupar M. in OpenAIREhandle: 11381/2862341
Thin film technology has reached a maturity to achieve conversion efficiencies of the order of 22%. Among thin films, CdTe-based photovoltaic modules represent 80% of the total production. Nonetheless, some issues concerning back-contact are still open. In industrial process a chemical etching is required in order to make the CdTe film surface rich in Te. The Te-excess is fundamental in order to form a stable telluride compound with copper and to obtain an ohmic, low-resistance back-contact. Moreover, the Te-excess hinders the fast diffusion of copper in CdTe and its achievement of the junction region, preventing the destruction of the device. In this paper we study a ZnTe:Cu buffer layer deposited onto a CdTe film, characterized by a naturally Te-rich surface obtained with a particular chlorine heat treatment without any chemical etching. Copper diffusion and the CdTe/ZnTe:Cu interface were studied by x-ray photoemission spectroscopy (SIPS) and time-of-flight secondary ion mass spectrometry (ToF- SIMS) to deeply analyze the intermixing phenomena and copper behavior inside polycrystalline CdTe film.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.10.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.10.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | EFFESUSEC| EFFESUSAuthors:Elena Lucchi;
Elena Lucchi
Elena Lucchi in OpenAIREFrancesca Becherini;
Maria Concetta Di Tuccio;Francesca Becherini
Francesca Becherini in OpenAIREAlexandra Troi;
+7 AuthorsAlexandra Troi
Alexandra Troi in OpenAIREElena Lucchi;
Elena Lucchi
Elena Lucchi in OpenAIREFrancesca Becherini;
Maria Concetta Di Tuccio;Francesca Becherini
Francesca Becherini in OpenAIREAlexandra Troi;
Alexandra Troi
Alexandra Troi in OpenAIREJürgen Frick;
Francesca Roberti; Carsten Hermann; Ian Fairnington; Giulia Mezzasalma; Luc Pockelé; Adriana Bernardi;Jürgen Frick
Jürgen Frick in OpenAIREResearch and development of cost-effective, high-performance thermal insulation materials for the construction sector has to be focused on their final application. In particular, solutions for refurbishing historic buildings, which represent 40% of the European building stock, have to offer a good compromise between environmental quality, energy efficiency and conservation aspects. In this paper, the experimental assessment of an insulation material based on aerogel technology, recently developed in the European project EFFESUS, is presented with regard to the material's thermal performance, compatibility with historic fabric and reversibility. The overall results obtained in laboratory testing on a real-size mock-up and in a real-world case application indicate that the new material is a promising solution for retrofitting historic buildings, thanks to its thermal properties, easy application, reversibility and material compatibility.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2017.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2017.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, NetherlandsPublisher:Springer Science and Business Media LLC G. Sordo; T. Kuenzig; Achim Bittner; Ulrich Schmid; Michael Schneider;Michele Bonaldi;
Michele Bonaldi
Michele Bonaldi in OpenAIREEnrico Serra;
Enrico Serra;Enrico Serra
Enrico Serra in OpenAIREJacopo Iannacci;
Jacopo Iannacci
Jacopo Iannacci in OpenAIREAntonio Borrielli;
Gabriele Schrag; Pasqualina M. Sarro;Antonio Borrielli
Antonio Borrielli in OpenAIREGregory Pandraud;
Gregory Pandraud
Gregory Pandraud in OpenAIREhandle: 11582/314219
In this contribution, we discuss the implementation of a novel microelectromechanical-systems (MEMS)-based energy harvester (EH) concept within the technology platform available at the ISAS Institute (TU Vienna, Austria). The device, already presented by the authors, exploits the piezoelectric effect to convert environmental vibrations energy into electricity, and presents multiple resonant modes in the frequency range of interest (i.e. below 10 kHz). The experimental characterisation of a sputter deposited aluminium nitride piezoelectric thin-film layer is reported, leading to the extraction of material properties parameters. Such values are then incorporated in the finite element method model of the EH, implemented in Ansys Workbench (TM), in order to get reasonable estimates of the converted power levels achievable by the proposed device solution. Multiphysics simulations indicate that extracted power values in the range of several mu W can be addressed by the EH-MEMS concept when subjected to mechanical vibrations up to 10 kHz, operating in closed-loop conditions (i.e. piezoelectric generator connected to a 100 k Omega resistive load). This represents an encouraging result, opening up the floor to exploitations of the proposed EH-MEMS device in the field of wireless sensor networks and zero-power sensing nodes.
CNR ExploRA arrow_drop_down Fondazione Bruno Kessler: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00542-018-3923-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 21 Powered bymore_vert CNR ExploRA arrow_drop_down Fondazione Bruno Kessler: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00542-018-3923-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Belgium, ItalyPublisher:American Chemical Society (ACS) Funded by:EC | ENHANCEEC| ENHANCEAuthors:Gasparotto, Alberto;
Gasparotto, Alberto
Gasparotto, Alberto in OpenAIREBarreca, Davide;
Bekermann, Daniela; Devi, Anjana; +8 AuthorsBarreca, Davide
Barreca, Davide in OpenAIREGasparotto, Alberto;
Gasparotto, Alberto
Gasparotto, Alberto in OpenAIREBarreca, Davide;
Bekermann, Daniela; Devi, Anjana;Barreca, Davide
Barreca, Davide in OpenAIREFischer, Roland A.;
Fischer, Roland A.
Fischer, Roland A. in OpenAIREFornasiero, Paolo;
Gombac, Valentina; Lebedev, Oleg I.;Fornasiero, Paolo
Fornasiero, Paolo in OpenAIREMaccato, Chiara;
Maccato, Chiara
Maccato, Chiara in OpenAIREMontini, Tiziano;
Tendeloo, Van, Gustaaf; Tondello, Eugenio;Montini, Tiziano
Montini, Tiziano in OpenAIREp-Type Co(3)O(4) nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H(2) from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co(3)O(4) results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co(3)O(4) films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes.
CNR ExploRA arrow_drop_down Journal of the American Chemical SocietyArticle . 2011Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja210078d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 172 citations 172 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Journal of the American Chemical SocietyArticle . 2011Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja210078d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 ItalyPublisher:Royal Society of Chemistry (RSC) Authors:Roland A. Fischer;
Anjana Devi;Roland A. Fischer
Roland A. Fischer in OpenAIREGiorgio Sberveglieri;
Giorgio Sberveglieri
Giorgio Sberveglieri in OpenAIREDavide Barreca;
+6 AuthorsDavide Barreca
Davide Barreca in OpenAIRERoland A. Fischer;
Anjana Devi;Roland A. Fischer
Roland A. Fischer in OpenAIREGiorgio Sberveglieri;
Giorgio Sberveglieri
Giorgio Sberveglieri in OpenAIREDavide Barreca;
Eugenio Tondello;Davide Barreca
Davide Barreca in OpenAIREElisabetta Comini;
Daniela Bekermann;Elisabetta Comini
Elisabetta Comini in OpenAIREAlberto Gasparotto;
Alberto Gasparotto
Alberto Gasparotto in OpenAIREChiara Maccato;
Chiara Maccato
Chiara Maccato in OpenAIRECinzia Sada;
Cinzia Sada
Cinzia Sada in OpenAIREdoi: 10.1039/c0ce00139b
ZnO nanorod assemblies were grown by plasma-enhanced chemical vapor deposition on polycrystalline Al2O3 at 200-300 C, resulting in urchin-like 1-D ZnO NR arrays with a strong c-axis orientation. Their outstanding gas sensing responses and very low detection limits highlight the potential of the present systems in the production of high efficiency chemical sensors for a variety of applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ce00139b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 93 citations 93 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ce00139b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Wiley Funded by:MIURMIURAuthors:MARTA, SILVIO;
MARTA, SILVIO
MARTA, SILVIO in OpenAIREGRATTON, PAOLO;
GRATTON, PAOLO
GRATTON, PAOLO in OpenAIRECESARONI, DONATELLA;
CESARONI, DONATELLA
CESARONI, DONATELLA in OpenAIRESBORDONI, VALERIO;
+1 AuthorsSBORDONI, VALERIO
SBORDONI, VALERIO in OpenAIREMARTA, SILVIO;
MARTA, SILVIO
MARTA, SILVIO in OpenAIREGRATTON, PAOLO;
GRATTON, PAOLO
GRATTON, PAOLO in OpenAIRECESARONI, DONATELLA;
CESARONI, DONATELLA
CESARONI, DONATELLA in OpenAIRESBORDONI, VALERIO;
Lacasella, F;SBORDONI, VALERIO
SBORDONI, VALERIO in OpenAIREdoi: 10.1111/jbi.12771
handle: 2108/143129
AbstractAimNiche stability areas (NSAs) are portions of the species range where climate conditions remain suitable through time. They represent the core of species ranges. Their distribution and extent, coupled with dispersal and colonization, shape the realized range of species. In this study, we quantified the roles of survival within NSAs and post‐glacial dispersal in determining the current distribution of two groups of alpine butterflies (two taxa in the Erebia tyndarus species complex; three taxa in the Parnassius apollo–P. phoebus species complex).LocationHolarctic.MethodsNSAs were identified for each taxon by combining current and past potential distributions models, estimated using different modelling techniques and general circulation models. We then (1) assessed the distributional bias towards NSAs by comparing actual occurrence records with randomized occupancies of the current potential range and (2) quantified post‐glacial dispersal by examining the distribution of distances from each occurrence record to the nearest NSA.ResultsIn almost all taxa, realized distributions are biased towards NSAs. However, while Erebia's present range is strongly dominated by NSAs, some populations of Parnassius are found very far from NSAs, suggesting more effective colonization of the available geographical space.Main conclusionsOur study highlights the relative roles of survival within NSAs and post‐glacial dispersal in shaping the ranges of different alpine butterflies during the Holocene. Results suggest that Erebia was unable to disperse far from NSAs, thus experiencing increasing range fragmentation. Parnassius populations, on the other hand, coupled local survival with northward dispersal. As NSAs allowed the long‐term survival of the species, acting as sources for recolonization, and tend to preserve most of each species’ genetic diversity, identifying NSAs and understanding their importance in determining the current distribution of species represents a pivotal task for the conservation of biological diversity.
CNR ExploRA arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Journal of BiogeographyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jbi.12771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu