search
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
366 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • DE
  • EU
  • ES
  • BE
  • English

  • Authors: Tröger, N.; Richter, D.; Stahl, R.;

    The project between tthe Deutsche Biomasseforschungszentrum (DBFZ) and the Karlsruhe Institute of Technology (KIT) focuses on the pr rovision of alternative fuels by thermochemical conversion. Biogenic residues and wastes which are not used yet or which could be utilised more efficiently are studied. The selection of possible feedstock was supported by a techhnical potential analysis including the competition to th he food industry. The technical suitability of raw materials for the fast pyrolysis (FP) process was of special in nterest. As a possible feedstock following types of biomass were studied: corn stover, corn cobs, biogenic floating re efuse (river Rhine and Baltic Sea), scrap wood, bark, rape s straw, sunflower straw, draff, diverse residues of flour production and hay. A process development unit (PDU) with a biomass feeding rate of 10 kg/h and a twin screw m mixer reactor was used for all experiments. It was found that different types of biomass form different char, condensate e and gas yields due to varying ash levels and lignocellulosic composition. Elemental formulas for feedstock, char, organic condensate and gas were estimated independent on t the feedstock due to similar elemental compositions. Pyrolysis gas analysis during the experiments gave information on the mass yields. A CO/CO2-ratio of 1 (i.e. wood) corresponds to organic condensate yields of about 50 wt.-%%, whereas a ratio of 0.3-0.7 (straw) corresponds to 18-32 wt. .-% respectively. Proceedings of the 20th European Biomass Conference and Exhibition, 18-22 June 2012, Milan, Italy, pp. 973-977

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Carriel-Schmitt, Caroline; Boscagli, Chiara; Rapp, Michael; Raffelt, Klaus; +1 Authors

    Bio-oil composition can differ depending on the biomass feedstock. Such information is essential if upgrading to a liquid fuel or to platform chemicals is intended. Furthermore, water and inorganic elements have to be taken into account for the catalyst selection. In this work, two bio-oils from wheat straw and beech wood were characterized by different techniques. Both were composed by a light and a heavy phase separately analyzed. The water content of the fractions differed over a wide range between 14.4 and 56.7 wt.% and therefore also the HHV (between 28.5 and 9.2 MJ/Kg). Both phases showed very low content of sulfur (<0.4 wt.%), which can have influence the lifetime of the catalyst. The 1H-NMR integration showed higher values in the regions of alkanes, carboxylic acid or keto-groups, and hetero-(aromatics) for both heavy phases, while light phases showed higher values in the water, O-H exchanging and carbohydrates region. So the heavy phases seem to be a good basis if phenols and its derivatives are expected and the light phases if alcohols are of interest. These results show that the bio-oils composition is essential for upgrading reactions, impacting on the products as well as on the choice of the catalyst. Proceedings of the 25th European Biomass Conference and Exhibition, 12-15 June 2017, Stockholm, Sweden, pp. 1143-1147

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao KITopen (Karlsruhe I...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/25t...
    Conference object . 2017
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao KITopen (Karlsruhe I...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/25t...
      Conference object . 2017
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Montoya Martinez, Alvaro Rafael;

    Trabajo Fin de Grado leído en la Universidad Rey Juan Carlos en el curso académico 2022/2023. Directores/as: Fabiola Gómez Jorge ; Tobacco companies have faced numerous challenges and pressures, from increased awareness of health risks associated with smoking to stringent regulations and changing societal attitudes towards tobacco consumption. By embracing change proactively, the tobacco industry can navigate these challenges more effectively and position itself for long-term success. Instead of waiting until circumstances force them to change, tobacco companies have chosen to adapt their business models, diversify their product offerings, and invest in alternative sectors that align with evolving consumer preferences and public health concerns. This paper presents a deep dive analysis on the tobacco industry transformation journey, from key stakeholders, such as, consumers, company employees, health organizations, and governments¿ point of view, to better understand the rational of this transformation process and the status of the change.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Taumberger, Markus;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VIRTA
    Article . 2016
    Data sources: VIRTA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VIRTA
      Article . 2016
      Data sources: VIRTA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Zimmer, Tobias; Arteaga-Pérez, Luis; Segura, Cristina; Walter, Matthias; +2 Authors

    Chile is known for a strong forest industry based on 2.5 million ha of forest plantations. The harvest and processing of 44 million m3 of roundwood leads to a biomass potential of more than 5 million tons of plantation and sawmill residues per year which could be utilized to produce wood pellets. However, Chilean pellet mills face a limited domestic demand of approximately 100,000 tons per year. As 60% of the Chilean pulp and wood chips are shipped to diverse destinations in Asia and Europe, the export of wood pellets could offer an opportunity to utilize the potential of residual biomass. In this study, an economic assessment of the production and export of Chilean pellets is carried out. A simulation model is developed which covers the entire supply chain including pellet production, transportation and storage, port operations and maritime shipping. The model is applied to compare regular and torrefied pellets and different destination ports in Europe and Asia. The results indicate that torrefied pellets would be competitive with regular wood pellets in the considered target markets. Proceedings of the 26th European Biomass Conference and Exhibition, 14-17 May 2018, Copenhagen, Denmark, pp. 1279-1288

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nicoleit, T.; Herzog, A. C.; Raffelt, K.; Dahmen, N.; +1 Authors

    The purpose of Karlsruhe’s bioliq®-project is the conversion of biomass into synthetic chemicals and fuels (also referred to as BtL, biomass to liquids). The lignocellulosic biomass is first liquefied by fast pyrolysis in distributed regional plants to produce an energy-dense intermediate composed of pyrolysis condensates and solid char powder. Both products are mixed to a suspension (the so called bio-slurry or Syncrude) to be suitable for long storage periods and economic transport over long distances. Afterwards, in a large scale industrial facility, the biosyncrude is converted into syngas through entrained flow gasifier and then by catalysis to synfuels or platform chemicals. Regarding to a minimum of energy consumption for avoiding solid sediments in the biosyncrude, two possibilities are being taken into account: either the bio-slurry is continuously slowly stirred, or sedimentation is prevented by short-time stirring followed by an as-long-as-possible resting interval. For the investigated bio-slurries, the experimental results indicates, that it’s more efficient to stir the slurry batch-wise. Proceedings of the 22nd European Biomass Conference and Exhibition, 23-26 June 2014, Hamburg, Germany, pp. 1151-1154

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao KITopen (Karlsruhe I...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/22n...
    Conference object . 2014
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao KITopen (Karlsruhe I...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/22n...
      Conference object . 2014
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Grabowska-Bold, Iwona;

    The cross sections for deeply virtual Compton scattering in the reaction $ep\to egamma p$ has been mea

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sánchez García, Paula;

    [ES] El sistema agroalimentario atraviesa un período de transición debido a diversas tensiones ambientales, económicas y sociales. En este contexto, las políticas implementadas por los diferentes países europeos juegan un papel fundamental. Esta tesis tiene como objetivo analizar diferentes herramientas políticas disponibles para los diferentes actores de la cadena agroalimentaria con el objetivo de proporcionar una comprensión integral del panorama político y regulatorio actual en Europa. Este trabajo está enmarcado en el proyecto EU VISIONARY, creado para mejorar la sostenibilidad de la agricultura europea mediante la promoción de prácticas ambientalmente amigables, económicamente viables y socioculturalmente apropiadas en los sistemas agroalimentarios. Se analizan las herramientas políticas identificadas y seleccionadas en varios de los países participantes en el proyecto VISIONARY (Reino Unido, Hungría, Alemania, Rumanía, Polonia, España, Italia y Dinamarca), considerando su hibridación e interdependencia y cómo interactúan con los diferentes actores del sistema agroalimentario. Para lograr esto, se realiza una revisión de la literatura sobre el marco actual de la política agraria dentro de la Unión Europea, considerando las últimas dinámicas como el Pacto Verde Europeo, las estrategias de Biodiversidad y De la Granja a la Mesa . Paralelamente, se tabulan los datos recopilados (93 herramientas de políticas), seguido de un análisis de correspondencia múltiple para identificar interacciones significativas entre las diferentes variables. Tras analizar y presentar los resultados, se constata que la mayoría de las intervenciones están relacionadas con la Política Agrícola Común (PAC), están alineadas con las estrategias europeas y están dirigidas principalmente a los agricultores. Además, las principales formas de acción son las regulaciones directas y los incentivos económicos. [EN] The agri-food system is going through a transition period due to environmental, economic, and social tensions. In this context, policies implemented by European countries play a vital role. This Master thesis aims to analyze different policy tools available to agri-food chain stakeholders to provide a comprehensive understanding of the current political and regulatory landscape in Europe. This work is part of the EU VISIONARY project, which was created to improve the sustainability of European agriculture by promoting environmentally friendly, economically viable, and socioculturally appropriate practices in food systems. The political tools identified and selected by some of the countries participating in the VISIONARY project (United Kingdom, Hungary, Germany, Romania, Poland, Spain, Italy, and Denmark) are analyzed, considering their hybridization and interdependency and how they interact with the different actors of the agri-food system. To achieve this analysis, a literature review of the current agricultural policy framework within the European Union is conducted, considering the latest dynamics such as The Green Deal, the Farm to Fork , and Biodiversity strategies. Additionally, the collected data (93 policy tools) is tabulated, followed by a multiple correspondence analysis to identify significant intersections between different variables. After analyzing and presenting the results, it was found that most interventions are related to the Common Agricultural Policy (CAP), are aligned with European strategies, and are primarily aimed at farmers. Furthermore, the primary forms of action are directregulations and economic incentives.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RiuNetarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    RiuNet
    Master thesis . 2024
    Data sources: RiuNet
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility21
    visibilityviews21
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RiuNetarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      RiuNet
      Master thesis . 2024
      Data sources: RiuNet
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    From the beginning, energy has been the driving force of mankind. Without it, the evolution of mankind would have been impossible. Despite the need for access to energy to achieve higher levels of development, in many contexts around the world, situations of energy vulnerability and energy poverty exist. In many international legal instruments, the recognition of the right to energy as a human right has been strengthened. In several national frameworks, there are many trends in the protection of this fundamental right, while in others the right to energy is a forgotten issue. Given the level of development achieved by humankind, it is becoming increasingly necessary to grant greater legal protection to this right, especially with its recognition as a constitutional right. The Constitution as a fundamental norm provides the framework for the development of complementary norms that guarantee effective protection of the right to energy. The object of study of this research is Latin America and the Caribbean legal frameworks. Cuba, as part of the region, does not expressly recognise the right to energy in the Constitution of 2019. This research aims to systematise the good practices associated with the recognition of the right to energy as a constitutional right in Latin America and the Caribbean for its future recognition in Cuba. To accomplish this objective, the following research methods will be used: historical-legal, exegetical-analytical, and legal comparison. As a result, this research presents a systematisation of good practices associated with the recognition of the right to energy as a constitutional right in Latin America.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bartel, W.; Cords, D.; Wenninger, H.; Zhang, Y.; +65 Authors

    The fraction of the total available energy carried by photons and the fraction carried by neutral particles of all types ine+e− multihadron final states have been measured at three centre-of-mass energies between 12 and 35 GeV. These fractions are approximately 27% and 37% with no strong dependence on centre-of-mass energy and the event topology. The neutrino energy fraction is estimated to be less than 10% at the 95% confidence level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
366 Research products
  • Authors: Tröger, N.; Richter, D.; Stahl, R.;

    The project between tthe Deutsche Biomasseforschungszentrum (DBFZ) and the Karlsruhe Institute of Technology (KIT) focuses on the pr rovision of alternative fuels by thermochemical conversion. Biogenic residues and wastes which are not used yet or which could be utilised more efficiently are studied. The selection of possible feedstock was supported by a techhnical potential analysis including the competition to th he food industry. The technical suitability of raw materials for the fast pyrolysis (FP) process was of special in nterest. As a possible feedstock following types of biomass were studied: corn stover, corn cobs, biogenic floating re efuse (river Rhine and Baltic Sea), scrap wood, bark, rape s straw, sunflower straw, draff, diverse residues of flour production and hay. A process development unit (PDU) with a biomass feeding rate of 10 kg/h and a twin screw m mixer reactor was used for all experiments. It was found that different types of biomass form different char, condensate e and gas yields due to varying ash levels and lignocellulosic composition. Elemental formulas for feedstock, char, organic condensate and gas were estimated independent on t the feedstock due to similar elemental compositions. Pyrolysis gas analysis during the experiments gave information on the mass yields. A CO/CO2-ratio of 1 (i.e. wood) corresponds to organic condensate yields of about 50 wt.-%%, whereas a ratio of 0.3-0.7 (straw) corresponds to 18-32 wt. .-% respectively. Proceedings of the 20th European Biomass Conference and Exhibition, 18-22 June 2012, Milan, Italy, pp. 973-977

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Carriel-Schmitt, Caroline; Boscagli, Chiara; Rapp, Michael; Raffelt, Klaus; +1 Authors

    Bio-oil composition can differ depending on the biomass feedstock. Such information is essential if upgrading to a liquid fuel or to platform chemicals is intended. Furthermore, water and inorganic elements have to be taken into account for the catalyst selection. In this work, two bio-oils from wheat straw and beech wood were characterized by different techniques. Both were composed by a light and a heavy phase separately analyzed. The water content of the fractions differed over a wide range between 14.4 and 56.7 wt.% and therefore also the HHV (between 28.5 and 9.2 MJ/Kg). Both phases showed very low content of sulfur (<0.4 wt.%), which can have influence the lifetime of the catalyst. The 1H-NMR integration showed higher values in the regions of alkanes, carboxylic acid or keto-groups, and hetero-(aromatics) for both heavy phases, while light phases showed higher values in the water, O-H exchanging and carbohydrates region. So the heavy phases seem to be a good basis if phenols and its derivatives are expected and the light phases if alcohols are of interest. These results show that the bio-oils composition is essential for upgrading reactions, impacting on the products as well as on the choice of the catalyst. Proceedings of the 25th European Biomass Conference and Exhibition, 12-15 June 2017, Stockholm, Sweden, pp. 1143-1147

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao KITopen (Karlsruhe I...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/25t...
    Conference object . 2017
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao KITopen (Karlsruhe I...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/25t...
      Conference object . 2017
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Montoya Martinez, Alvaro Rafael;

    Trabajo Fin de Grado leído en la Universidad Rey Juan Carlos en el curso académico 2022/2023. Directores/as: Fabiola Gómez Jorge ; Tobacco companies have faced numerous challenges and pressures, from increased awareness of health risks associated with smoking to stringent regulations and changing societal attitudes towards tobacco consumption. By embracing change proactively, the tobacco industry can navigate these challenges more effectively and position itself for long-term success. Instead of waiting until circumstances force them to change, tobacco companies have chosen to adapt their business models, diversify their product offerings, and invest in alternative sectors that align with evolving consumer preferences and public health concerns. This paper presents a deep dive analysis on the tobacco industry transformation journey, from key stakeholders, such as, consumers, company employees, health organizations, and governments¿ point of view, to better understand the rational of this transformation process and the status of the change.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Taumberger, Markus;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VIRTA
    Article . 2016
    Data sources: VIRTA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VIRTAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VIRTA
      Article . 2016
      Data sources: VIRTA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Zimmer, Tobias; Arteaga-Pérez, Luis; Segura, Cristina; Walter, Matthias; +2 Authors

    Chile is known for a strong forest industry based on 2.5 million ha of forest plantations. The harvest and processing of 44 million m3 of roundwood leads to a biomass potential of more than 5 million tons of plantation and sawmill residues per year which could be utilized to produce wood pellets. However, Chilean pellet mills face a limited domestic demand of approximately 100,000 tons per year. As 60% of the Chilean pulp and wood chips are shipped to diverse destinations in Asia and Europe, the export of wood pellets could offer an opportunity to utilize the potential of residual biomass. In this study, an economic assessment of the production and export of Chilean pellets is carried out. A simulation model is developed which covers the entire supply chain including pellet production, transportation and storage, port operations and maritime shipping. The model is applied to compare regular and torrefied pellets and different destination ports in Europe and Asia. The results indicate that torrefied pellets would be competitive with regular wood pellets in the considered target markets. Proceedings of the 26th European Biomass Conference and Exhibition, 14-17 May 2018, Copenhagen, Denmark, pp. 1279-1288

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nicoleit, T.; Herzog, A. C.; Raffelt, K.; Dahmen, N.; +1 Authors

    The purpose of Karlsruhe’s bioliq®-project is the conversion of biomass into synthetic chemicals and fuels (also referred to as BtL, biomass to liquids). The lignocellulosic biomass is first liquefied by fast pyrolysis in distributed regional plants to produce an energy-dense intermediate composed of pyrolysis condensates and solid char powder. Both products are mixed to a suspension (the so called bio-slurry or Syncrude) to be suitable for long storage periods and economic transport over long distances. Afterwards, in a large scale industrial facility, the biosyncrude is converted into syngas through entrained flow gasifier and then by catalysis to synfuels or platform chemicals. Regarding to a minimum of energy consumption for avoiding solid sediments in the biosyncrude, two possibilities are being taken into account: either the bio-slurry is continuously slowly stirred, or sedimentation is prevented by short-time stirring followed by an as-long-as-possible resting interval. For the investigated bio-slurries, the experimental results indicates, that it’s more efficient to stir the slurry batch-wise. Proceedings of the 22nd European Biomass Conference and Exhibition, 23-26 June 2014, Hamburg, Germany, pp. 1151-1154

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao KITopen (Karlsruhe I...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/22n...
    Conference object . 2014
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao KITopen (Karlsruhe I...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/22n...
      Conference object . 2014
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Grabowska-Bold, Iwona;

    The cross sections for deeply virtual Compton scattering in the reaction $ep\to egamma p$ has been mea

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sánchez García, Paula;

    [ES] El sistema agroalimentario atraviesa un período de transición debido a diversas tensiones ambientales, económicas y sociales. En este contexto, las políticas implementadas por los diferentes países europeos juegan un papel fundamental. Esta tesis tiene como objetivo analizar diferentes herramientas políticas disponibles para los diferentes actores de la cadena agroalimentaria con el objetivo de proporcionar una comprensión integral del panorama político y regulatorio actual en Europa. Este trabajo está enmarcado en el proyecto EU VISIONARY, creado para mejorar la sostenibilidad de la agricultura europea mediante la promoción de prácticas ambientalmente amigables, económicamente viables y socioculturalmente apropiadas en los sistemas agroalimentarios. Se analizan las herramientas políticas identificadas y seleccionadas en varios de los países participantes en el proyecto VISIONARY (Reino Unido, Hungría, Alemania, Rumanía, Polonia, España, Italia y Dinamarca), considerando su hibridación e interdependencia y cómo interactúan con los diferentes actores del sistema agroalimentario. Para lograr esto, se realiza una revisión de la literatura sobre el marco actual de la política agraria dentro de la Unión Europea, considerando las últimas dinámicas como el Pacto Verde Europeo, las estrategias de Biodiversidad y De la Granja a la Mesa . Paralelamente, se tabulan los datos recopilados (93 herramientas de políticas), seguido de un análisis de correspondencia múltiple para identificar interacciones significativas entre las diferentes variables. Tras analizar y presentar los resultados, se constata que la mayoría de las intervenciones están relacionadas con la Política Agrícola Común (PAC), están alineadas con las estrategias europeas y están dirigidas principalmente a los agricultores. Además, las principales formas de acción son las regulaciones directas y los incentivos económicos. [EN] The agri-food system is going through a transition period due to environmental, economic, and social tensions. In this context, policies implemented by European countries play a vital role. This Master thesis aims to analyze different policy tools available to agri-food chain stakeholders to provide a comprehensive understanding of the current political and regulatory landscape in Europe. This work is part of the EU VISIONARY project, which was created to improve the sustainability of European agriculture by promoting environmentally friendly, economically viable, and socioculturally appropriate practices in food systems. The political tools identified and selected by some of the countries participating in the VISIONARY project (United Kingdom, Hungary, Germany, Romania, Poland, Spain, Italy, and Denmark) are analyzed, considering their hybridization and interdependency and how they interact with the different actors of the agri-food system. To achieve this analysis, a literature review of the current agricultural policy framework within the European Union is conducted, considering the latest dynamics such as The Green Deal, the Farm to Fork , and Biodiversity strategies. Additionally, the collected data (93 policy tools) is tabulated, followed by a multiple correspondence analysis to identify significant intersections between different variables. After analyzing and presenting the results, it was found that most interventions are related to the Common Agricultural Policy (CAP), are aligned with European strategies, and are primarily aimed at farmers. Furthermore, the primary forms of action are directregulations and economic incentives.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RiuNetarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    RiuNet
    Master thesis . 2024
    Data sources: RiuNet
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility21
    visibilityviews21
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RiuNetarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      RiuNet
      Master thesis . 2024
      Data sources: RiuNet
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    From the beginning, energy has been the driving force of mankind. Without it, the evolution of mankind would have been impossible. Despite the need for access to energy to achieve higher levels of development, in many contexts around the world, situations of energy vulnerability and energy poverty exist. In many international legal instruments, the recognition of the right to energy as a human right has been strengthened. In several national frameworks, there are many trends in the protection of this fundamental right, while in others the right to energy is a forgotten issue. Given the level of development achieved by humankind, it is becoming increasingly necessary to grant greater legal protection to this right, especially with its recognition as a constitutional right. The Constitution as a fundamental norm provides the framework for the development of complementary norms that guarantee effective protection of the right to energy. The object of study of this research is Latin America and the Caribbean legal frameworks. Cuba, as part of the region, does not expressly recognise the right to energy in the Constitution of 2019. This research aims to systematise the good practices associated with the recognition of the right to energy as a constitutional right in Latin America and the Caribbean for its future recognition in Cuba. To accomplish this objective, the following research methods will be used: historical-legal, exegetical-analytical, and legal comparison. As a result, this research presents a systematisation of good practices associated with the recognition of the right to energy as a constitutional right in Latin America.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bartel, W.; Cords, D.; Wenninger, H.; Zhang, Y.; +65 Authors

    The fraction of the total available energy carried by photons and the fraction carried by neutral particles of all types ine+e− multihadron final states have been measured at three centre-of-mass energies between 12 and 35 GeV. These fractions are approximately 27% and 37% with no strong dependence on centre-of-mass energy and the event topology. The neutrino energy fraction is estimated to be less than 10% at the 95% confidence level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph