- home
- Search
- Energy Research
- Embargo
- other engineering and technologies
- DE
- US
- BE
- EU
- Energy Research
- Embargo
- other engineering and technologies
- DE
- US
- BE
- EU
description Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:AIP Publishing Yiwei Hu; Benlei Wang; Zhanghua Wu; Jianying Hu; Ercang Luo; Jingyuan Xu;Thermoacoustic technology emerges as a sustainable and low-carbon method for energy conversion, leveraging environmentally friendly working mediums and independence from electricity. This study presents the development of a multimode heat-driven thermoacoustic system designed to utilize medium/low-grade heat sources for room-temperature cooling and heating. We constructed both a simulation model and an experimental prototype for a single-unit direct-coupled thermoacoustic system, exploring its performance in heating-only, cooling-only, and hybrid heating and cooling modes. Internal characteristic analysis including an examination of internal exergy loss and a distribution analysis of key parameters was first conducted in the hybrid cooling and heating mode. The results indicated a positive-focused traveling-wave-dominant acoustic field within the thermoacoustic core unit, enhancing energy conversion efficiency. The output system performance was subsequently tested under different working conditions in the heating-only and cooling-only modes. A maximum output heating power of 2.3 kW and a maximum COPh of 1.41 were observed in the heating-only mode. Meanwhile, a cooling power of 748 W and a COPc of 0.4 were obtained in the typical cooling condition at 7 °C when operating in cooling-only mode. These findings underscore the promising potential of thermoacoustic systems for efficiently utilizing medium/low-grade heat sources for cooling and/or heating applications in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0196770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0196770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2020 United KingdomPublisher:IEEE Zhao, Sicheng; Zhang, Xiang; Liu, Qiang; Wilkinson, M; Nergo, M; Daghrah, M;The lifetime and reliability of power transformers are primarily dependent on the hot-spot temperature in the windings, as temperature is the most important factor determining the insulation degradation rate. Key to removing the heat from the transformer is the radiator which must be carefully designed to keep the temperatures within limits under all operating conditions whilst minimizing the transformer size, weight and cost. This paper compares the analytical method used to predict the radiator performance with computational fluid dynamics (CFD) models in terms of heat dissipation. It is found that the analytical method and CFD models give similar results in the air natural (AN) cooling modes, whereas the analytical method overestimates the heat dissipation in the air forced (AF) cooling modes. Moreover, the thermal conduction effect in the radiator wall is investigated under different operating conditions and for different radiator sizes using the CFD models. The simulation results indicate that the radiator wall contributes to 6%-10% of the total heat dissipation under some circumstances and therefore should not be simply ignored in radiator models.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2020Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1109/cmd483...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cmd48350.2020.9287231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2020Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1109/cmd483...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cmd48350.2020.9287231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Francesca Verones; Francesca Verones; Peter Bayer; Stefanie Hellweg; Oliver Schwab; Oliver Schwab; Ronnie Juraske;In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2014.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2014.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Authors: Afraz Mehmood Chaudhry; Maxence Delvaux; Péter Zoltán Csurcsia; Stanislav Chicherin; +2 AuthorsAfraz Mehmood Chaudhry; Maxence Delvaux; Péter Zoltán Csurcsia; Stanislav Chicherin; Jonathan Hachez; Svend Bram;Network temperatures in district heating systems are important operational factors for obtaining efficient performance. A low network return temperature allows for the recovery of low-grade heat from assets such as condensing boilers, waste incineration, geothermal sources and industrial waste heat. Fluctuations in heating and cooling demands affect the return temperatures of the building substations and in the network. This variability impacts the economic viability and environmental sustainability of the entire system. This paper presents a nonlinear optimization strategy to maintain sufficient energy flows in the network's primary and secondary circuits to achieve low return temperatures from all substations in the network. The defined optimization strategy incorporates the thermodynamic model of the substation and building heating system as opposed to traditional weather-based supply temperature adjustments. The estimated heat demands and tariffs, CO2 penalties are inputs used by the optimizer to find theoptimal solution. The total operational expenditure for electricity and gas consumption shows an 18% reduction with 8% reduction in emissions and 6% efficiency improvement when compared with the measured weather-based approach. The developed strategy will aid the network operators in the economic dispatch of heat generation while ensuring the user's thermal comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Informa UK Limited Authors: Senne Van Minnebruggen; Houssam Matbouli; Stef Jacobs; Ivan Verhaert;handle: 10067/2050250151162165141
Abstract: To maximize the sustainable and economic benefits of collective heating systems, proper sizing is fundamental. This paper presents the validation of a novel sizing approach for collective systems producing and distributing heat for both space heating and domestic hot water, utilizing residential heat meter data. A validation methodology is developed to overcome the limitations of this type of data to identify the peak heat demand and estimate the peak heat demand under design outdoor conditions. The latter is estimated utilizing multiple linear regression coupled with an analysis of the maximum deviations. The power-storage characteristic, which shows all combinations of thermal power and thermal storage to meet the peak heat demand is determined and used to validate the novel sizing approach for six case studies. Although the results are promising, undersizing problems may arise in cases with decentralized heat storage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Authors: Nick Van Hee; Herbert Peremans; Philippe Nimmegeers;handle: 10067/2071440151162165141
Abstract: To achieve net-zero emissions by 2050, as outlined in the European Green Deal, nuclear power is expected to double between 2020 and 2050, mainly due to its low-carbon baseload capacity. Small modular reactors, new nuclear reactors designed to generate up to 300 MW of electricity, could help achieve this goal. Small modular reactors have unique advantages over existing large reactors, such as modularization, learning and co-location economics. However, these small modular reactors should also be economically viable. This review therefore focuses on the costs of small modular reactors. This review found an average capital cost of €7,031/kW and an average levelized cost of electricity of 85 €/MWh for small modular reactors, while capital costs were found to be on average 41% higher than for the large reactors. Carbon and gas prices are not included in this cost estimate, yet these volatile prices also affect small modular reactor costs. However, as the absolute cost is lower, the financial risk is lower for small modular reactors. The importance of regulations, discount rates, country and project specifications and public acceptance are also considered.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGJ. Schilling; D. Tillmanns; M. Lampe; M. Hopp; J. Gross; A. Bardow;Thermo-economically optimal design = optimal molecule + optimal process + optimal equipment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7me00026j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7me00026j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | CONSTRAINEC| CONSTRAINSofia Gonzales-Zuñiga; Claire Fyson; Andreas Geiges; Silke Mooldijk; Matthew Gidden; Mairi Louise Jeffery; Michel G.J. den Elzen; Niklas Höhne; Joeri Rogelj; Joeri Rogelj; Frederic Hans; William Hare;National net zero emission targets could, if fully implemented, reduce best estimates of projected global average temperature increase to 2.0–2.4 °C by 2100, bringing the Paris Agreement temperature goal within reach. A total of 131 countries are discussing, have announced or have adopted net zero targets, covering 72% of global emissions. These targets could substantially lower projected warming as compared to currently implemented policies (2.9–3.2 °C) or pledges submitted to the Paris Agreement (2.4–2.9 °C). Current pledges for emissions cuts are insufficient to meet the Paris Agreement temperature goal. The wave of net zero targets being discussed and adopted could make the Paris goal possible if further countries follow suit.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 170 citations 170 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Mohammad Azadi Tabar; Hafez Maghsoudi; Keikhosro Karimi; Seyed Saeid Hosseini; Mohsen Gholami; Joeri F.M. Denayer;Vacuum pressure swing adsorption (VPSA) has demonstrated promising features for the upgrading of biogas to biomethane. In this study, a biogas upgrading plant, comprised of a hybrid of an N-column VPSA unit (2 ≤N≤ 6) with a combined heat and power (CHP) engine, was developed and its techno-economic characteristics were assessed via a mathematical approach. Moreover, the techno economic analysis was used for the state-of-the-art VPSA configuration (a sophisticated configuration) and compared with the developed hybrid process. The prominent parameters including feedstock transport, biogas production, desulfurization, drying, upgrading, combustion, and grid injection were considered in the analyses of the plant for the upgrading capacity in the range of 100 - 6,500 Nm3/h. Sensitivity analysis of the most influencing parameters, i.e., electricity price, gas price, and feed processing revenues, was conducted for the developed models. Beside comparing upgrading cost of the sophisticated VPSA with other upgrading technologies, a detailed comparison with the best available membrane unit for biogas upgrading was conducted. The limitations of adsorption process and VPSA in reducing the upgrading cost were also investigated. The results showed that in the absence of subsidies and requirements for CO2 capture, the hybrid plant outperforms the sophisticated VPSA units. Also, higher market price of natural gas or feedstock processing revenues were necessary in order to render the plant profitable. The results showed that, at flowrates larger than 175 Nm3/h, the sophisticated VPSA unit required a lower investment cost than the membrane unit for identical outputs. The results also show that even at the most idealistic conditions in the adsorption process, the upgrading is not economically favorable without subsidies. The findings of this study shed light on the importance of process design for biogas upgrading.
Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalJournal of Cleaner ProductionArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2024.141853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalJournal of Cleaner ProductionArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2024.141853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:AIP Publishing Yiwei Hu; Benlei Wang; Zhanghua Wu; Jianying Hu; Ercang Luo; Jingyuan Xu;Thermoacoustic technology emerges as a sustainable and low-carbon method for energy conversion, leveraging environmentally friendly working mediums and independence from electricity. This study presents the development of a multimode heat-driven thermoacoustic system designed to utilize medium/low-grade heat sources for room-temperature cooling and heating. We constructed both a simulation model and an experimental prototype for a single-unit direct-coupled thermoacoustic system, exploring its performance in heating-only, cooling-only, and hybrid heating and cooling modes. Internal characteristic analysis including an examination of internal exergy loss and a distribution analysis of key parameters was first conducted in the hybrid cooling and heating mode. The results indicated a positive-focused traveling-wave-dominant acoustic field within the thermoacoustic core unit, enhancing energy conversion efficiency. The output system performance was subsequently tested under different working conditions in the heating-only and cooling-only modes. A maximum output heating power of 2.3 kW and a maximum COPh of 1.41 were observed in the heating-only mode. Meanwhile, a cooling power of 748 W and a COPc of 0.4 were obtained in the typical cooling condition at 7 °C when operating in cooling-only mode. These findings underscore the promising potential of thermoacoustic systems for efficiently utilizing medium/low-grade heat sources for cooling and/or heating applications in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0196770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0196770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2020 United KingdomPublisher:IEEE Zhao, Sicheng; Zhang, Xiang; Liu, Qiang; Wilkinson, M; Nergo, M; Daghrah, M;The lifetime and reliability of power transformers are primarily dependent on the hot-spot temperature in the windings, as temperature is the most important factor determining the insulation degradation rate. Key to removing the heat from the transformer is the radiator which must be carefully designed to keep the temperatures within limits under all operating conditions whilst minimizing the transformer size, weight and cost. This paper compares the analytical method used to predict the radiator performance with computational fluid dynamics (CFD) models in terms of heat dissipation. It is found that the analytical method and CFD models give similar results in the air natural (AN) cooling modes, whereas the analytical method overestimates the heat dissipation in the air forced (AF) cooling modes. Moreover, the thermal conduction effect in the radiator wall is investigated under different operating conditions and for different radiator sizes using the CFD models. The simulation results indicate that the radiator wall contributes to 6%-10% of the total heat dissipation under some circumstances and therefore should not be simply ignored in radiator models.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2020Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1109/cmd483...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cmd48350.2020.9287231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryContribution for newspaper or weekly magazine . 2020Data sources: The University of Manchester - Institutional Repositoryhttps://doi.org/10.1109/cmd483...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/cmd48350.2020.9287231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Francesca Verones; Francesca Verones; Peter Bayer; Stefanie Hellweg; Oliver Schwab; Oliver Schwab; Ronnie Juraske;In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2014.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2014.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Authors: Afraz Mehmood Chaudhry; Maxence Delvaux; Péter Zoltán Csurcsia; Stanislav Chicherin; +2 AuthorsAfraz Mehmood Chaudhry; Maxence Delvaux; Péter Zoltán Csurcsia; Stanislav Chicherin; Jonathan Hachez; Svend Bram;Network temperatures in district heating systems are important operational factors for obtaining efficient performance. A low network return temperature allows for the recovery of low-grade heat from assets such as condensing boilers, waste incineration, geothermal sources and industrial waste heat. Fluctuations in heating and cooling demands affect the return temperatures of the building substations and in the network. This variability impacts the economic viability and environmental sustainability of the entire system. This paper presents a nonlinear optimization strategy to maintain sufficient energy flows in the network's primary and secondary circuits to achieve low return temperatures from all substations in the network. The defined optimization strategy incorporates the thermodynamic model of the substation and building heating system as opposed to traditional weather-based supply temperature adjustments. The estimated heat demands and tariffs, CO2 penalties are inputs used by the optimizer to find theoptimal solution. The total operational expenditure for electricity and gas consumption shows an 18% reduction with 8% reduction in emissions and 6% efficiency improvement when compared with the measured weather-based approach. The developed strategy will aid the network operators in the economic dispatch of heat generation while ensuring the user's thermal comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2024.114241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Informa UK Limited Authors: Senne Van Minnebruggen; Houssam Matbouli; Stef Jacobs; Ivan Verhaert;handle: 10067/2050250151162165141
Abstract: To maximize the sustainable and economic benefits of collective heating systems, proper sizing is fundamental. This paper presents the validation of a novel sizing approach for collective systems producing and distributing heat for both space heating and domestic hot water, utilizing residential heat meter data. A validation methodology is developed to overcome the limitations of this type of data to identify the peak heat demand and estimate the peak heat demand under design outdoor conditions. The latter is estimated utilizing multiple linear regression coupled with an analysis of the maximum deviations. The power-storage characteristic, which shows all combinations of thermal power and thermal storage to meet the peak heat demand is determined and used to validate the novel sizing approach for six case studies. Although the results are promising, undersizing problems may arise in cases with decentralized heat storage
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19401493.2024.2335225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Authors: Nick Van Hee; Herbert Peremans; Philippe Nimmegeers;handle: 10067/2071440151162165141
Abstract: To achieve net-zero emissions by 2050, as outlined in the European Green Deal, nuclear power is expected to double between 2020 and 2050, mainly due to its low-carbon baseload capacity. Small modular reactors, new nuclear reactors designed to generate up to 300 MW of electricity, could help achieve this goal. Small modular reactors have unique advantages over existing large reactors, such as modularization, learning and co-location economics. However, these small modular reactors should also be economically viable. This review therefore focuses on the costs of small modular reactors. This review found an average capital cost of €7,031/kW and an average levelized cost of electricity of 85 €/MWh for small modular reactors, while capital costs were found to be on average 41% higher than for the large reactors. Carbon and gas prices are not included in this cost estimate, yet these volatile prices also affect small modular reactor costs. However, as the absolute cost is lower, the financial risk is lower for small modular reactors. The importance of regulations, discount rates, country and project specifications and public acceptance are also considered.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenRenewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:DFGDFGJ. Schilling; D. Tillmanns; M. Lampe; M. Hopp; J. Gross; A. Bardow;Thermo-economically optimal design = optimal molecule + optimal process + optimal equipment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7me00026j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7me00026j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | CONSTRAINEC| CONSTRAINSofia Gonzales-Zuñiga; Claire Fyson; Andreas Geiges; Silke Mooldijk; Matthew Gidden; Mairi Louise Jeffery; Michel G.J. den Elzen; Niklas Höhne; Joeri Rogelj; Joeri Rogelj; Frederic Hans; William Hare;National net zero emission targets could, if fully implemented, reduce best estimates of projected global average temperature increase to 2.0–2.4 °C by 2100, bringing the Paris Agreement temperature goal within reach. A total of 131 countries are discussing, have announced or have adopted net zero targets, covering 72% of global emissions. These targets could substantially lower projected warming as compared to currently implemented policies (2.9–3.2 °C) or pledges submitted to the Paris Agreement (2.4–2.9 °C). Current pledges for emissions cuts are insufficient to meet the Paris Agreement temperature goal. The wave of net zero targets being discussed and adopted could make the Paris goal possible if further countries follow suit.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 170 citations 170 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 BelgiumPublisher:Elsevier BV Mohammad Azadi Tabar; Hafez Maghsoudi; Keikhosro Karimi; Seyed Saeid Hosseini; Mohsen Gholami; Joeri F.M. Denayer;Vacuum pressure swing adsorption (VPSA) has demonstrated promising features for the upgrading of biogas to biomethane. In this study, a biogas upgrading plant, comprised of a hybrid of an N-column VPSA unit (2 ≤N≤ 6) with a combined heat and power (CHP) engine, was developed and its techno-economic characteristics were assessed via a mathematical approach. Moreover, the techno economic analysis was used for the state-of-the-art VPSA configuration (a sophisticated configuration) and compared with the developed hybrid process. The prominent parameters including feedstock transport, biogas production, desulfurization, drying, upgrading, combustion, and grid injection were considered in the analyses of the plant for the upgrading capacity in the range of 100 - 6,500 Nm3/h. Sensitivity analysis of the most influencing parameters, i.e., electricity price, gas price, and feed processing revenues, was conducted for the developed models. Beside comparing upgrading cost of the sophisticated VPSA with other upgrading technologies, a detailed comparison with the best available membrane unit for biogas upgrading was conducted. The limitations of adsorption process and VPSA in reducing the upgrading cost were also investigated. The results showed that in the absence of subsidies and requirements for CO2 capture, the hybrid plant outperforms the sophisticated VPSA units. Also, higher market price of natural gas or feedstock processing revenues were necessary in order to render the plant profitable. The results showed that, at flowrates larger than 175 Nm3/h, the sophisticated VPSA unit required a lower investment cost than the membrane unit for identical outputs. The results also show that even at the most idealistic conditions in the adsorption process, the upgrading is not economically favorable without subsidies. The findings of this study shed light on the importance of process design for biogas upgrading.
Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalJournal of Cleaner ProductionArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2024.141853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Vrije Universiteit B... arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalJournal of Cleaner ProductionArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2024.141853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu