- home
- Search
- Energy Research
- Open Access
- Embargo
- ES
- ZENODO
- Energy Research
- Open Access
- Embargo
- ES
- ZENODO
Research data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:UKRI | CoccoTrait: Revealing Coc...UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsde Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; Sheward, Rosie M.; Johnson, Roberta; Hagino, Kyoko; Ziveri, Patrizia; Wolf, Levi J.;CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Vidaller, Ixeia; Izagirre, Eñaut; del Río, Luis Mariano; Alonso-González, Esteban; +5 AuthorsVidaller, Ixeia; Izagirre, Eñaut; del Río, Luis Mariano; Alonso-González, Esteban; Rojas-Heredia, Francisco; Serrano, Enrique; Moreno, Ana; López-Moreno, Juan Ignacio; Revuelto, Jesús;The Aneto Glacier, is the largest glacier in the Pyrenees. Its shrinkage and wastage have been continuous in recent decades, and there are signs of accelerated melting in recent years. In this study, changes in the surface and ice thickness of the Aneto Glacier from 1981 to 2022 are investigated using historical aerial imagery, airborne LiDAR point clouds, and UAV imagery. A GPR survey conducted in 2020, combined with data from photogrammetric analyses, allowed us to reconstruct the current ice thickness and also the existing ice distribution in 1981 and 2011. Over the last 41 years, the total glaciated area has shrunk by 64.7% and the ice thickness has decreased, on average, by 30.5 m. The mean remaining ice thickness in autumn 2022 was 11.9 m, as against the mean thicknesses of 32.9 m, 19.2 m reconstructed for 1981 and 2011 and 15.0 m observed in 2020 respectively. The results demonstrate the critical situation of the glacier, with an imminent segmentation into two smaller ice bodies and no evidence of an accumulation zone. We also found that the occurrence of an extremely hot and dry year, as observed in the 2021–2022 season, leads to a drastic degradation of the glacier, posing a high risk to the persistence of the Aneto Glacier, a situation that could extend to the rest of the Pyrenean glaciers in a relatively short time.
ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7472185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7472185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Oct 2023Publisher:Dryad Authors: García-Barros, Enrique; Álamo, Mario; Romo, Helena;# sRGB Reflectances from Iberian butterflies [https://doi.org/10.5061/dryad.1g1jwsv0q](https://doi.org/10.5061/dryad.1g1jwsv0q) Data on wing reflectance (visible spectrum, mean standard RGB values (243.7= white, to 52= black) from 224 species of butterflies (Lepidoptera, Papilionoidea): 223 from the Iberian Peninsula and one (*C. webbianus*) from the Canaries. Average of male and female, sample size as indicated in column n. The data from *C. webbianus* and *C. marshalli* were not included in our analyses of reflectance. Text file, CSV format, columns delimited by periods, 225 rows (including headings) and 38 columns. Any means presented are weighted averages taking into account the areas of the parts involved. Wing reflectances refer to the parts of the wings exposed in a living butterfly (except FW\_AREA and HW\_AREA which are total wing surfaces). * **Ord**, row number (roughly a taxonomic arrangement) * **Species**, species name (abbreviated genus, contains a blank space, e.g., *Heteropterus morpheus*) * **N**, sample size * **FWL**, forewing length (mm) * **DFT**, reflectance, dorsal forewing * **DFp**, reflectance, dorsal forewing, proximal area * **DFd**, reflectance, dorsal forewing, distal area * **DHT**, reflectance, dorsal hindwing * **DHp**, reflectance, dorsal hindwing, proximal area * **DHd**, reflectance, dorsal hindwing, distal area * **DB**, reflectance, dorsal body area * **D(Tp+B)**, reflectance of the exposed dorsal body plus proximal wing surfaces * **DT**, reflectance of the dorsal areas (body plus whole wing) * **DTp**, reflectance of the dorsal, proximal wing areas * **DTd**, reflectance of the dorsal, distal wing areas * **VFT**, reflectance, ventral forewing * **VFp**, reflectance, ventral forewing, proximal area * **VFd**, reflectance, ventral forewing, distal area * **VHT**, reflectance, ventral hindwing * **VHp**, reflectance, ventral hindwing, proximal area * **VHd**, reflectance, ventral hindwing, distal area * **VB**, reflectance, ventral body area * **V(Tp+B)**, reflectance of the exposed ventral body plus proximal wing surfaces * **VT**, reflectance of the ventral areas (body plus whole wing) * **VTp**, reflectance of the ventral, proximal wing areas * **VTd**, reflectance of the ventral, distal wing areas * **Mean**, mean total reflectance (dorsal and ventral surfaces) * **p\_Mean**, mean reflectance of the proximal (dorsal and ventral) wing areas * **p\_Otimum**, mean reflectance of the proximal dorsal (for dorsal baskers) or ventral (for lateral basking species) wing areas. * **FW\_area**, total forewing area (mm2) * **HW\_area**, total hindwing area (mm2) * **T\_Mean\_Iberia\_10km**, Iberian mean species temperature, Centigrade degrees, 10 x 10 km resolution * **P\_Mean\_Iberia\_10km**, mean species annual precipitation, mm, Iberian Peninsula, 10 x 10 km resolution * **T\_Mean\_Ibera\_50km**, mean species temperature, Centigrade degrees, Iberian Peninsula, 50 x 50 km resolution * **P\_Mean\_Iberia\_50km**, mean species annual precipitation, mm, Iberian Peninsula, 50 x 50 km resolution Data on wing reflectance (visible spectrum, mean standard RGB values (243.7= white, to 52= black) from 224 species of butterflies (Lepidoptera, Papilionoidea): 223 from the Iberian Peninsula and one (Cyclyrius webbianus) from the Canary Islands. Average of male and female, sample size as indicated in column n. The data from C. webbianus and Cacyreus marshalli are provided although these species were not included in our analyses of reflectance. The data were measured from digital images of set (collection) specimens taken in fixed conditions, with grey (average RGB) values standardized a posteriori to fit the scale white= 243.7= white, to black= 52. The data set includes the mean length of the forewing (mm) and the total areas (mm2) of the fore and hind wings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1g1jwsv0q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1g1jwsv0q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Markus Stoffel; Daniel G. Trappmann; Mattias I. Coullie; Juan A. Ballesteros-Cánovas; +1 AuthorsMarkus Stoffel; Daniel G. Trappmann; Mattias I. Coullie; Juan A. Ballesteros-Cánovas; Christophe Corona;This readme file provides all data and R codes used to perform the analyses presented in Figs. 2-4 of the main text and Supplementary Information Figures S1-S2-S3. FIGURE 2 - Seasonally_dated_GDs.txt: Contains information on the timing (Season) of rockfall (GD) in a given tree (Id) and a given year (yr) over the past 100 years. Inv refers to the operators which analyzed growth disturbances in the tree-ring series. Lat / Long refers to the position of the tree in CH1903/ Swiss Grid projection. Intensity (1-4) refers to (1), intermediate (2) and strong (3) GD. Intensity 4 was attributed to injuries (I). Only the 408 GD rated 3 (strong TRD) and 4 (injuries) were used in Fig. 2. Acronyms used for Response_type read as follows: TRD: Tangential rows of traumatic resin ducts; I: Injuries. Acronyms used for Season refer to Dormancy (1_D), early (2_EE), middle (3_ME) and late (4_LE) earlywood, whereas a GD found in the latewood was attributed to either the early (5_EL) or late (6_LL) latewood. - Trends_in_seasonality_R1.R: The data contained in "Seasonally_dated_GDs" were processed with the R script "Trends_in_Seasonality.R". This seasonal trend analysis code is inspired by work published by Schlögl et al. (2021; https://doi.org/10.1016/j.crm.2021.100294) and Heiser et al. (2022; https://doi.org/10.1029/2011JF002262). FIGURE 3-4-S1 - Tasch_GD.txt: Contains the raw data on rockfall impacts (GD) in a given year (yr) as found in all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - Rockfall_frequency_climate.R: The data contained in "Tasch_GD.txt" were processed with the R script "Rockfall_frequency_climate.R". - The temperature (Imfeld23_tmp.txt) and precipitation (Imfeld23_prc.txt) data used in Fig. 3 are from the Imfeld et al. 2023 (10.5194/cp-19-703-2023) gridded dataset (1x1 km lat/long) and were extracted at the grid point centered on the Täschgufer site. - The script set with temperature series enables to compute Fig. 4 (l.149:216) and Fig. 3 (l. 216:330); the script set with precipitation series enables to compute Fig. S1 FIGURE S2 - Tasch_GD.txt: Contains the raw data on rockfall impacts (GD) at the Täschgufer site in a given year (yr) as found in all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - Rockfall_frequency_borehole.R: is adapted from "Rockfall_frequency_climate.R" to work with the borehole dates. - Corvatsch0_6R1: Contains the Corvatsch borehole temperature series (2000-2020, 0.6m depth) (Hoelzle, M. et al. https://doi.org/10.5194/essd-14-1531-2022, 2022). FIGURE S3 - Plattje_GD.txt: Contains the raw data on rockfall impacts (GD) at the Plattje site in a given year (yr) as found all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - - Rockfall_frequency_climate_Plattje.R: The data contained in "Plattje_GD.txt" were processed with the R script "Rockfall_frequency_climate_Plattje.R". - The temperature (Imfeld23_tmp_Plattje.txt) and precipitation (Imfeld23_prc_Plattje.txt) data used in Fig. 3 are from Imfeld et al. 2023 (10.5194/cp-19-703-2023) gridded dataset (1x1 km lat/long) and were extracted at the grid point centered on the Plattje site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7925647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7925647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Negri, Valentina; Vázquez, Daniel; Sales-Pardo, Marta; Guimerà, Roger; Guillén-Gosálbez, Gonzalo;Dataset of process simulations results of the natural gas sweetening and flue gas treatment (first and second sheet, respectively as indicated by the sheet name in the .xlsx file). The dataset refers to the publication Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations: Application to CO2 Capture Technologies by V. Negri, Vàzquey D., Sales-Pardo, Marta, Guimerà, R. and Guillén-Gosàlbez, G. The training and testing dataset are used to generate the figures in the main manuscript and supplementary information.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Campos-Carriedo, Felipe; Iribarren, Diego; Calvo-Rodríguez, Fernando; García-Díaz, Álvaro; +1 AuthorsCampos-Carriedo, Felipe; Iribarren, Diego; Calvo-Rodríguez, Fernando; García-Díaz, Álvaro; Dufour, Javier;As the European Union embarks on the energy transition, several challenges need to be faced to ensure that this shift is conducted from a holistic perspective that avoids burden-shifting across sustainability dimensions. One of the main concerns refers to the future availability of materials that clean technologies require. Critical rawmaterial assessment serves to guide the management of such mineral resources in a new paradigm of increasing demand. This work delves into the methodological fundamentals of several product-level criticality indicators in order to discuss their implications within the context of the ecodesign of two hydrogen-related products. Overall, criticality is advised to be assessed making use of several indicators. In the case study of a proton exchange membrane fuel cell stack, the combined interpretation of criticality indicators leads to identifying platinum as the main hotspot, while yttrium and lanthanum account for the most relevant criticality contributions in the casestudy of a solid oxide electrolysis cell stack. The authors would like to thank Gonzalo Puig-Samper and Eleonora Bargiacchi for the insights provided. This work has been carried out within the framework of the projects eGHOST and SH2E. These projects have received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreements No. 101007166 and 101007163, respectively. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research. The contents of this document are provided “AS IS”. It reflects only the authors’ view and the Joint Undertaking is not responsible for any use that may be made of the information it contains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13141085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13141085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | INCOVEREC| INCOVERRodero, María Del Rosario; Lebrero, Raquel; Serrano, Esteban; Lara, Enrique; Zouhayr Arbib; García-Encina, Pedro A.; Muñoz, Raúl;Excel document that contains the data of the article: ‘Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor’. This dataset shows the values obtained during the experimental period and it complements the corresponding article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2554816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2554816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Chunlüe Zhou; Cesar Azorin-Molina; Erik Engström; Lorenzo Minola; Lennart Wern; Sverker Hellström; Jessika Lönn; Deliang Chen;Creating a century-long homogenized near-surface wind speed (WS) observation dataset is essential to improve our knowledge about the uncertainty and causes of WS stilling and recovery. We rescued paper-based WS records dating back to the 1920s at 13 stations in Sweden and established a four-step homogenization procedure to generate the first 10-member centennial homogenized WS dataset (HomogWS-se) for community uses among climatology, ecology, hydrology and energy industry. HomogWS-se can be used to study the WS variability and change, assess climate reanalysis, and constrain climate simulations for better future projection of changes in the WS and wind energy potential. HomogWS-se contains 13 individual text files with 10-member century-long homogenized monthly WS series, as well as the member-mean series. {"references": ["Zhou, C., C. Azorin-Molina, E. Engstr\u00f6m, L. Wern, S. Hellstr\u00f6m, and D. Chen, 2022: A century-long homogenized dataset of near-surface wind speed observations since 1925 rescued in Sweden. Earth Syst. Sci. Data, 1-24, 10.5194/essd-2022-29."]}
ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5850263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5850263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | GRECOEC| GRECOAskins, Stephen; Nardin, Gaël; Ackermann, Mathieu; Gerlich, Florian; Dominguez, César;Dataset from the outdoor characterization of a B Series module from Insolight at the rooftop of the Instituto de Energía Solar - Universidad Politécnica de Madrid. These are measurements of a module of the same type as “Outdoor monitoring data of an Insolight B-series module - CPV sub-module” however, in the previous measurements the module was mounted on a two-axis tracker to benchmark its performance, while in these measurements, the module’s integrated planar micro tracking system was used. This data was presented at IEEE PVSC 46 in June 2019 in Chicago. See preprint of conference article. Monitoring campaign: Location: 40.453°N, -3.727°E. Instituto de Energía Solar, Universidad Politécnica de Madrid. 28040 Madrid, Spain. Fixed Mounting Angle: Due South, Slope Angle = 30° Starting date: 30 May 2019 End date: 14 June 2018 Description of data file: Data files format: single comma-separated text file; headers in first row; all of the following parameters; order below is the same as order in file Measurement time: the vector of times represents the times at which the Insolight module firmware sampled the current values of the III-V and Si outputs (measured simultaneously). Date Time (dd/mmm/yyyy HH:MM:SS): time in CEST / UTC+2 Measured meteorological data: these values are measured directly by the IES meteorological station with 1-minute resolution. They have been re-interpolated to match the measurement times. DNI (W/m2): direct normal irradiance as measured by a Normal Incidence Pyrheliometer from Eppley on a solar tracker. Spectral Range: 250-3000 nm. Field of view: 5° DNI_Top (W/m2): equivalent direct normal irradiance as measured by a top component cell of a lattice-matched III-V triple-junction cell in the ICU-3J35 Triband Spectro-heliometer from Solar Added Value on a solar tracker. Spectral range: 300 - 680 nm. Field of view: 5.7º DNI_Mid (W/m2): equivalent direct normal irradiance as measured by a middle component cell of a lattice-matched III-V triple-junction cell in the ICU-3J35 Triband Spectro-heliometer from Solar Added Value on a solar tracker. Spectral range: 680 - 900 nm. Field of view: 5.7º GNI (W/m2): global normal irradiance at the aperture plane as measured with a pyranometer on a solar tracker. Spectral range: 305 – 2800 nm. G(41°) (W/m2): Global Inclined Irradiance as measured with a pyranometer mounted facing due south and at a slope angle of 41° (near to local latitude). Spectral range: 305 – 2800 nm. T_Amb (°C): ambient temperature Wind Speed (m/s): wind speed Wind Dir. (m/s): wind direction Processed meteorological data: these values are calculated from the above meteorological data and provided for convenience DII (W/m2): Direct Inclined (plane of array) Irradiance corresponding to the module slope angle has been calculated using the sun’s known declination and hour angle from the time. GII (W/m2): The Global Inclined (plane of array) Irradiance is calculated by first calculating the DII(41°), that is the DII corresponding to the G(41°) measurement, and finding the Diffuse Inclined Irradiance Diff(41°) = G(41°) – DII(41°). It is assumed that the Diffuse Inclined Irradiance at 41° and 30° is equal, so GII = DII + Diff(41°). SMR_Top_Mid (n.d.): “Spectral Matching Ratio”. This is the ratio between DNI_Top and DNI_Mid. A value of unity indicates a spectrum that is equivalent to AM1.5D with regards to the energy balance between top and middle subcells. Measured module data: The module was placed in a short-ciruit condition and allowed to track using its integrated tracking system. The short circuit current was measured using shut resistors and integrated A/D channels. This hybrid module features both III-V micro cells (under concentration, with planar microtracking) and large area silicon solar cells (for diffuse capture). ISC_measured_IIIV (A): ISC_measured_Si (A) Estimated module data: As is explained in the IEEE PVSC 46 manuscript (see Preprint) the following values are estimated using the previously listed measured data. T_Backplane (°C) PMP_estimated_IIIV (W) PMP_estimated_Si (W)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3346823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3346823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:UKRI | CoccoTrait: Revealing Coc...UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsde Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; Sheward, Rosie M.; Johnson, Roberta; Hagino, Kyoko; Ziveri, Patrizia; Wolf, Levi J.;CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Vidaller, Ixeia; Izagirre, Eñaut; del Río, Luis Mariano; Alonso-González, Esteban; +5 AuthorsVidaller, Ixeia; Izagirre, Eñaut; del Río, Luis Mariano; Alonso-González, Esteban; Rojas-Heredia, Francisco; Serrano, Enrique; Moreno, Ana; López-Moreno, Juan Ignacio; Revuelto, Jesús;The Aneto Glacier, is the largest glacier in the Pyrenees. Its shrinkage and wastage have been continuous in recent decades, and there are signs of accelerated melting in recent years. In this study, changes in the surface and ice thickness of the Aneto Glacier from 1981 to 2022 are investigated using historical aerial imagery, airborne LiDAR point clouds, and UAV imagery. A GPR survey conducted in 2020, combined with data from photogrammetric analyses, allowed us to reconstruct the current ice thickness and also the existing ice distribution in 1981 and 2011. Over the last 41 years, the total glaciated area has shrunk by 64.7% and the ice thickness has decreased, on average, by 30.5 m. The mean remaining ice thickness in autumn 2022 was 11.9 m, as against the mean thicknesses of 32.9 m, 19.2 m reconstructed for 1981 and 2011 and 15.0 m observed in 2020 respectively. The results demonstrate the critical situation of the glacier, with an imminent segmentation into two smaller ice bodies and no evidence of an accumulation zone. We also found that the occurrence of an extremely hot and dry year, as observed in the 2021–2022 season, leads to a drastic degradation of the glacier, posing a high risk to the persistence of the Aneto Glacier, a situation that could extend to the rest of the Pyrenean glaciers in a relatively short time.
ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7472185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7472185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Oct 2023Publisher:Dryad Authors: García-Barros, Enrique; Álamo, Mario; Romo, Helena;# sRGB Reflectances from Iberian butterflies [https://doi.org/10.5061/dryad.1g1jwsv0q](https://doi.org/10.5061/dryad.1g1jwsv0q) Data on wing reflectance (visible spectrum, mean standard RGB values (243.7= white, to 52= black) from 224 species of butterflies (Lepidoptera, Papilionoidea): 223 from the Iberian Peninsula and one (*C. webbianus*) from the Canaries. Average of male and female, sample size as indicated in column n. The data from *C. webbianus* and *C. marshalli* were not included in our analyses of reflectance. Text file, CSV format, columns delimited by periods, 225 rows (including headings) and 38 columns. Any means presented are weighted averages taking into account the areas of the parts involved. Wing reflectances refer to the parts of the wings exposed in a living butterfly (except FW\_AREA and HW\_AREA which are total wing surfaces). * **Ord**, row number (roughly a taxonomic arrangement) * **Species**, species name (abbreviated genus, contains a blank space, e.g., *Heteropterus morpheus*) * **N**, sample size * **FWL**, forewing length (mm) * **DFT**, reflectance, dorsal forewing * **DFp**, reflectance, dorsal forewing, proximal area * **DFd**, reflectance, dorsal forewing, distal area * **DHT**, reflectance, dorsal hindwing * **DHp**, reflectance, dorsal hindwing, proximal area * **DHd**, reflectance, dorsal hindwing, distal area * **DB**, reflectance, dorsal body area * **D(Tp+B)**, reflectance of the exposed dorsal body plus proximal wing surfaces * **DT**, reflectance of the dorsal areas (body plus whole wing) * **DTp**, reflectance of the dorsal, proximal wing areas * **DTd**, reflectance of the dorsal, distal wing areas * **VFT**, reflectance, ventral forewing * **VFp**, reflectance, ventral forewing, proximal area * **VFd**, reflectance, ventral forewing, distal area * **VHT**, reflectance, ventral hindwing * **VHp**, reflectance, ventral hindwing, proximal area * **VHd**, reflectance, ventral hindwing, distal area * **VB**, reflectance, ventral body area * **V(Tp+B)**, reflectance of the exposed ventral body plus proximal wing surfaces * **VT**, reflectance of the ventral areas (body plus whole wing) * **VTp**, reflectance of the ventral, proximal wing areas * **VTd**, reflectance of the ventral, distal wing areas * **Mean**, mean total reflectance (dorsal and ventral surfaces) * **p\_Mean**, mean reflectance of the proximal (dorsal and ventral) wing areas * **p\_Otimum**, mean reflectance of the proximal dorsal (for dorsal baskers) or ventral (for lateral basking species) wing areas. * **FW\_area**, total forewing area (mm2) * **HW\_area**, total hindwing area (mm2) * **T\_Mean\_Iberia\_10km**, Iberian mean species temperature, Centigrade degrees, 10 x 10 km resolution * **P\_Mean\_Iberia\_10km**, mean species annual precipitation, mm, Iberian Peninsula, 10 x 10 km resolution * **T\_Mean\_Ibera\_50km**, mean species temperature, Centigrade degrees, Iberian Peninsula, 50 x 50 km resolution * **P\_Mean\_Iberia\_50km**, mean species annual precipitation, mm, Iberian Peninsula, 50 x 50 km resolution Data on wing reflectance (visible spectrum, mean standard RGB values (243.7= white, to 52= black) from 224 species of butterflies (Lepidoptera, Papilionoidea): 223 from the Iberian Peninsula and one (Cyclyrius webbianus) from the Canary Islands. Average of male and female, sample size as indicated in column n. The data from C. webbianus and Cacyreus marshalli are provided although these species were not included in our analyses of reflectance. The data were measured from digital images of set (collection) specimens taken in fixed conditions, with grey (average RGB) values standardized a posteriori to fit the scale white= 243.7= white, to black= 52. The data set includes the mean length of the forewing (mm) and the total areas (mm2) of the fore and hind wings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1g1jwsv0q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1g1jwsv0q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Markus Stoffel; Daniel G. Trappmann; Mattias I. Coullie; Juan A. Ballesteros-Cánovas; +1 AuthorsMarkus Stoffel; Daniel G. Trappmann; Mattias I. Coullie; Juan A. Ballesteros-Cánovas; Christophe Corona;This readme file provides all data and R codes used to perform the analyses presented in Figs. 2-4 of the main text and Supplementary Information Figures S1-S2-S3. FIGURE 2 - Seasonally_dated_GDs.txt: Contains information on the timing (Season) of rockfall (GD) in a given tree (Id) and a given year (yr) over the past 100 years. Inv refers to the operators which analyzed growth disturbances in the tree-ring series. Lat / Long refers to the position of the tree in CH1903/ Swiss Grid projection. Intensity (1-4) refers to (1), intermediate (2) and strong (3) GD. Intensity 4 was attributed to injuries (I). Only the 408 GD rated 3 (strong TRD) and 4 (injuries) were used in Fig. 2. Acronyms used for Response_type read as follows: TRD: Tangential rows of traumatic resin ducts; I: Injuries. Acronyms used for Season refer to Dormancy (1_D), early (2_EE), middle (3_ME) and late (4_LE) earlywood, whereas a GD found in the latewood was attributed to either the early (5_EL) or late (6_LL) latewood. - Trends_in_seasonality_R1.R: The data contained in "Seasonally_dated_GDs" were processed with the R script "Trends_in_Seasonality.R". This seasonal trend analysis code is inspired by work published by Schlögl et al. (2021; https://doi.org/10.1016/j.crm.2021.100294) and Heiser et al. (2022; https://doi.org/10.1029/2011JF002262). FIGURE 3-4-S1 - Tasch_GD.txt: Contains the raw data on rockfall impacts (GD) in a given year (yr) as found in all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - Rockfall_frequency_climate.R: The data contained in "Tasch_GD.txt" were processed with the R script "Rockfall_frequency_climate.R". - The temperature (Imfeld23_tmp.txt) and precipitation (Imfeld23_prc.txt) data used in Fig. 3 are from the Imfeld et al. 2023 (10.5194/cp-19-703-2023) gridded dataset (1x1 km lat/long) and were extracted at the grid point centered on the Täschgufer site. - The script set with temperature series enables to compute Fig. 4 (l.149:216) and Fig. 3 (l. 216:330); the script set with precipitation series enables to compute Fig. S1 FIGURE S2 - Tasch_GD.txt: Contains the raw data on rockfall impacts (GD) at the Täschgufer site in a given year (yr) as found in all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - Rockfall_frequency_borehole.R: is adapted from "Rockfall_frequency_climate.R" to work with the borehole dates. - Corvatsch0_6R1: Contains the Corvatsch borehole temperature series (2000-2020, 0.6m depth) (Hoelzle, M. et al. https://doi.org/10.5194/essd-14-1531-2022, 2022). FIGURE S3 - Plattje_GD.txt: Contains the raw data on rockfall impacts (GD) at the Plattje site in a given year (yr) as found all trees available in that same year (Sample_depth) as well as the cumulated diameter at breast height (cumulated_DBH) of all trees present in that same year. - - Rockfall_frequency_climate_Plattje.R: The data contained in "Plattje_GD.txt" were processed with the R script "Rockfall_frequency_climate_Plattje.R". - The temperature (Imfeld23_tmp_Plattje.txt) and precipitation (Imfeld23_prc_Plattje.txt) data used in Fig. 3 are from Imfeld et al. 2023 (10.5194/cp-19-703-2023) gridded dataset (1x1 km lat/long) and were extracted at the grid point centered on the Plattje site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7925647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7925647&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Negri, Valentina; Vázquez, Daniel; Sales-Pardo, Marta; Guimerà, Roger; Guillén-Gosálbez, Gonzalo;Dataset of process simulations results of the natural gas sweetening and flue gas treatment (first and second sheet, respectively as indicated by the sheet name in the .xlsx file). The dataset refers to the publication Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations: Application to CO2 Capture Technologies by V. Negri, Vàzquey D., Sales-Pardo, Marta, Guimerà, R. and Guillén-Gosàlbez, G. The training and testing dataset are used to generate the figures in the main manuscript and supplementary information.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8239352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Campos-Carriedo, Felipe; Iribarren, Diego; Calvo-Rodríguez, Fernando; García-Díaz, Álvaro; +1 AuthorsCampos-Carriedo, Felipe; Iribarren, Diego; Calvo-Rodríguez, Fernando; García-Díaz, Álvaro; Dufour, Javier;As the European Union embarks on the energy transition, several challenges need to be faced to ensure that this shift is conducted from a holistic perspective that avoids burden-shifting across sustainability dimensions. One of the main concerns refers to the future availability of materials that clean technologies require. Critical rawmaterial assessment serves to guide the management of such mineral resources in a new paradigm of increasing demand. This work delves into the methodological fundamentals of several product-level criticality indicators in order to discuss their implications within the context of the ecodesign of two hydrogen-related products. Overall, criticality is advised to be assessed making use of several indicators. In the case study of a proton exchange membrane fuel cell stack, the combined interpretation of criticality indicators leads to identifying platinum as the main hotspot, while yttrium and lanthanum account for the most relevant criticality contributions in the casestudy of a solid oxide electrolysis cell stack. The authors would like to thank Gonzalo Puig-Samper and Eleonora Bargiacchi for the insights provided. This work has been carried out within the framework of the projects eGHOST and SH2E. These projects have received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreements No. 101007166 and 101007163, respectively. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research. The contents of this document are provided “AS IS”. It reflects only the authors’ view and the Joint Undertaking is not responsible for any use that may be made of the information it contains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13141085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13141085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | INCOVEREC| INCOVERRodero, María Del Rosario; Lebrero, Raquel; Serrano, Esteban; Lara, Enrique; Zouhayr Arbib; García-Encina, Pedro A.; Muñoz, Raúl;Excel document that contains the data of the article: ‘Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor’. This dataset shows the values obtained during the experimental period and it complements the corresponding article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2554816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2554816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Chunlüe Zhou; Cesar Azorin-Molina; Erik Engström; Lorenzo Minola; Lennart Wern; Sverker Hellström; Jessika Lönn; Deliang Chen;Creating a century-long homogenized near-surface wind speed (WS) observation dataset is essential to improve our knowledge about the uncertainty and causes of WS stilling and recovery. We rescued paper-based WS records dating back to the 1920s at 13 stations in Sweden and established a four-step homogenization procedure to generate the first 10-member centennial homogenized WS dataset (HomogWS-se) for community uses among climatology, ecology, hydrology and energy industry. HomogWS-se can be used to study the WS variability and change, assess climate reanalysis, and constrain climate simulations for better future projection of changes in the WS and wind energy potential. HomogWS-se contains 13 individual text files with 10-member century-long homogenized monthly WS series, as well as the member-mean series. {"references": ["Zhou, C., C. Azorin-Molina, E. Engstr\u00f6m, L. Wern, S. Hellstr\u00f6m, and D. Chen, 2022: A century-long homogenized dataset of near-surface wind speed observations since 1925 rescued in Sweden. Earth Syst. Sci. Data, 1-24, 10.5194/essd-2022-29."]}
ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5850263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5850263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | GRECOEC| GRECOAskins, Stephen; Nardin, Gaël; Ackermann, Mathieu; Gerlich, Florian; Dominguez, César;Dataset from the outdoor characterization of a B Series module from Insolight at the rooftop of the Instituto de Energía Solar - Universidad Politécnica de Madrid. These are measurements of a module of the same type as “Outdoor monitoring data of an Insolight B-series module - CPV sub-module” however, in the previous measurements the module was mounted on a two-axis tracker to benchmark its performance, while in these measurements, the module’s integrated planar micro tracking system was used. This data was presented at IEEE PVSC 46 in June 2019 in Chicago. See preprint of conference article. Monitoring campaign: Location: 40.453°N, -3.727°E. Instituto de Energía Solar, Universidad Politécnica de Madrid. 28040 Madrid, Spain. Fixed Mounting Angle: Due South, Slope Angle = 30° Starting date: 30 May 2019 End date: 14 June 2018 Description of data file: Data files format: single comma-separated text file; headers in first row; all of the following parameters; order below is the same as order in file Measurement time: the vector of times represents the times at which the Insolight module firmware sampled the current values of the III-V and Si outputs (measured simultaneously). Date Time (dd/mmm/yyyy HH:MM:SS): time in CEST / UTC+2 Measured meteorological data: these values are measured directly by the IES meteorological station with 1-minute resolution. They have been re-interpolated to match the measurement times. DNI (W/m2): direct normal irradiance as measured by a Normal Incidence Pyrheliometer from Eppley on a solar tracker. Spectral Range: 250-3000 nm. Field of view: 5° DNI_Top (W/m2): equivalent direct normal irradiance as measured by a top component cell of a lattice-matched III-V triple-junction cell in the ICU-3J35 Triband Spectro-heliometer from Solar Added Value on a solar tracker. Spectral range: 300 - 680 nm. Field of view: 5.7º DNI_Mid (W/m2): equivalent direct normal irradiance as measured by a middle component cell of a lattice-matched III-V triple-junction cell in the ICU-3J35 Triband Spectro-heliometer from Solar Added Value on a solar tracker. Spectral range: 680 - 900 nm. Field of view: 5.7º GNI (W/m2): global normal irradiance at the aperture plane as measured with a pyranometer on a solar tracker. Spectral range: 305 – 2800 nm. G(41°) (W/m2): Global Inclined Irradiance as measured with a pyranometer mounted facing due south and at a slope angle of 41° (near to local latitude). Spectral range: 305 – 2800 nm. T_Amb (°C): ambient temperature Wind Speed (m/s): wind speed Wind Dir. (m/s): wind direction Processed meteorological data: these values are calculated from the above meteorological data and provided for convenience DII (W/m2): Direct Inclined (plane of array) Irradiance corresponding to the module slope angle has been calculated using the sun’s known declination and hour angle from the time. GII (W/m2): The Global Inclined (plane of array) Irradiance is calculated by first calculating the DII(41°), that is the DII corresponding to the G(41°) measurement, and finding the Diffuse Inclined Irradiance Diff(41°) = G(41°) – DII(41°). It is assumed that the Diffuse Inclined Irradiance at 41° and 30° is equal, so GII = DII + Diff(41°). SMR_Top_Mid (n.d.): “Spectral Matching Ratio”. This is the ratio between DNI_Top and DNI_Mid. A value of unity indicates a spectrum that is equivalent to AM1.5D with regards to the energy balance between top and middle subcells. Measured module data: The module was placed in a short-ciruit condition and allowed to track using its integrated tracking system. The short circuit current was measured using shut resistors and integrated A/D channels. This hybrid module features both III-V micro cells (under concentration, with planar microtracking) and large area silicon solar cells (for diffuse capture). ISC_measured_IIIV (A): ISC_measured_Si (A) Estimated module data: As is explained in the IEEE PVSC 46 manuscript (see Preprint) the following values are estimated using the previously listed measured data. T_Backplane (°C) PMP_estimated_IIIV (W) PMP_estimated_Si (W)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3346823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3346823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu