- home
- Search
- Energy Research
- EU
- Imperial College London
- Energy Research
- EU
- Imperial College London
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 20 Dec 2022 Portugal, United KingdomPublisher:Wiley Funded by:EC | M-ERA.NET3, EC | EROSEC| M-ERA.NET3 ,EC| EROSSilva, JPB; Gwozdz, K; Marques, LS; Pereira, M; Gomes, MJM; MacManus-Driscoll, JL; Hoye, RLZ;handle: 1822/81313
AbstractCoupling together the ferroelectric, pyroelectric, and photovoltaic characteristics within a single material is a novel way to improve the performance of photodetectors. In this work, we take advantage of the triple multifunctionality shown by 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT), as demonstrated in an Al/Si/SiOx/BCZT/ITO thin‐film device. The Si/SiOx acts as an n‐type layer to form a metal–ferroelectric–insulator–semiconductor heterostructure with the BCZT, and with Al and ITO as electrodes. The photo‐response of the device, with excitation from a violet laser (405 nm wavelength), is carefully investigated, and it is shown that the photodetector performance is invariant with the chopper frequency owing to the pyro‐phototronic effect, which corresponds to the coupling together of the pyroelectric and photovoltaic responses. However, the photodetector performance was significantly better than that of the devices operating based only on the pyro‐phototronic effect by a factor of 4, due to the presence of ferroelectricity in the system. Thus, after a poling voltage of −15 V, for a laser power density of 230 mW/cm2 and at a chopper frequency of 400 Hz, optimized responsivity, detectivity, and sensitivity values of 13.1 mA/W, 1.7 × 1010 Jones, and 26.9, respectively, are achieved. Furthermore, ultrafast rise and fall times of 2.4 and 1.5 µs, respectively, are obtained, which are 35,000 and 36,000 times faster rise and fall responses, respectively, than previous reports of devices with the ferro–pyro–phototronic effect. This is understood based on the much faster ferroelectric switching in ferroelectric thin films owing to the predominant 180° domains in a single direction out of plane.
Carbon Energy arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 2 Powered bymore_vert Carbon Energy arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Low carbon jet fuel throu..., UKRI | Smart Microfluidics Towar..., EC | RDC2MTUKRI| Low carbon jet fuel through integration of novel technologies for co-valorisation of CO2 and biomass ,UKRI| Smart Microfluidics Towards Low-Cost High-Performance Li-Ion Batteries ,EC| RDC2MTZhao, Tianyu; Ojeda, Manuel; Xuan, Jin; Shu, Zhan; Wang, Huizhi;Abstract Aluminum storage in rutile-based TiO2 nanoparticles was for the first time investigated. Electrochemical characteristics of rutile-based TiO2 nanoparticles as an electrode for aluminum-ion batteries were studied using cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The first discharge capacity of 29.4 mAh·g-1 was achieved, and the value remains 22.6 mAh·g-1 after 50 cycles. The highest coulombic efficiency achieved at 89.8%.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:EC | ACOULOMODEEC| ACOULOMODEAimee S. Morgans; Jingxuan Li; Jingxuan Li; Xingsi Han; Yu Xia;handle: 10044/1/53012
Abstract A coupled numerical approach is investigated for predicting combustion instability limit cycle characteristics when the combustor contains a long flame. The test case is the ORACLES combustor, with a turbulent premixed flame a metre long: it exhibits limit cycle oscillations at ∼ 50 Hz and normalised velocity amplitude ahead of the flame of ∼ 0.29. The approach obtains the flame response to acoustic excitation using Large Eddy Simulations (LES), and couples this with a low-order wave-based network representation for the acoustic waves within the combustor. The flame cannot be treated as acoustically compact; the spatial distribution of both its response and the subsequent effect on the acoustics must be accounted for. The long flame is uniformly segmented axially, each segment being much shorter than the flow wavelengths at play. A series of “local” flame describing functions, one for the heat release rate response within each segment to velocity forcing at a fixed reference location, are extracted from the LES. These use the Computational Fluid Dynamics toolbox, OpenFOAM, with an incompressible approximation for the flow-field and combustion modelled using the Partially Stirred Reactor model with a global one-step reaction mechanism. For coupling with the low-order acoustic network modelling, compact acoustic jump conditions are derived and applied across each flame segment, while between flame segments, wave propagation occurs. Limit cycle predictions from the proposed coupled method agree well with those predicted using the continuous 1-D linearised Euler equations, validating the flame segmentation implementation. Limit cycle predictions (frequency 51.6 Hz and amplitude 0.38) also agree well with experimental measurements, validating the low-order coupled method as a prediction tool for combustors with long flames. A sensitivity analysis shows that the predicted limit cycle amplitude decreases rapidly when acoustic losses at boundaries are accounted for, and increases if combustor heat losses downstream of the flame are accounted for. This motivates more accurate determination of combustor boundary and temperature behaviour for thermoacoustic predictions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/53012Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/10.1016/j.co...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2017.06.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/53012Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/10.1016/j.co...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2017.06.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint , Report 2024Embargo end date: 01 Apr 2024 Italy, Italy, France, Germany, France, Italy, Belgium, Switzerland, Italy, Italy, Italy, Italy, France, Spain, Spain, Italy, Italy, United Kingdom, Italy, Germany, Belgium, United Kingdom, France, France, Italy, Spain, Italy, Germany, Italy, Malaysia, United StatesPublisher:American Physical Society (APS) Funded by:EC | INSIGHTS, EC | LHCTOPVLQ, EC | HIGCC +4 projectsEC| INSIGHTS ,EC| LHCTOPVLQ ,EC| HIGCC ,HFRI| TO ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΚΑΙ ΠΕΡΑΝ ΑΥΤΟΥ ΜΕ ΤΟ ΠΕΙΡΑΜΑ CMS ΣΤΟ LHC ,EC| STRONG-2020 ,EC| MajorNet ,EC| AMVA4NewPhysicsAuthors: Hayrapetyan, Aram; Tumasyan, Armen; Adam, Wolfgang; Andrejkovic, Janik Walter; +196 AuthorsHayrapetyan, Aram; Tumasyan, Armen; Adam, Wolfgang; Andrejkovic, Janik Walter; Bergauer, Thomas; Chatterjee, Suman; Damanakis, Konstantinos; Dragicevic, Marko; Escalante Del Valle, Alberto; Hussain, Priya Sajid; Jeitler, Manfred; Krammer, Natascha; Liko, Dietrich; Mikulec, Ivan; Schieck, Jochen; Schöfbeck, Robert; Schwarz, Dennis; Sonawane, Mangesh; Templ, Sebastian; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Darwish, Mohamed Rashad; Janssen, Tahys; Van Mechelen, Pierre; Bols, Emil Sørensen; D'Hondt, Jorgen; Dansana, Soumya; De Moor, Alexandre; Delcourt, Martin; El Faham, Hesham; Lowette, Steven; Makarenko, Inna; Müller, Denise; Sahasransu, Abanti Ranadhir; Tavernier, Stefaan; Tytgat, Michael; Van Putte, Senne; Vannerom, David; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Hohov, Dmytro; Jaramillo, Johny; Khalilzadeh, Ali; Lee, Kyeongpil; Mahdavikhorrami, Mostafa; Malara, Andrea; Paredes, Santiago; Pétré, Laurent; Postiau, Nicolas; Thomas, Laurent; Vanden Bemden, Max; Vander Velde, Catherine; Vanlaer, Pascal; De Coen, Maarten; Dobur, Didar; Hong, Yanwen; Knolle, Joscha; Lambrecht, Luka; Mestdach, Gianny; Rendón, César; Samalan, Amrutha; Skovpen, Kirill; Van Den Bossche, Niels; Wezenbeek, Liam; Benecke, Anna; Bruno, Giacomo; Caputo, Claudio; Delaere, Christophe; Donertas, Izzeddin Suat; Giammanco, Andrea; Jaffel, Khawla; Jain, Sa.; Lemaitre, Vincent; Lidrych, Jindrich; Mastrapasqua, Paola; Mondal, Kuntal; Tran, Tu Thong; Wertz, Sébastien; Alves, Gilvan; Coelho, Eduardo; Hensel, Carsten; Menezes De Oliveira, Thales; Moraes, Arthur; Rebello Teles, Patricia; Soeiro, Mariana; Aldá Júnior, Walter Luiz; Alves Gallo Pereira, Miguel; Barroso Ferreira Filho, Mapse; Brandao Malbouisson, Helena; Carvalho, Wagner; Chinellato, Jose; Da Costa, Eliza Melo; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Martins, Jordan; Mora Herrera, Clemencia; Mota Amarilo, Kevin; Mundim, Luiz; Nogima, Helio; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Calligaris, Luigi; Fernandez Perez Tomei, T. R.; De Moraes Gregores, Eduardo; Mercadante, Pedro G.; Novaes, Sergio F.; Orzari, Breno; Padula, Sandra S.; Aleksandrov, Aleksandar; Antchev, Georgy; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Petrov, Anton; Shumka, Elton; Keshri, Sumit; Thakur, Shalini; Cheng, Tongguang; Guo, Qianying; Javaid, Tahir; Mittal, Monika; Yuan, Li; Bauer, Gerry; Hu, Zhen; Liu, Jinfeng; Yi, Kai; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Iemmi, Fabio; Jiang, Chun-Hua; Kapoor, Anshul; Liao, Hongbo; Liu, Zhenan; Monti, Fabio; Shahzad, Muhammad Aamir; Sharma, Ramkrishna; Song, Jia-ning; Tao, Junquan; Wang, Chu; Wang, Jin; Wang, Zebing; Zhang, Huaqiao; Agapitos, Antonis; Ban, Yong; Levin, Andrew; Li, Congqiao; Li, Qiang; Mao, Yajun; Qian, Si-Jin; Sun, Xiaohu; Wang, Dayong; Yang, Heng; Zhang, Licheng; Zhou, Chen; You, Zhengyun; Lu, Nan; Gao, Xuyang; Leggat, Duncan; Okawa, Hideki; Jain, Shilpi; Lee, H.; Kim, J.; Lee, H.; Bower, Steffi; Baden, Drew; Zhang, Yousen; Xiao, Meng; Avila, Carlos; Barbosa Trujillo, Diego Andres; Cabrera, Andrés; Florez, Carlos; Fraga, Jorge; Reyes Vega, Jose Antonio; Mejia Guisao, Jhovanny; Ramirez, Felipe; Rodriguez, Manuel; Ruiz Alvarez, José David; Giljanovic, Duje; Godinovic, Nikola; Lelas, Damir; Sculac, Ana; Kovac, Marko; Sculac, Toni; Bargassa, Pedrame; Brigljevic, Vuko; Chitroda, Bhakti Kanulal; Ferencek, Dinko; Mishra, Saswat;A search is presented for charged, long-lived supersymmetric particles in final states with one or more disappearing tracks. The search is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the CERN LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb−1. The search is performed over final states characterized by varying numbers of jets, b-tagged jets, electrons, and muons. The length of signal-candidate tracks in the plane perpendicular to the beam axis is used to characterize the lifetimes of wino- and Higgsino-like charginos produced in the context of the minimal supersymmetric standard model. The dE/dx energy loss of signal-candidate tracks is used to increase the sensitivity to charginos with a large mass and thus a small Lorentz boost. The observed results are found to be statistically consistent with the background-only hypothesis. Limits on the pair-production cross section of gluinos and squarks are presented in the framework of simplified models of supersymmetric particle production and decay, and for electroweakino production based on models of wino and Higgsino dark matter. The limits presented are the most stringent to date for scenarios with light third-generation squarks and a wino- or Higgsino-like dark matter candidate capable of explaining the observed dark matter relic density. © 2024 CERN, for the CMS Collaboration 2024 CERN
Archivio istituziona... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1718252/1/Hayrapetyan_Search-for-supersymmetry_2024.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaUniversity of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/35m4g718Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Full-Text: https://hdl.handle.net/11586/514941Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1103/physre...Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaBrunel University Research ArchiveArticle . 2024License: CC BYData sources: Brunel University Research ArchiveArchivio della Ricerca - Università di PisaArticle . 2024Data sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2024Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyUniversità degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevd.109.072007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1718252/1/Hayrapetyan_Search-for-supersymmetry_2024.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaUniversity of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/35m4g718Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Full-Text: https://hdl.handle.net/11586/514941Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1103/physre...Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaBrunel University Research ArchiveArticle . 2024License: CC BYData sources: Brunel University Research ArchiveArchivio della Ricerca - Università di PisaArticle . 2024Data sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2024Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyUniversità degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevd.109.072007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:EC | INNOVASOLEC| INNOVASOLMagistris, C.; Martiniani, S.; Barbero, N.; Park, J.; Benzi, C.; Anderson, A.; Law, C.; Barolo, C.; O’Regan, B. .;Abstract A NIR absorbing squaraine dye has been synthesized as a sensitizer for use in dye-sensitized solar cells (DSCs). Following computational calculations, a benz[ cd ]indole moiety was selected as an electron-rich heterocyclic component and condensed with indole-based emisquaraine bearing a carboxyl group, as an anchor for their immobilization on TiO 2 , to obtain an unsymmetrical squaraine with extended absorption due to its extensive π conjugation. The cells based on this dye exhibited a spectral response in the near-infrared region over 750 nm in addition to the visible region with a light absorption edge at 900 nm. The cells showed 1.1% efficiency and Incident Photon Current Efficiency (IPCE) of 36% at 800 nm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 FrancePublisher:Elsevier BV Funded by:EC | GEPIDIAB, ANR | BETAPLASTICITYEC| GEPIDIAB ,ANR| BETAPLASTICITYPhilippe Froguel; Sarah Anissa Hannou; Sarah Anissa Hannou; Emilie Caron; Amélie Bonnefond; Amélie Bonnefond; Christian Dani; Xi Yao; Jean-Sébastien Annicotte; Jean-Sébastien Annicotte; Frédérik Oger; Frédérik Oger; Xavier Gromada; Xavier Gromada; Charlène Carney; Charlène Carney; Emmanuelle Durand; Emmanuelle Durand; Isabel C. Lopez-Mejia; Elisabet Salas; Elisabet Salas; Lluis Fajas; Iandry Rabearivelo; Iandry Rabearivelo; Nabil Rabhi;Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis.We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients.We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression.Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molmet.2017.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molmet.2017.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022Embargo end date: 28 Feb 2023 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Peta-5: A National Facili..., EC | NANOCELLUKRI| Peta-5: A National Facility for Petascale Data Intensive Computation and Analytics ,EC| NANOCELLAuthors: Kaufhold, Will T.; Pfeifer, Wolfgang; Castro, Carlos E.; Di Michele, Lorenzo;Molecular dynamics simulations are often used to provide feedback in the design workflow of DNA nanostructures. However, even with coarse-grained models, the convergence of distributions from unbiased simulation is slow, limiting applications to equilibrium structural properties. Given the increasing interest in dynamic, reconfigurable, and deformable devices, methods that enable efficient quantification of large ranges of motion, conformational transitions, and mechanical deformation are critically needed. Metadynamics is an automated biasing technique that enables the rapid acquisition of molecular conformational distributions by flattening free energy landscapes. Here we leveraged this approach to sample the free energy landscapes of DNA nanostructures whose unbiased dynamics are nonergodic, including bistable Holliday junctions and part of a bistable DNA origami structure. Taking a DNA origami-compliant joint as a case study, we further demonstrate that metadynamics can predict the mechanical response of a full DNA origami device to an applied force, showing good agreement with experiments. Our results exemplify the efficient computation of free energy landscapes and force response in DNA nanodevices, which could be applied for rapid feedback in iterative design workflows and generally facilitate the integration of simulation and experiments. Metadynamics will be particularly useful to guide the design of dynamic devices for nanorobotics, biosensing, or nanomanufacturing applications.
ACS Nano arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/96911Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c08999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Nano arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/96911Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c08999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | HARVESTOREEC| HARVESTOREAuthors: Navaratnarajah Kuganathan; Alexander Chroneos;doi: 10.3390/en13071547
Porous materials have generated a great deal of interest for use in energy storage technologies, as their architectures have high surface areas due to their porous nature. They are promising candidates for use in many fields such as gas storage, metal storage, gas separation, sensing and magnetism. Novel porous materials which are non-toxic, cheap and have high storage capacities are actively considered for the storage of Li ions in Li-ion batteries. In this study, we employed density functional theory simulations to examine the encapsulation of lithium in both stoichiometric and electride forms of C12A7. This study shows that in both forms of C12A7, Li atoms are thermodynamically stable when compared with isolated gas-phase atoms. Lithium encapsulation through the stoichiometric form (C12A7:O2−) turns its insulating nature metallic and introduces Li+ ions in the lattice. The resulting compound may be of interest as an electrode material for use in Li-ion batteries, as it possesses a metallic character and consists of Li+ ions. The electride form (C12A7:e−) retains its metallic character upon encapsulation, but the concentration of electrons increases in the lattice along with the formation of Li+ ions. The promising features of this material can be tested by performing intercalation experiments in order to determine its applicability in Li-ion batteries.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1547/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1547/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 United Kingdom, United Kingdom, United Kingdom, Germany, Switzerland, France, United KingdomPublisher:Copernicus GmbH Funded by:NSF | Collaborative Research: I..., EC | GREENCYCLESII, EC | GEOCARBON +3 projectsNSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| GREENCYCLESII ,EC| GEOCARBON ,EC| CARBOCHANGE ,EC| EMBRACE ,EC| LUC4CPeter Levy; Steve D Jones; Richard J. Ellis; Anders Ahlström; C. Le Quéré; Philippe Ciais; Nicolas Gruber; Pierre Friedlingstein; Laurent Bopp; Heather Graven; Gordon B. Bonan; Stephen Sitch; Mark R. Lomas; Josep G. Canadell; Chris Huntingford; Christoph Heinze; Christoph Heinze; Benjamin Smith; Ranga B. Myneni; Ning Zeng; S. L. Piao; Sönke Zaehle; Scott C. Doney; Almut Arneth; Samuel Levis; Nicolas Viovy; Manuel Gloor; Zaichun Zhu; Philippe Peylin; Guillermo N. Murray-Tortarolo; Benjamin Poulter; Frédéric Chevallier;Abstract. The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
NERC Open Research A... arrow_drop_down Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.biogeosciences.net/12/653/2015/Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-1...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.biogeosciences.net/12/653/2015/Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-1...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Wiley Funded by:EC | CHT-sCO2EC| CHT-sCO2Authors: Guo, Jiangfeng; Huai, Xiulan;AbstractAs zero‐emission technologies, a daytime radiative cooling (RC) strategy developed recently, and photovoltaic (PV) and thermoelectric (TE) technologies have aroused great interest to reduce fossil fuel consumption and carbon emissions. How to integrate these state‐of‐the‐art technologies to maximise clean electricity from the sun and space remains a huge challenge, and the limit efficiency is still unclear. In this study, a spectral‐splitting PV‐TE hybrid system integrated with RC is proposed to maximise clean electricity from the sun and space without any emissions. For the sun acting as a typical constant heat‐flux heat source, the current thermoelectric theory overestimates the thermoelectric efficiency highly since the theory is based on constant temperature‐difference conditions. A new theory based on heat‐flux conditions is employed to achieve maximum thermoelectric efficiency. The PV‐TE hybrid system with RC is superior to the conventional hybrid system, not only in terms of higher efficiency but also in its 24‐h operation capacity. In a system with a single‐junction cell, the total efficiency with 30 suns (39.4%) is higher than the theoretical PV efficiency at 500 suns (38.2%). In a hybrid system with four‐junction cells, total efficiency is over 65% which is superior to most current photoelectric and thermal power systems.
Advanced Science arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/104381Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2023License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202206575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Science arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/104381Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2023License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202206575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 20 Dec 2022 Portugal, United KingdomPublisher:Wiley Funded by:EC | M-ERA.NET3, EC | EROSEC| M-ERA.NET3 ,EC| EROSSilva, JPB; Gwozdz, K; Marques, LS; Pereira, M; Gomes, MJM; MacManus-Driscoll, JL; Hoye, RLZ;handle: 1822/81313
AbstractCoupling together the ferroelectric, pyroelectric, and photovoltaic characteristics within a single material is a novel way to improve the performance of photodetectors. In this work, we take advantage of the triple multifunctionality shown by 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT), as demonstrated in an Al/Si/SiOx/BCZT/ITO thin‐film device. The Si/SiOx acts as an n‐type layer to form a metal–ferroelectric–insulator–semiconductor heterostructure with the BCZT, and with Al and ITO as electrodes. The photo‐response of the device, with excitation from a violet laser (405 nm wavelength), is carefully investigated, and it is shown that the photodetector performance is invariant with the chopper frequency owing to the pyro‐phototronic effect, which corresponds to the coupling together of the pyroelectric and photovoltaic responses. However, the photodetector performance was significantly better than that of the devices operating based only on the pyro‐phototronic effect by a factor of 4, due to the presence of ferroelectricity in the system. Thus, after a poling voltage of −15 V, for a laser power density of 230 mW/cm2 and at a chopper frequency of 400 Hz, optimized responsivity, detectivity, and sensitivity values of 13.1 mA/W, 1.7 × 1010 Jones, and 26.9, respectively, are achieved. Furthermore, ultrafast rise and fall times of 2.4 and 1.5 µs, respectively, are obtained, which are 35,000 and 36,000 times faster rise and fall responses, respectively, than previous reports of devices with the ferro–pyro–phototronic effect. This is understood based on the much faster ferroelectric switching in ferroelectric thin films owing to the predominant 180° domains in a single direction out of plane.
Carbon Energy arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 2 Powered bymore_vert Carbon Energy arrow_drop_down Universidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2022License: CC BYData sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Low carbon jet fuel throu..., UKRI | Smart Microfluidics Towar..., EC | RDC2MTUKRI| Low carbon jet fuel through integration of novel technologies for co-valorisation of CO2 and biomass ,UKRI| Smart Microfluidics Towards Low-Cost High-Performance Li-Ion Batteries ,EC| RDC2MTZhao, Tianyu; Ojeda, Manuel; Xuan, Jin; Shu, Zhan; Wang, Huizhi;Abstract Aluminum storage in rutile-based TiO2 nanoparticles was for the first time investigated. Electrochemical characteristics of rutile-based TiO2 nanoparticles as an electrode for aluminum-ion batteries were studied using cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The first discharge capacity of 29.4 mAh·g-1 was achieved, and the value remains 22.6 mAh·g-1 after 50 cycles. The highest coulombic efficiency achieved at 89.8%.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:EC | ACOULOMODEEC| ACOULOMODEAimee S. Morgans; Jingxuan Li; Jingxuan Li; Xingsi Han; Yu Xia;handle: 10044/1/53012
Abstract A coupled numerical approach is investigated for predicting combustion instability limit cycle characteristics when the combustor contains a long flame. The test case is the ORACLES combustor, with a turbulent premixed flame a metre long: it exhibits limit cycle oscillations at ∼ 50 Hz and normalised velocity amplitude ahead of the flame of ∼ 0.29. The approach obtains the flame response to acoustic excitation using Large Eddy Simulations (LES), and couples this with a low-order wave-based network representation for the acoustic waves within the combustor. The flame cannot be treated as acoustically compact; the spatial distribution of both its response and the subsequent effect on the acoustics must be accounted for. The long flame is uniformly segmented axially, each segment being much shorter than the flow wavelengths at play. A series of “local” flame describing functions, one for the heat release rate response within each segment to velocity forcing at a fixed reference location, are extracted from the LES. These use the Computational Fluid Dynamics toolbox, OpenFOAM, with an incompressible approximation for the flow-field and combustion modelled using the Partially Stirred Reactor model with a global one-step reaction mechanism. For coupling with the low-order acoustic network modelling, compact acoustic jump conditions are derived and applied across each flame segment, while between flame segments, wave propagation occurs. Limit cycle predictions from the proposed coupled method agree well with those predicted using the continuous 1-D linearised Euler equations, validating the flame segmentation implementation. Limit cycle predictions (frequency 51.6 Hz and amplitude 0.38) also agree well with experimental measurements, validating the low-order coupled method as a prediction tool for combustors with long flames. A sensitivity analysis shows that the predicted limit cycle amplitude decreases rapidly when acoustic losses at boundaries are accounted for, and increases if combustor heat losses downstream of the flame are accounted for. This motivates more accurate determination of combustor boundary and temperature behaviour for thermoacoustic predictions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/53012Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/10.1016/j.co...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2017.06.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/53012Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryhttp://dx.doi.org/10.1016/j.co...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2017.06.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint , Report 2024Embargo end date: 01 Apr 2024 Italy, Italy, France, Germany, France, Italy, Belgium, Switzerland, Italy, Italy, Italy, Italy, France, Spain, Spain, Italy, Italy, United Kingdom, Italy, Germany, Belgium, United Kingdom, France, France, Italy, Spain, Italy, Germany, Italy, Malaysia, United StatesPublisher:American Physical Society (APS) Funded by:EC | INSIGHTS, EC | LHCTOPVLQ, EC | HIGCC +4 projectsEC| INSIGHTS ,EC| LHCTOPVLQ ,EC| HIGCC ,HFRI| TO ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΚΑΙ ΠΕΡΑΝ ΑΥΤΟΥ ΜΕ ΤΟ ΠΕΙΡΑΜΑ CMS ΣΤΟ LHC ,EC| STRONG-2020 ,EC| MajorNet ,EC| AMVA4NewPhysicsAuthors: Hayrapetyan, Aram; Tumasyan, Armen; Adam, Wolfgang; Andrejkovic, Janik Walter; +196 AuthorsHayrapetyan, Aram; Tumasyan, Armen; Adam, Wolfgang; Andrejkovic, Janik Walter; Bergauer, Thomas; Chatterjee, Suman; Damanakis, Konstantinos; Dragicevic, Marko; Escalante Del Valle, Alberto; Hussain, Priya Sajid; Jeitler, Manfred; Krammer, Natascha; Liko, Dietrich; Mikulec, Ivan; Schieck, Jochen; Schöfbeck, Robert; Schwarz, Dennis; Sonawane, Mangesh; Templ, Sebastian; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Darwish, Mohamed Rashad; Janssen, Tahys; Van Mechelen, Pierre; Bols, Emil Sørensen; D'Hondt, Jorgen; Dansana, Soumya; De Moor, Alexandre; Delcourt, Martin; El Faham, Hesham; Lowette, Steven; Makarenko, Inna; Müller, Denise; Sahasransu, Abanti Ranadhir; Tavernier, Stefaan; Tytgat, Michael; Van Putte, Senne; Vannerom, David; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Hohov, Dmytro; Jaramillo, Johny; Khalilzadeh, Ali; Lee, Kyeongpil; Mahdavikhorrami, Mostafa; Malara, Andrea; Paredes, Santiago; Pétré, Laurent; Postiau, Nicolas; Thomas, Laurent; Vanden Bemden, Max; Vander Velde, Catherine; Vanlaer, Pascal; De Coen, Maarten; Dobur, Didar; Hong, Yanwen; Knolle, Joscha; Lambrecht, Luka; Mestdach, Gianny; Rendón, César; Samalan, Amrutha; Skovpen, Kirill; Van Den Bossche, Niels; Wezenbeek, Liam; Benecke, Anna; Bruno, Giacomo; Caputo, Claudio; Delaere, Christophe; Donertas, Izzeddin Suat; Giammanco, Andrea; Jaffel, Khawla; Jain, Sa.; Lemaitre, Vincent; Lidrych, Jindrich; Mastrapasqua, Paola; Mondal, Kuntal; Tran, Tu Thong; Wertz, Sébastien; Alves, Gilvan; Coelho, Eduardo; Hensel, Carsten; Menezes De Oliveira, Thales; Moraes, Arthur; Rebello Teles, Patricia; Soeiro, Mariana; Aldá Júnior, Walter Luiz; Alves Gallo Pereira, Miguel; Barroso Ferreira Filho, Mapse; Brandao Malbouisson, Helena; Carvalho, Wagner; Chinellato, Jose; Da Costa, Eliza Melo; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Martins, Jordan; Mora Herrera, Clemencia; Mota Amarilo, Kevin; Mundim, Luiz; Nogima, Helio; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Calligaris, Luigi; Fernandez Perez Tomei, T. R.; De Moraes Gregores, Eduardo; Mercadante, Pedro G.; Novaes, Sergio F.; Orzari, Breno; Padula, Sandra S.; Aleksandrov, Aleksandar; Antchev, Georgy; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Petrov, Anton; Shumka, Elton; Keshri, Sumit; Thakur, Shalini; Cheng, Tongguang; Guo, Qianying; Javaid, Tahir; Mittal, Monika; Yuan, Li; Bauer, Gerry; Hu, Zhen; Liu, Jinfeng; Yi, Kai; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Iemmi, Fabio; Jiang, Chun-Hua; Kapoor, Anshul; Liao, Hongbo; Liu, Zhenan; Monti, Fabio; Shahzad, Muhammad Aamir; Sharma, Ramkrishna; Song, Jia-ning; Tao, Junquan; Wang, Chu; Wang, Jin; Wang, Zebing; Zhang, Huaqiao; Agapitos, Antonis; Ban, Yong; Levin, Andrew; Li, Congqiao; Li, Qiang; Mao, Yajun; Qian, Si-Jin; Sun, Xiaohu; Wang, Dayong; Yang, Heng; Zhang, Licheng; Zhou, Chen; You, Zhengyun; Lu, Nan; Gao, Xuyang; Leggat, Duncan; Okawa, Hideki; Jain, Shilpi; Lee, H.; Kim, J.; Lee, H.; Bower, Steffi; Baden, Drew; Zhang, Yousen; Xiao, Meng; Avila, Carlos; Barbosa Trujillo, Diego Andres; Cabrera, Andrés; Florez, Carlos; Fraga, Jorge; Reyes Vega, Jose Antonio; Mejia Guisao, Jhovanny; Ramirez, Felipe; Rodriguez, Manuel; Ruiz Alvarez, José David; Giljanovic, Duje; Godinovic, Nikola; Lelas, Damir; Sculac, Ana; Kovac, Marko; Sculac, Toni; Bargassa, Pedrame; Brigljevic, Vuko; Chitroda, Bhakti Kanulal; Ferencek, Dinko; Mishra, Saswat;A search is presented for charged, long-lived supersymmetric particles in final states with one or more disappearing tracks. The search is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the CERN LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb−1. The search is performed over final states characterized by varying numbers of jets, b-tagged jets, electrons, and muons. The length of signal-candidate tracks in the plane perpendicular to the beam axis is used to characterize the lifetimes of wino- and Higgsino-like charginos produced in the context of the minimal supersymmetric standard model. The dE/dx energy loss of signal-candidate tracks is used to increase the sensitivity to charginos with a large mass and thus a small Lorentz boost. The observed results are found to be statistically consistent with the background-only hypothesis. Limits on the pair-production cross section of gluinos and squarks are presented in the framework of simplified models of supersymmetric particle production and decay, and for electroweakino production based on models of wino and Higgsino dark matter. The limits presented are the most stringent to date for scenarios with light third-generation squarks and a wino- or Higgsino-like dark matter candidate capable of explaining the observed dark matter relic density. © 2024 CERN, for the CMS Collaboration 2024 CERN
Archivio istituziona... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1718252/1/Hayrapetyan_Search-for-supersymmetry_2024.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaUniversity of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/35m4g718Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Full-Text: https://hdl.handle.net/11586/514941Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1103/physre...Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaBrunel University Research ArchiveArticle . 2024License: CC BYData sources: Brunel University Research ArchiveArchivio della Ricerca - Università di PisaArticle . 2024Data sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2024Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyUniversità degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevd.109.072007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1718252/1/Hayrapetyan_Search-for-supersymmetry_2024.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaUniversity of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/35m4g718Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2024Full-Text: https://hdl.handle.net/11586/514941Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1103/physre...Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpeneScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaBrunel University Research ArchiveArticle . 2024License: CC BYData sources: Brunel University Research ArchiveArchivio della Ricerca - Università di PisaArticle . 2024Data sources: Archivio della Ricerca - Università di PisaArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2024Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyUniversità degli Studi della Basilicata: CINECA IRISArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevd.109.072007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:EC | INNOVASOLEC| INNOVASOLMagistris, C.; Martiniani, S.; Barbero, N.; Park, J.; Benzi, C.; Anderson, A.; Law, C.; Barolo, C.; O’Regan, B. .;Abstract A NIR absorbing squaraine dye has been synthesized as a sensitizer for use in dye-sensitized solar cells (DSCs). Following computational calculations, a benz[ cd ]indole moiety was selected as an electron-rich heterocyclic component and condensed with indole-based emisquaraine bearing a carboxyl group, as an anchor for their immobilization on TiO 2 , to obtain an unsymmetrical squaraine with extended absorption due to its extensive π conjugation. The cells based on this dye exhibited a spectral response in the near-infrared region over 750 nm in addition to the visible region with a light absorption edge at 900 nm. The cells showed 1.1% efficiency and Incident Photon Current Efficiency (IPCE) of 36% at 800 nm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.06.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 FrancePublisher:Elsevier BV Funded by:EC | GEPIDIAB, ANR | BETAPLASTICITYEC| GEPIDIAB ,ANR| BETAPLASTICITYPhilippe Froguel; Sarah Anissa Hannou; Sarah Anissa Hannou; Emilie Caron; Amélie Bonnefond; Amélie Bonnefond; Christian Dani; Xi Yao; Jean-Sébastien Annicotte; Jean-Sébastien Annicotte; Frédérik Oger; Frédérik Oger; Xavier Gromada; Xavier Gromada; Charlène Carney; Charlène Carney; Emmanuelle Durand; Emmanuelle Durand; Isabel C. Lopez-Mejia; Elisabet Salas; Elisabet Salas; Lluis Fajas; Iandry Rabearivelo; Iandry Rabearivelo; Nabil Rabhi;Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis.We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients.We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression.Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molmet.2017.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molmet.2017.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022Embargo end date: 28 Feb 2023 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Peta-5: A National Facili..., EC | NANOCELLUKRI| Peta-5: A National Facility for Petascale Data Intensive Computation and Analytics ,EC| NANOCELLAuthors: Kaufhold, Will T.; Pfeifer, Wolfgang; Castro, Carlos E.; Di Michele, Lorenzo;Molecular dynamics simulations are often used to provide feedback in the design workflow of DNA nanostructures. However, even with coarse-grained models, the convergence of distributions from unbiased simulation is slow, limiting applications to equilibrium structural properties. Given the increasing interest in dynamic, reconfigurable, and deformable devices, methods that enable efficient quantification of large ranges of motion, conformational transitions, and mechanical deformation are critically needed. Metadynamics is an automated biasing technique that enables the rapid acquisition of molecular conformational distributions by flattening free energy landscapes. Here we leveraged this approach to sample the free energy landscapes of DNA nanostructures whose unbiased dynamics are nonergodic, including bistable Holliday junctions and part of a bistable DNA origami structure. Taking a DNA origami-compliant joint as a case study, we further demonstrate that metadynamics can predict the mechanical response of a full DNA origami device to an applied force, showing good agreement with experiments. Our results exemplify the efficient computation of free energy landscapes and force response in DNA nanodevices, which could be applied for rapid feedback in iterative design workflows and generally facilitate the integration of simulation and experiments. Metadynamics will be particularly useful to guide the design of dynamic devices for nanorobotics, biosensing, or nanomanufacturing applications.
ACS Nano arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/96911Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c08999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Nano arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/96911Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c08999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Funded by:EC | HARVESTOREEC| HARVESTOREAuthors: Navaratnarajah Kuganathan; Alexander Chroneos;doi: 10.3390/en13071547
Porous materials have generated a great deal of interest for use in energy storage technologies, as their architectures have high surface areas due to their porous nature. They are promising candidates for use in many fields such as gas storage, metal storage, gas separation, sensing and magnetism. Novel porous materials which are non-toxic, cheap and have high storage capacities are actively considered for the storage of Li ions in Li-ion batteries. In this study, we employed density functional theory simulations to examine the encapsulation of lithium in both stoichiometric and electride forms of C12A7. This study shows that in both forms of C12A7, Li atoms are thermodynamically stable when compared with isolated gas-phase atoms. Lithium encapsulation through the stoichiometric form (C12A7:O2−) turns its insulating nature metallic and introduces Li+ ions in the lattice. The resulting compound may be of interest as an electrode material for use in Li-ion batteries, as it possesses a metallic character and consists of Li+ ions. The electride form (C12A7:e−) retains its metallic character upon encapsulation, but the concentration of electrons increases in the lattice along with the formation of Li+ ions. The promising features of this material can be tested by performing intercalation experiments in order to determine its applicability in Li-ion batteries.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1547/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1547/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 United Kingdom, United Kingdom, United Kingdom, Germany, Switzerland, France, United KingdomPublisher:Copernicus GmbH Funded by:NSF | Collaborative Research: I..., EC | GREENCYCLESII, EC | GEOCARBON +3 projectsNSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| GREENCYCLESII ,EC| GEOCARBON ,EC| CARBOCHANGE ,EC| EMBRACE ,EC| LUC4CPeter Levy; Steve D Jones; Richard J. Ellis; Anders Ahlström; C. Le Quéré; Philippe Ciais; Nicolas Gruber; Pierre Friedlingstein; Laurent Bopp; Heather Graven; Gordon B. Bonan; Stephen Sitch; Mark R. Lomas; Josep G. Canadell; Chris Huntingford; Christoph Heinze; Christoph Heinze; Benjamin Smith; Ranga B. Myneni; Ning Zeng; S. L. Piao; Sönke Zaehle; Scott C. Doney; Almut Arneth; Samuel Levis; Nicolas Viovy; Manuel Gloor; Zaichun Zhu; Philippe Peylin; Guillermo N. Murray-Tortarolo; Benjamin Poulter; Frédéric Chevallier;Abstract. The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.
NERC Open Research A... arrow_drop_down Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.biogeosciences.net/12/653/2015/Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-1...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Open Research ExeterArticle . 2015License: CC BYFull-Text: http://www.biogeosciences.net/12/653/2015/Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2015License: CC BYFull-Text: https://doi.org/10.5194/bg-12-653-2015Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/21493Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01806663Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015License: CC BYData sources: Spiral - Imperial College Digital RepositoryUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-1...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Wiley Funded by:EC | CHT-sCO2EC| CHT-sCO2Authors: Guo, Jiangfeng; Huai, Xiulan;AbstractAs zero‐emission technologies, a daytime radiative cooling (RC) strategy developed recently, and photovoltaic (PV) and thermoelectric (TE) technologies have aroused great interest to reduce fossil fuel consumption and carbon emissions. How to integrate these state‐of‐the‐art technologies to maximise clean electricity from the sun and space remains a huge challenge, and the limit efficiency is still unclear. In this study, a spectral‐splitting PV‐TE hybrid system integrated with RC is proposed to maximise clean electricity from the sun and space without any emissions. For the sun acting as a typical constant heat‐flux heat source, the current thermoelectric theory overestimates the thermoelectric efficiency highly since the theory is based on constant temperature‐difference conditions. A new theory based on heat‐flux conditions is employed to achieve maximum thermoelectric efficiency. The PV‐TE hybrid system with RC is superior to the conventional hybrid system, not only in terms of higher efficiency but also in its 24‐h operation capacity. In a system with a single‐junction cell, the total efficiency with 30 suns (39.4%) is higher than the theoretical PV efficiency at 500 suns (38.2%). In a hybrid system with four‐junction cells, total efficiency is over 65% which is superior to most current photoelectric and thermal power systems.
Advanced Science arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/104381Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2023License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202206575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Science arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/104381Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2023License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202206575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu