- home
- Search
- Energy Research
- 2016-2025
- PT
- ES
- AO
- English
- Energy Research
- 2016-2025
- PT
- ES
- AO
- English
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Vidaller, Ixeia; Izagirre, Eñaut; del Río, Luis Mariano; Alonso-González, Esteban; +5 AuthorsVidaller, Ixeia; Izagirre, Eñaut; del Río, Luis Mariano; Alonso-González, Esteban; Rojas-Heredia, Francisco; Serrano, Enrique; Moreno, Ana; López-Moreno, Juan Ignacio; Revuelto, Jesús;The Aneto Glacier, is the largest glacier in the Pyrenees. Its shrinkage and wastage have been continuous in recent decades, and there are signs of accelerated melting in recent years. In this study, changes in the surface and ice thickness of the Aneto Glacier from 1981 to 2022 are investigated using historical aerial imagery, airborne LiDAR point clouds, and UAV imagery. A GPR survey conducted in 2020, combined with data from photogrammetric analyses, allowed us to reconstruct the current ice thickness and also the existing ice distribution in 1981 and 2011. Over the last 41 years, the total glaciated area has shrunk by 64.7% and the ice thickness has decreased, on average, by 30.5 m. The mean remaining ice thickness in autumn 2022 was 11.9 m, as against the mean thicknesses of 32.9 m, 19.2 m reconstructed for 1981 and 2011 and 15.0 m observed in 2020 respectively. The results demonstrate the critical situation of the glacier, with an imminent segmentation into two smaller ice bodies and no evidence of an accumulation zone. We also found that the occurrence of an extremely hot and dry year, as observed in the 2021–2022 season, leads to a drastic degradation of the glacier, posing a high risk to the persistence of the Aneto Glacier, a situation that could extend to the rest of the Pyrenean glaciers in a relatively short time.
ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7472185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7472185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Dias de Lima, Tayenne; F. Franco, John; Lezama, Fernando; Soares, Joao; Vale, Zita;Dataset of the paper: Joint optimal Allocation of Electric Vehicle Charging Stations and Renewable Energy Sources including CO2 emissions, Energy Informatics, 2021 (Presented in EIA 2021) Table 1 shows the operational scenarios, while the data for the substations is shown in Table 2. The demand data for each node is shown in Table 3. The parameters related to RES are shown in Table 4 and Table 5. The PV units have a nominal power capacity of 100 kW and are composed by 40 modules with 2.5 kW each. A maximum of 60 generators of this type can be installed in each node. The CO2 factor emission is defined as 𝜁𝑝𝑣=0.0584 ton/MWh. The candidate nodes for the installation of wind turbines, photovoltaic modules, and EV charging stations, are respectively: Ω𝑤𝑡 = {3, 4, 5, 9, 11, 14, 16, 19}, Ω𝑝𝑣 = {3, 4, 6, 8, 10, 13, 14, 15, 19}, and Ω𝑅 = {3, 6, 8,14, 15}. The power factors for PV and WT units are defined as 0.98 and 0.90, respectively. Table 6 presents the data for the two EV chargers alternatives. Finally, Fig.1 shows the initial system topology. R&D center: http://www.gecad.isep.ipp.pt/ and https://www.feis.unesp.br/#!/lapsee Project website: http://www.gecad.isep.ipp.pt/CENERGETIC/ This work has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE2020), under Project POCI-01-0145-FEDER- 028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017(CENERGETIC), CEECIND/02814/2017,and UIDB/000760/2020. The brazillan team (CENERGETIC partners) was supported by the Brazilian institutions Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq (process 313047/2017-0) and São Paulo Research Foundation (FAPESP), grants 2015/21972-6, 2017/02831-8, 2018/23617-7, and 20018/08008-4 (CENERGETIC research project).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4758354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4758354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 30 Apr 2024 SpainPublisher:Universidad de Zaragoza Authors: Cortesi, Nicola; Peña Angulo, Dhais;[ES] Se ha aplicado la clasificación de tipos de tiempo (Weather Types) de Jenkinson y Collison a la malla de presiones diaria del reanálisis NCAR-NCEP (periodo Enero 1950-Diciembre 2023) correspondiente a la Península Ibérica y Baleares. Por la resolución de dicha malla (2.5º x 2.5º lat/long) el total de nodos de control es de 12. Los tipos de tiempo resultantes incluyen los 8 direccionales puros, Anticiclónico y Ciclónico puro, y la combinación de 8 tipos híbridos entre las categorías previas. Los casos indeterminados fueron distribuidos proporcionalmente entre las clases previas. [EN] It has been applied the Jenkinson & Collison classification of Weather Types to Iberian Peninsula and Balearic Island by using the daily NCAR-NCEP grid surface pressure dataset (January-1950/December-2023). Grid resolution/2.5ºx2.5 lat/long) produces 12 series. Weather Types classification includes 8 directional pure, Anticyclonic and Cyclonic pure types, and combination of previous ones in the hybrid types. Non determines cases were spread homogeneously. [EN] WETYDAS contains 12 TXT archives localized by their coordinates in NCAR grid; information include year, month, day and code of weathee type. [ES] WETYDAS consta de 12 archivos formato TXT geolocalizados por sus coordenadas en la malla NCAR; la información incluye el año, mes y día, así como el código del tipo de tiempo resultante.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/16255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/16255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Oct 2023Publisher:Dryad Authors: García-Barros, Enrique; Álamo, Mario; Romo, Helena;# sRGB Reflectances from Iberian butterflies [https://doi.org/10.5061/dryad.1g1jwsv0q](https://doi.org/10.5061/dryad.1g1jwsv0q) Data on wing reflectance (visible spectrum, mean standard RGB values (243.7= white, to 52= black) from 224 species of butterflies (Lepidoptera, Papilionoidea): 223 from the Iberian Peninsula and one (*C. webbianus*) from the Canaries. Average of male and female, sample size as indicated in column n. The data from *C. webbianus* and *C. marshalli* were not included in our analyses of reflectance. Text file, CSV format, columns delimited by periods, 225 rows (including headings) and 38 columns. Any means presented are weighted averages taking into account the areas of the parts involved. Wing reflectances refer to the parts of the wings exposed in a living butterfly (except FW\_AREA and HW\_AREA which are total wing surfaces). * **Ord**, row number (roughly a taxonomic arrangement) * **Species**, species name (abbreviated genus, contains a blank space, e.g., *Heteropterus morpheus*) * **N**, sample size * **FWL**, forewing length (mm) * **DFT**, reflectance, dorsal forewing * **DFp**, reflectance, dorsal forewing, proximal area * **DFd**, reflectance, dorsal forewing, distal area * **DHT**, reflectance, dorsal hindwing * **DHp**, reflectance, dorsal hindwing, proximal area * **DHd**, reflectance, dorsal hindwing, distal area * **DB**, reflectance, dorsal body area * **D(Tp+B)**, reflectance of the exposed dorsal body plus proximal wing surfaces * **DT**, reflectance of the dorsal areas (body plus whole wing) * **DTp**, reflectance of the dorsal, proximal wing areas * **DTd**, reflectance of the dorsal, distal wing areas * **VFT**, reflectance, ventral forewing * **VFp**, reflectance, ventral forewing, proximal area * **VFd**, reflectance, ventral forewing, distal area * **VHT**, reflectance, ventral hindwing * **VHp**, reflectance, ventral hindwing, proximal area * **VHd**, reflectance, ventral hindwing, distal area * **VB**, reflectance, ventral body area * **V(Tp+B)**, reflectance of the exposed ventral body plus proximal wing surfaces * **VT**, reflectance of the ventral areas (body plus whole wing) * **VTp**, reflectance of the ventral, proximal wing areas * **VTd**, reflectance of the ventral, distal wing areas * **Mean**, mean total reflectance (dorsal and ventral surfaces) * **p\_Mean**, mean reflectance of the proximal (dorsal and ventral) wing areas * **p\_Otimum**, mean reflectance of the proximal dorsal (for dorsal baskers) or ventral (for lateral basking species) wing areas. * **FW\_area**, total forewing area (mm2) * **HW\_area**, total hindwing area (mm2) * **T\_Mean\_Iberia\_10km**, Iberian mean species temperature, Centigrade degrees, 10 x 10 km resolution * **P\_Mean\_Iberia\_10km**, mean species annual precipitation, mm, Iberian Peninsula, 10 x 10 km resolution * **T\_Mean\_Ibera\_50km**, mean species temperature, Centigrade degrees, Iberian Peninsula, 50 x 50 km resolution * **P\_Mean\_Iberia\_50km**, mean species annual precipitation, mm, Iberian Peninsula, 50 x 50 km resolution Data on wing reflectance (visible spectrum, mean standard RGB values (243.7= white, to 52= black) from 224 species of butterflies (Lepidoptera, Papilionoidea): 223 from the Iberian Peninsula and one (Cyclyrius webbianus) from the Canary Islands. Average of male and female, sample size as indicated in column n. The data from C. webbianus and Cacyreus marshalli are provided although these species were not included in our analyses of reflectance. The data were measured from digital images of set (collection) specimens taken in fixed conditions, with grey (average RGB) values standardized a posteriori to fit the scale white= 243.7= white, to black= 52. The data set includes the mean length of the forewing (mm) and the total areas (mm2) of the fore and hind wings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1g1jwsv0q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1g1jwsv0q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Markus Stoffel; Daniel G. Trappmann; Mattias I. Coullie; Juan A. Ballesteros-Cánovas; +1 AuthorsMarkus Stoffel; Daniel G. Trappmann; Mattias I. Coullie; Juan A. Ballesteros-Cánovas; Christophe Corona;This readme file provides all data and R codes used to perform the analyses presented in Figs. 2-4 of the main text and Supplementary Information Figures S1-S2-S3. FIGURE 2 - Seasonally_dated_GDs.txt: Contains information on the timing (Season) of rockfall (GD) in a given tree (Id) and a given year (yr) over the past 100 years. Inv refers to the operators which analyzed growth disturbances in the tree-ring series. Lat / Long refers to the position of the tree in CH1903/ Swiss Grid projection. Intensity (1-4) refers to (1), intermediate (2) and strong (3) GD. Intensity 4 was attributed to injuries (I). Only the 408 GD rated 3 (strong TRD) and 4 (injuries) were used in Fig. 2. Acronyms used for Response_type read as follows: TRD: Tangential rows of traumatic resin ducts; I: Injuries. Acronyms used for Season refer to Dormancy (1_D), early (2_EE), middle (3_ME) and late (4_LE) earlywood, whereas a GD found in the latewood was attributed to either the early (5_EL) or late (6_LL) latewood. - Trends_in_seasonality_R1.R: The data contained in "Seasonally_dated_GDs" were processed with the R script "Trends_in_Seasonality.R". This seasonal trend analysis code is inspired by work published by Schlögl et al. (2021; https://doi.org/10.1016/j.crm.2021.100294) and Heiser et al. (2022; https://doi.org/10.1029/2011JF002262). FIGURE 3-4-S1 - Tasch_GD.txt: Contains the raw data on rockfall impacts (GD) in a given year (yr) as found in all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - Rockfall_frequency_climate.R: The data contained in "Tasch_GD.txt" were processed with the R script "Rockfall_frequency_climate.R". - The temperature (Imfeld23_tmp.txt) and precipitation (Imfeld23_prc.txt) data used in Fig. 3 are from the Imfeld et al. 2023 (10.5194/cp-19-703-2023) gridded dataset (1x1 km lat/long) and were extracted at the grid point centered on the Täschgufer site. - The script set with temperature series enables to compute Fig. 4 (l.149:216) and Fig. 3 (l. 216:330); the script set with precipitation series enables to compute Fig. S1 FIGURE S2 - Tasch_GD.txt: Contains the raw data on rockfall impacts (GD) at the Täschgufer site in a given year (yr) as found in all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - Rockfall_frequency_borehole.R: is adapted from "Rockfall_frequency_climate.R" to work with the borehole dates. - Corvatsch0_6R1: Contains the Corvatsch borehole temperature series (2000-2020, 0.6m depth) (Hoelzle, M. et al. https://doi.org/10.5194/essd-14-1531-2022, 2022). FIGURE S3 - Plattje_GD.txt: Contains the raw data on rockfall impacts (GD) at the Plattje site in a given year (yr) as found all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - - Rockfall_frequency_climate_Plattje.R: The data contained in "Plattje_GD.txt" were processed with the R script "Rockfall_frequency_climate_Plattje.R". - The temperature (Imfeld23_tmp_Plattje.txt) and precipitation (Imfeld23_prc_Plattje.txt) data used in Fig. 3 are from Imfeld et al. 2023 (10.5194/cp-19-703-2023) gridded dataset (1x1 km lat/long) and were extracted at the grid point centered on the Plattje site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7925647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7925647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Negri, Valentina; Vázquez, Daniel; Sales-Pardo, Marta; Guimerà, Roger; Guillén-Gosálbez, Gonzalo;Dataset of process simulations results of the natural gas sweetening and flue gas treatment (first and second sheet, respectively as indicated by the sheet name in the .xlsx file). The dataset refers to the publication Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations: Application to CO2 Capture Technologies by V. Negri, Vàzquey D., Sales-Pardo, Marta, Guimerà, R. and Guillén-Gosàlbez, G. The training and testing dataset are used to generate the figures in the main manuscript and supplementary information.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Carlos Vila-Viçosa;Digital Annex for the following thesis: Vila-Viçosa, C. (2023). Natural History, Biogeography and Evolution of the Iberian white oak syngameon (Quercus L. Sect. Quercus). Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Portugal Abstract: The genus Quercus L. is one of the most diverse and important group of woody plants, particularly when considering that they are the trees that rule the Northern Hemisphere forests. Oaks have an intricate Biogeography that criss-crosses diverse climatic and edaphic gradients, encompassing a huge ambiguity in terms of species delimitation. Frequently, the taxonomic proposals brought by traditional Linnaean Botany are either insufficient or rather inflate the number of species and nomenclatural assignments, which are further diluted into inconsistent taxonomic ranks, varying from species to subspecies and varieties. The supremacy given to morphological characters that are inherently fragile and plastic, spread across the distribution areas of distinct lineages, may carry ambiguity on the identification and proper species delimitation. From the oaks that are distributed across the Western Palearctic region, the ones that are deciduous or brevi-deciduous present higher levels of ambiguity in terms of species number and their delimitation. This ambiguity is particularly strong in the circummediterranean region and in the transitional areas between the two major biogeographic Regions of the western Palearctic region, the Euro-Siberian and Mediterranean. This degree of uncertainty, which increases towards the Southern European Peninsulas, is amplified by the ease that the different species of oaks tend to hybridize among them. The present work provides a holistic framework that covers multiple areas, from the taxonomic and evolutive study of this genus, to biogeography and molecular characterization. Its major objective was to resolve the species delimitation of the Iberian deciduous and marcescent oaks and putative introgression among them, enhancing the available knowledge about species diversity, which can foster suitable species and forest conservation. A specific objective was to cross-reference the natural history revision and the different taxonomic treatments brought by distinct authors, with personal observations. These data were then incorporated into ecological modelling and molecular characterization, which in the end fed a newly updated taxonomic proposal. In Section A we obtained results from extensive field, herbaria, and literature review, updating the nomenclature of the Portuguese and western Mediterranean oaks. Section B was supported by Section A’s in-depth review and enabled finer species distribution models, nurturing both hindcast (since ca. 20 Kyr) and forecast (2070-2100) exercises of the range dynamics of Mediterranean oaks species. The study of past and future range shifts solved important pending biogeographic questions, especially related to past range-shifts. Such past-range shifts improved our knowledge on species responses to climate dynamics and allowed a better anticipation of future responses of range shifts driven by climate change. Section C encompassed the molecular characterization of Iberian white oak species and their hybrids, whose delimitation is often faltering when one intends to infer about species rank, or hypothesize about the participation of parent taxon in natural hybrid swarms. This work allowed us to solve the phylogenetic backbone of western Palearctic white oaks, suggesting a significant segregation of the Iberian pedunculate oaks and unveiling two subsections inside Section Quercus. These subsections are biogeographically well-segregated and present diverse levels of introgression among species. Results demonstrated the efficiency of RADSeq for rebuilding the reticulate phylogeny of the Eurasian white oaks, showcasing the significance of the Iberian Peninsula as a major hotspot for oak diversity. We implemented a circular approach to these methods, which retro-fed themselves in terms of insight generation, enabling a powerful strategy to solve the evolutionary history of this difficult groups of plants. We estimate that the reticulate historical biogeography of the western Palearctic white oaks deserves further scrutiny by adding vicariant oak populations from northern Africa, the Near East and southern European Peninsulas. Methods should again follow this similar additive and sequential process of adjoining deep Natural History examination, with extensive fieldwork in type populations and genome-wide molecular surveys, in order to solve this group of plants. With the present work, we were able to significantly improve on the depiction of the basic unit of Biodiversity (the Species), in the complex Quercus genus. We provided tools to enable further efforts for the conservation of the Mediterranean oak forests, which overwhelm one of the most important (and one of the most threatened) Biomes for plant conservation at the global scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7520510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 27 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7520510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | INCOVEREC| INCOVERRodero, María Del Rosario; Lebrero, Raquel; Serrano, Esteban; Lara, Enrique; Zouhayr Arbib; García-Encina, Pedro A.; Muñoz, Raúl;Excel document that contains the data of the article: ‘Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor’. This dataset shows the values obtained during the experimental period and it complements the corresponding article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2554816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2554816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:KNB Data Repository Authors: Balaguer-Benlliure, Victor; Roger, Moya; Johana, Gaitán-Alvarez;doi: 10.5063/ft8jgp
This data contents information about parental wood and charcoal characteristics of 16 tropical species growing in fast-growth condictions. The data details tha following characterist of parental wood: moisture content (PMC) and wood density (PWD). On the others hand the charcoal characteristics are: Density (CD), moisture content (CMC) and compression strength of charcoal, gross calorific value (GCV), ash and volatile matter and fixed carbon, Carbon (C), nitrogen (N), hydrogen (H), and oxygen (O) contents, C/N ratio, O/Cmol ratio and H/Cmol ratio. Besides it is presented FTIR spectra and the ignition temperature (Ti), the burnout temperature (Tf), the characteristic combustion index (S), the ignition index (Di), the time corresponding to the maximum combustion rate (tp), the ignition time (tig), and the average rate of combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Vidaller, Ixeia; Izagirre, Eñaut; del Río, Luis Mariano; Alonso-González, Esteban; +5 AuthorsVidaller, Ixeia; Izagirre, Eñaut; del Río, Luis Mariano; Alonso-González, Esteban; Rojas-Heredia, Francisco; Serrano, Enrique; Moreno, Ana; López-Moreno, Juan Ignacio; Revuelto, Jesús;The Aneto Glacier, is the largest glacier in the Pyrenees. Its shrinkage and wastage have been continuous in recent decades, and there are signs of accelerated melting in recent years. In this study, changes in the surface and ice thickness of the Aneto Glacier from 1981 to 2022 are investigated using historical aerial imagery, airborne LiDAR point clouds, and UAV imagery. A GPR survey conducted in 2020, combined with data from photogrammetric analyses, allowed us to reconstruct the current ice thickness and also the existing ice distribution in 1981 and 2011. Over the last 41 years, the total glaciated area has shrunk by 64.7% and the ice thickness has decreased, on average, by 30.5 m. The mean remaining ice thickness in autumn 2022 was 11.9 m, as against the mean thicknesses of 32.9 m, 19.2 m reconstructed for 1981 and 2011 and 15.0 m observed in 2020 respectively. The results demonstrate the critical situation of the glacier, with an imminent segmentation into two smaller ice bodies and no evidence of an accumulation zone. We also found that the occurrence of an extremely hot and dry year, as observed in the 2021–2022 season, leads to a drastic degradation of the glacier, posing a high risk to the persistence of the Aneto Glacier, a situation that could extend to the rest of the Pyrenean glaciers in a relatively short time.
ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7472185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7472185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Dias de Lima, Tayenne; F. Franco, John; Lezama, Fernando; Soares, Joao; Vale, Zita;Dataset of the paper: Joint optimal Allocation of Electric Vehicle Charging Stations and Renewable Energy Sources including CO2 emissions, Energy Informatics, 2021 (Presented in EIA 2021) Table 1 shows the operational scenarios, while the data for the substations is shown in Table 2. The demand data for each node is shown in Table 3. The parameters related to RES are shown in Table 4 and Table 5. The PV units have a nominal power capacity of 100 kW and are composed by 40 modules with 2.5 kW each. A maximum of 60 generators of this type can be installed in each node. The CO2 factor emission is defined as 𝜁𝑝𝑣=0.0584 ton/MWh. The candidate nodes for the installation of wind turbines, photovoltaic modules, and EV charging stations, are respectively: Ω𝑤𝑡 = {3, 4, 5, 9, 11, 14, 16, 19}, Ω𝑝𝑣 = {3, 4, 6, 8, 10, 13, 14, 15, 19}, and Ω𝑅 = {3, 6, 8,14, 15}. The power factors for PV and WT units are defined as 0.98 and 0.90, respectively. Table 6 presents the data for the two EV chargers alternatives. Finally, Fig.1 shows the initial system topology. R&D center: http://www.gecad.isep.ipp.pt/ and https://www.feis.unesp.br/#!/lapsee Project website: http://www.gecad.isep.ipp.pt/CENERGETIC/ This work has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE2020), under Project POCI-01-0145-FEDER- 028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017(CENERGETIC), CEECIND/02814/2017,and UIDB/000760/2020. The brazillan team (CENERGETIC partners) was supported by the Brazilian institutions Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq (process 313047/2017-0) and São Paulo Research Foundation (FAPESP), grants 2015/21972-6, 2017/02831-8, 2018/23617-7, and 20018/08008-4 (CENERGETIC research project).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4758354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4758354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 30 Apr 2024 SpainPublisher:Universidad de Zaragoza Authors: Cortesi, Nicola; Peña Angulo, Dhais;[ES] Se ha aplicado la clasificación de tipos de tiempo (Weather Types) de Jenkinson y Collison a la malla de presiones diaria del reanálisis NCAR-NCEP (periodo Enero 1950-Diciembre 2023) correspondiente a la Península Ibérica y Baleares. Por la resolución de dicha malla (2.5º x 2.5º lat/long) el total de nodos de control es de 12. Los tipos de tiempo resultantes incluyen los 8 direccionales puros, Anticiclónico y Ciclónico puro, y la combinación de 8 tipos híbridos entre las categorías previas. Los casos indeterminados fueron distribuidos proporcionalmente entre las clases previas. [EN] It has been applied the Jenkinson & Collison classification of Weather Types to Iberian Peninsula and Balearic Island by using the daily NCAR-NCEP grid surface pressure dataset (January-1950/December-2023). Grid resolution/2.5ºx2.5 lat/long) produces 12 series. Weather Types classification includes 8 directional pure, Anticyclonic and Cyclonic pure types, and combination of previous ones in the hybrid types. Non determines cases were spread homogeneously. [EN] WETYDAS contains 12 TXT archives localized by their coordinates in NCAR grid; information include year, month, day and code of weathee type. [ES] WETYDAS consta de 12 archivos formato TXT geolocalizados por sus coordenadas en la malla NCAR; la información incluye el año, mes y día, así como el código del tipo de tiempo resultante.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/16255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20350/digitalcsic/16255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Oct 2023Publisher:Dryad Authors: García-Barros, Enrique; Álamo, Mario; Romo, Helena;# sRGB Reflectances from Iberian butterflies [https://doi.org/10.5061/dryad.1g1jwsv0q](https://doi.org/10.5061/dryad.1g1jwsv0q) Data on wing reflectance (visible spectrum, mean standard RGB values (243.7= white, to 52= black) from 224 species of butterflies (Lepidoptera, Papilionoidea): 223 from the Iberian Peninsula and one (*C. webbianus*) from the Canaries. Average of male and female, sample size as indicated in column n. The data from *C. webbianus* and *C. marshalli* were not included in our analyses of reflectance. Text file, CSV format, columns delimited by periods, 225 rows (including headings) and 38 columns. Any means presented are weighted averages taking into account the areas of the parts involved. Wing reflectances refer to the parts of the wings exposed in a living butterfly (except FW\_AREA and HW\_AREA which are total wing surfaces). * **Ord**, row number (roughly a taxonomic arrangement) * **Species**, species name (abbreviated genus, contains a blank space, e.g., *Heteropterus morpheus*) * **N**, sample size * **FWL**, forewing length (mm) * **DFT**, reflectance, dorsal forewing * **DFp**, reflectance, dorsal forewing, proximal area * **DFd**, reflectance, dorsal forewing, distal area * **DHT**, reflectance, dorsal hindwing * **DHp**, reflectance, dorsal hindwing, proximal area * **DHd**, reflectance, dorsal hindwing, distal area * **DB**, reflectance, dorsal body area * **D(Tp+B)**, reflectance of the exposed dorsal body plus proximal wing surfaces * **DT**, reflectance of the dorsal areas (body plus whole wing) * **DTp**, reflectance of the dorsal, proximal wing areas * **DTd**, reflectance of the dorsal, distal wing areas * **VFT**, reflectance, ventral forewing * **VFp**, reflectance, ventral forewing, proximal area * **VFd**, reflectance, ventral forewing, distal area * **VHT**, reflectance, ventral hindwing * **VHp**, reflectance, ventral hindwing, proximal area * **VHd**, reflectance, ventral hindwing, distal area * **VB**, reflectance, ventral body area * **V(Tp+B)**, reflectance of the exposed ventral body plus proximal wing surfaces * **VT**, reflectance of the ventral areas (body plus whole wing) * **VTp**, reflectance of the ventral, proximal wing areas * **VTd**, reflectance of the ventral, distal wing areas * **Mean**, mean total reflectance (dorsal and ventral surfaces) * **p\_Mean**, mean reflectance of the proximal (dorsal and ventral) wing areas * **p\_Otimum**, mean reflectance of the proximal dorsal (for dorsal baskers) or ventral (for lateral basking species) wing areas. * **FW\_area**, total forewing area (mm2) * **HW\_area**, total hindwing area (mm2) * **T\_Mean\_Iberia\_10km**, Iberian mean species temperature, Centigrade degrees, 10 x 10 km resolution * **P\_Mean\_Iberia\_10km**, mean species annual precipitation, mm, Iberian Peninsula, 10 x 10 km resolution * **T\_Mean\_Ibera\_50km**, mean species temperature, Centigrade degrees, Iberian Peninsula, 50 x 50 km resolution * **P\_Mean\_Iberia\_50km**, mean species annual precipitation, mm, Iberian Peninsula, 50 x 50 km resolution Data on wing reflectance (visible spectrum, mean standard RGB values (243.7= white, to 52= black) from 224 species of butterflies (Lepidoptera, Papilionoidea): 223 from the Iberian Peninsula and one (Cyclyrius webbianus) from the Canary Islands. Average of male and female, sample size as indicated in column n. The data from C. webbianus and Cacyreus marshalli are provided although these species were not included in our analyses of reflectance. The data were measured from digital images of set (collection) specimens taken in fixed conditions, with grey (average RGB) values standardized a posteriori to fit the scale white= 243.7= white, to black= 52. The data set includes the mean length of the forewing (mm) and the total areas (mm2) of the fore and hind wings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1g1jwsv0q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1g1jwsv0q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Markus Stoffel; Daniel G. Trappmann; Mattias I. Coullie; Juan A. Ballesteros-Cánovas; +1 AuthorsMarkus Stoffel; Daniel G. Trappmann; Mattias I. Coullie; Juan A. Ballesteros-Cánovas; Christophe Corona;This readme file provides all data and R codes used to perform the analyses presented in Figs. 2-4 of the main text and Supplementary Information Figures S1-S2-S3. FIGURE 2 - Seasonally_dated_GDs.txt: Contains information on the timing (Season) of rockfall (GD) in a given tree (Id) and a given year (yr) over the past 100 years. Inv refers to the operators which analyzed growth disturbances in the tree-ring series. Lat / Long refers to the position of the tree in CH1903/ Swiss Grid projection. Intensity (1-4) refers to (1), intermediate (2) and strong (3) GD. Intensity 4 was attributed to injuries (I). Only the 408 GD rated 3 (strong TRD) and 4 (injuries) were used in Fig. 2. Acronyms used for Response_type read as follows: TRD: Tangential rows of traumatic resin ducts; I: Injuries. Acronyms used for Season refer to Dormancy (1_D), early (2_EE), middle (3_ME) and late (4_LE) earlywood, whereas a GD found in the latewood was attributed to either the early (5_EL) or late (6_LL) latewood. - Trends_in_seasonality_R1.R: The data contained in "Seasonally_dated_GDs" were processed with the R script "Trends_in_Seasonality.R". This seasonal trend analysis code is inspired by work published by Schlögl et al. (2021; https://doi.org/10.1016/j.crm.2021.100294) and Heiser et al. (2022; https://doi.org/10.1029/2011JF002262). FIGURE 3-4-S1 - Tasch_GD.txt: Contains the raw data on rockfall impacts (GD) in a given year (yr) as found in all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - Rockfall_frequency_climate.R: The data contained in "Tasch_GD.txt" were processed with the R script "Rockfall_frequency_climate.R". - The temperature (Imfeld23_tmp.txt) and precipitation (Imfeld23_prc.txt) data used in Fig. 3 are from the Imfeld et al. 2023 (10.5194/cp-19-703-2023) gridded dataset (1x1 km lat/long) and were extracted at the grid point centered on the Täschgufer site. - The script set with temperature series enables to compute Fig. 4 (l.149:216) and Fig. 3 (l. 216:330); the script set with precipitation series enables to compute Fig. S1 FIGURE S2 - Tasch_GD.txt: Contains the raw data on rockfall impacts (GD) at the Täschgufer site in a given year (yr) as found in all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - Rockfall_frequency_borehole.R: is adapted from "Rockfall_frequency_climate.R" to work with the borehole dates. - Corvatsch0_6R1: Contains the Corvatsch borehole temperature series (2000-2020, 0.6m depth) (Hoelzle, M. et al. https://doi.org/10.5194/essd-14-1531-2022, 2022). FIGURE S3 - Plattje_GD.txt: Contains the raw data on rockfall impacts (GD) at the Plattje site in a given year (yr) as found all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - - Rockfall_frequency_climate_Plattje.R: The data contained in "Plattje_GD.txt" were processed with the R script "Rockfall_frequency_climate_Plattje.R". - The temperature (Imfeld23_tmp_Plattje.txt) and precipitation (Imfeld23_prc_Plattje.txt) data used in Fig. 3 are from Imfeld et al. 2023 (10.5194/cp-19-703-2023) gridded dataset (1x1 km lat/long) and were extracted at the grid point centered on the Plattje site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7925647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7925647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Negri, Valentina; Vázquez, Daniel; Sales-Pardo, Marta; Guimerà, Roger; Guillén-Gosálbez, Gonzalo;Dataset of process simulations results of the natural gas sweetening and flue gas treatment (first and second sheet, respectively as indicated by the sheet name in the .xlsx file). The dataset refers to the publication Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations: Application to CO2 Capture Technologies by V. Negri, Vàzquey D., Sales-Pardo, Marta, Guimerà, R. and Guillén-Gosàlbez, G. The training and testing dataset are used to generate the figures in the main manuscript and supplementary information.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Carlos Vila-Viçosa;Digital Annex for the following thesis: Vila-Viçosa, C. (2023). Natural History, Biogeography and Evolution of the Iberian white oak syngameon (Quercus L. Sect. Quercus). Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Portugal Abstract: The genus Quercus L. is one of the most diverse and important group of woody plants, particularly when considering that they are the trees that rule the Northern Hemisphere forests. Oaks have an intricate Biogeography that criss-crosses diverse climatic and edaphic gradients, encompassing a huge ambiguity in terms of species delimitation. Frequently, the taxonomic proposals brought by traditional Linnaean Botany are either insufficient or rather inflate the number of species and nomenclatural assignments, which are further diluted into inconsistent taxonomic ranks, varying from species to subspecies and varieties. The supremacy given to morphological characters that are inherently fragile and plastic, spread across the distribution areas of distinct lineages, may carry ambiguity on the identification and proper species delimitation. From the oaks that are distributed across the Western Palearctic region, the ones that are deciduous or brevi-deciduous present higher levels of ambiguity in terms of species number and their delimitation. This ambiguity is particularly strong in the circummediterranean region and in the transitional areas between the two major biogeographic Regions of the western Palearctic region, the Euro-Siberian and Mediterranean. This degree of uncertainty, which increases towards the Southern European Peninsulas, is amplified by the ease that the different species of oaks tend to hybridize among them. The present work provides a holistic framework that covers multiple areas, from the taxonomic and evolutive study of this genus, to biogeography and molecular characterization. Its major objective was to resolve the species delimitation of the Iberian deciduous and marcescent oaks and putative introgression among them, enhancing the available knowledge about species diversity, which can foster suitable species and forest conservation. A specific objective was to cross-reference the natural history revision and the different taxonomic treatments brought by distinct authors, with personal observations. These data were then incorporated into ecological modelling and molecular characterization, which in the end fed a newly updated taxonomic proposal. In Section A we obtained results from extensive field, herbaria, and literature review, updating the nomenclature of the Portuguese and western Mediterranean oaks. Section B was supported by Section A’s in-depth review and enabled finer species distribution models, nurturing both hindcast (since ca. 20 Kyr) and forecast (2070-2100) exercises of the range dynamics of Mediterranean oaks species. The study of past and future range shifts solved important pending biogeographic questions, especially related to past range-shifts. Such past-range shifts improved our knowledge on species responses to climate dynamics and allowed a better anticipation of future responses of range shifts driven by climate change. Section C encompassed the molecular characterization of Iberian white oak species and their hybrids, whose delimitation is often faltering when one intends to infer about species rank, or hypothesize about the participation of parent taxon in natural hybrid swarms. This work allowed us to solve the phylogenetic backbone of western Palearctic white oaks, suggesting a significant segregation of the Iberian pedunculate oaks and unveiling two subsections inside Section Quercus. These subsections are biogeographically well-segregated and present diverse levels of introgression among species. Results demonstrated the efficiency of RADSeq for rebuilding the reticulate phylogeny of the Eurasian white oaks, showcasing the significance of the Iberian Peninsula as a major hotspot for oak diversity. We implemented a circular approach to these methods, which retro-fed themselves in terms of insight generation, enabling a powerful strategy to solve the evolutionary history of this difficult groups of plants. We estimate that the reticulate historical biogeography of the western Palearctic white oaks deserves further scrutiny by adding vicariant oak populations from northern Africa, the Near East and southern European Peninsulas. Methods should again follow this similar additive and sequential process of adjoining deep Natural History examination, with extensive fieldwork in type populations and genome-wide molecular surveys, in order to solve this group of plants. With the present work, we were able to significantly improve on the depiction of the basic unit of Biodiversity (the Species), in the complex Quercus genus. We provided tools to enable further efforts for the conservation of the Mediterranean oak forests, which overwhelm one of the most important (and one of the most threatened) Biomes for plant conservation at the global scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7520510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 53visibility views 53 download downloads 27 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7520510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | INCOVEREC| INCOVERRodero, María Del Rosario; Lebrero, Raquel; Serrano, Esteban; Lara, Enrique; Zouhayr Arbib; García-Encina, Pedro A.; Muñoz, Raúl;Excel document that contains the data of the article: ‘Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor’. This dataset shows the values obtained during the experimental period and it complements the corresponding article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2554816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2554816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:KNB Data Repository Authors: Balaguer-Benlliure, Victor; Roger, Moya; Johana, Gaitán-Alvarez;doi: 10.5063/ft8jgp
This data contents information about parental wood and charcoal characteristics of 16 tropical species growing in fast-growth condictions. The data details tha following characterist of parental wood: moisture content (PMC) and wood density (PWD). On the others hand the charcoal characteristics are: Density (CD), moisture content (CMC) and compression strength of charcoal, gross calorific value (GCV), ash and volatile matter and fixed carbon, Carbon (C), nitrogen (N), hydrogen (H), and oxygen (O) contents, C/N ratio, O/Cmol ratio and H/Cmol ratio. Besides it is presented FTIR spectra and the ignition temperature (Ti), the burnout temperature (Tf), the characteristic combustion index (S), the ignition index (Di), the time corresponding to the maximum combustion rate (tp), the ignition time (tig), and the average rate of combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5063/ft8jgp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu