- home
- Search
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 2. Zero hunger
- 1. No poverty
- EU
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 2. Zero hunger
- 1. No poverty
- EU
description Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:European Journal of Social Impact and Circular Economy Funded by:EC | BIO-PLASTICS EUROPEEC| BIO-PLASTICS EUROPEAuthors: Eleonora Foschi; Selena Aureli; Angelo Paletta;handle: 11585/939603
Bio-based and biodegradable plastics (BBPs) are innovative materials, wholly or partially produced from biomass, with the potential to enhance the circulation of resources in the biological cycle of the Ellen MacArthur Foundation’s butterfly diagram. Although BBPs are generally considered more environmental-friendly than conventional plastics, robust scientific evidence is still missing. The lack of tools and metrics to assess the circularity and sustainability of the BBPs industry poses relevant challenges for its upscaling and contribution to climate neutrality goals in Europe. It calls for adopting system and life cycle thinking, guided by multi-level and multi-dimensional examinations, which led researchers to build a comprehensive picture of trends, gaps and future orientations that may boost a sustainable circular bioeconomy in the sector. The value- chain based and multi-faceted SWOT analysis that emerged from the intersection of system and corporate data reveals the need to establish a combined circular bioeconomy strategy where incentives to integrated local supply chain, dedicated EPR scheme, eco-design guidelines, revised EoL standards, new clear labelling schemes and harmonised sustainability criteria should be prioritized and conjointly pursued to accelerate the transition towards a sustainable circular bioeconomy of the BBPs value chain. European Journal of Social Impact and Circular Economy, V. 4 N. 2 (2023)
Archivio istituziona... arrow_drop_down European Journal of Social Impact and Circular EconomyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13135/2704-9906/7154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down European Journal of Social Impact and Circular EconomyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13135/2704-9906/7154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:European Journal of Social Impact and Circular Economy Funded by:EC | BIO-PLASTICS EUROPEEC| BIO-PLASTICS EUROPEAuthors: Eleonora Foschi; Selena Aureli; Angelo Paletta;handle: 11585/939603
Bio-based and biodegradable plastics (BBPs) are innovative materials, wholly or partially produced from biomass, with the potential to enhance the circulation of resources in the biological cycle of the Ellen MacArthur Foundation’s butterfly diagram. Although BBPs are generally considered more environmental-friendly than conventional plastics, robust scientific evidence is still missing. The lack of tools and metrics to assess the circularity and sustainability of the BBPs industry poses relevant challenges for its upscaling and contribution to climate neutrality goals in Europe. It calls for adopting system and life cycle thinking, guided by multi-level and multi-dimensional examinations, which led researchers to build a comprehensive picture of trends, gaps and future orientations that may boost a sustainable circular bioeconomy in the sector. The value- chain based and multi-faceted SWOT analysis that emerged from the intersection of system and corporate data reveals the need to establish a combined circular bioeconomy strategy where incentives to integrated local supply chain, dedicated EPR scheme, eco-design guidelines, revised EoL standards, new clear labelling schemes and harmonised sustainability criteria should be prioritized and conjointly pursued to accelerate the transition towards a sustainable circular bioeconomy of the BBPs value chain. European Journal of Social Impact and Circular Economy, V. 4 N. 2 (2023)
Archivio istituziona... arrow_drop_down European Journal of Social Impact and Circular EconomyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13135/2704-9906/7154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down European Journal of Social Impact and Circular EconomyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13135/2704-9906/7154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | OASISEC| OASISAuthors: Parascanu, María Magdalena; Esteban-Arranz, Adrián; de la Osa, Ana Raquel; Romero, Amaya; +1 AuthorsParascanu, María Magdalena; Esteban-Arranz, Adrián; de la Osa, Ana Raquel; Romero, Amaya; Sánchez-Silva, Luz;handle: 10578/29896
Nowadays, organic aerogels have arisen as promising materials for different applications such as: building, construction, energy among others, due to their low density, high thermal insulation capacity and high porosity. In the recent years multiple procedures to synthesize them have been developed, however, the freeze-drying method has gained more importance, being considered a cost-competitive, eco-friendly, and efficient process. Therefore, it is fundamental to evaluate its environmental impacts for its future implementation as a sustainable industrial process. In this work, a Life Cycle Assessment on the synthesis of nanoclay reinforced polyvinyl alcohol aerogels by freeze-drying has been carried out. Furthermore, the influence of the production scale (laboratory and pilot line) and the functional unit (1 kg and 1 m3) have been studied. Additionally, different upgrading approaches carried out in the pilot line, energy efficiency and production capacity, have been evaluated. Results demonstrated that better environmental impact values were obtained with pilot line aerogel production in comparison to laboratory scale for both functional units. Regarding the different upgrade assessment with the pilot line, it has been concluded that the background processes and the energy consumption are the main causes for the increment in the environmental impact values during the aerogel synthesis. En la actualidad, los aerogeles orgánicos han surgido como materiales promisorios para diferentes aplicaciones tales como: edificación, construcción, energía entre otras, debido a su baja densidad, alta capacidad de aislamiento térmico y alta porosidad. En los últimos años se han desarrollado múltiples procedimientos para sintetizarlos, sin embargo, el método de liofilización ha ganado mayor importancia, siendo considerado un proceso rentable, amigable con el medio ambiente y eficiente. Por lo tanto, es fundamental evaluar sus impactos ambientales para su futura implementación como un proceso industrial sostenible. En este trabajo se ha llevado a cabo un análisis del ciclo de vida de la síntesis de aerogeles de poli(alcohol vinílico) reforzados con nanoarcillas mediante liofilización. Además, la influencia de la escala de producción (laboratorio y línea piloto) y la unidad funcional (1 kg y 1 m 3) han sido estudiados. Adicionalmente, se han evaluado diferentes enfoques de mejora llevados a cabo en la línea piloto, eficiencia energética y capacidad de producción. Los resultados demostraron que se obtuvieron mejores valores de impacto ambiental con la producción de aerogel en línea piloto en comparación con la escala de laboratorio para ambas unidades funcionales. En cuanto a la evaluación de diferentes actualizaciones con la línea piloto, se ha concluido que los procesos de fondo y el consumo de energía son las principales causas del incremento en los valores de impacto ambiental durante la síntesis del aerogel.
Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1016/j.ch...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.10.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1016/j.ch...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.10.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | OASISEC| OASISAuthors: Parascanu, María Magdalena; Esteban-Arranz, Adrián; de la Osa, Ana Raquel; Romero, Amaya; +1 AuthorsParascanu, María Magdalena; Esteban-Arranz, Adrián; de la Osa, Ana Raquel; Romero, Amaya; Sánchez-Silva, Luz;handle: 10578/29896
Nowadays, organic aerogels have arisen as promising materials for different applications such as: building, construction, energy among others, due to their low density, high thermal insulation capacity and high porosity. In the recent years multiple procedures to synthesize them have been developed, however, the freeze-drying method has gained more importance, being considered a cost-competitive, eco-friendly, and efficient process. Therefore, it is fundamental to evaluate its environmental impacts for its future implementation as a sustainable industrial process. In this work, a Life Cycle Assessment on the synthesis of nanoclay reinforced polyvinyl alcohol aerogels by freeze-drying has been carried out. Furthermore, the influence of the production scale (laboratory and pilot line) and the functional unit (1 kg and 1 m3) have been studied. Additionally, different upgrading approaches carried out in the pilot line, energy efficiency and production capacity, have been evaluated. Results demonstrated that better environmental impact values were obtained with pilot line aerogel production in comparison to laboratory scale for both functional units. Regarding the different upgrade assessment with the pilot line, it has been concluded that the background processes and the energy consumption are the main causes for the increment in the environmental impact values during the aerogel synthesis. En la actualidad, los aerogeles orgánicos han surgido como materiales promisorios para diferentes aplicaciones tales como: edificación, construcción, energía entre otras, debido a su baja densidad, alta capacidad de aislamiento térmico y alta porosidad. En los últimos años se han desarrollado múltiples procedimientos para sintetizarlos, sin embargo, el método de liofilización ha ganado mayor importancia, siendo considerado un proceso rentable, amigable con el medio ambiente y eficiente. Por lo tanto, es fundamental evaluar sus impactos ambientales para su futura implementación como un proceso industrial sostenible. En este trabajo se ha llevado a cabo un análisis del ciclo de vida de la síntesis de aerogeles de poli(alcohol vinílico) reforzados con nanoarcillas mediante liofilización. Además, la influencia de la escala de producción (laboratorio y línea piloto) y la unidad funcional (1 kg y 1 m 3) han sido estudiados. Adicionalmente, se han evaluado diferentes enfoques de mejora llevados a cabo en la línea piloto, eficiencia energética y capacidad de producción. Los resultados demostraron que se obtuvieron mejores valores de impacto ambiental con la producción de aerogel en línea piloto en comparación con la escala de laboratorio para ambas unidades funcionales. En cuanto a la evaluación de diferentes actualizaciones con la línea piloto, se ha concluido que los procesos de fondo y el consumo de energía son las principales causas del incremento en los valores de impacto ambiental durante la síntesis del aerogel.
Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1016/j.ch...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.10.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1016/j.ch...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.10.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, GermanyPublisher:Institution of Engineering and Technology (IET) Funded by:EC | AMITRANEC| AMITRANMahmod, M.; Jonkers, E.; Klunder, G.A.; Benz, T.; Winder, A.;Transport is an important source of air pollution and greenhouse gas emissions. Although the applications of information and communication technologies (ICTs) for transport, also known as intelligent transport systems, are seen as having great potential to help reduce emissions from road transport, their exact impact on CO2 emissions are uncertain for decision makers from government to industry. This uncertainty hinders the deployment of such applications. Therefore there is a need for a common evaluation approach to assess the CO2 impact of ICT measures in a systemic and realistic way. In this study, a methodology framework to evaluate the impact of ICT measures on CO2 emissions is explained. The methodology was developed within the European Union FP7 project Amitran. In particular, this study focuses on the outline and the framework architecture of the methodology as well as the required interfaces between the required models. The use of the methodology is demonstrated by applying it to a use case of dynamic traffic light systems. Finally, the efforts made to validate the methodology and make it accessible to users are explained.
IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, GermanyPublisher:Institution of Engineering and Technology (IET) Funded by:EC | AMITRANEC| AMITRANMahmod, M.; Jonkers, E.; Klunder, G.A.; Benz, T.; Winder, A.;Transport is an important source of air pollution and greenhouse gas emissions. Although the applications of information and communication technologies (ICTs) for transport, also known as intelligent transport systems, are seen as having great potential to help reduce emissions from road transport, their exact impact on CO2 emissions are uncertain for decision makers from government to industry. This uncertainty hinders the deployment of such applications. Therefore there is a need for a common evaluation approach to assess the CO2 impact of ICT measures in a systemic and realistic way. In this study, a methodology framework to evaluate the impact of ICT measures on CO2 emissions is explained. The methodology was developed within the European Union FP7 project Amitran. In particular, this study focuses on the outline and the framework architecture of the methodology as well as the required interfaces between the required models. The use of the methodology is demonstrated by applying it to a use case of dynamic traffic light systems. Finally, the efforts made to validate the methodology and make it accessible to users are explained.
IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Funded by:EC | SUPERMATEC| SUPERMATAuthors: Romero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; +1 AuthorsRomero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; Tudor, Albert Ioan;NaNO3 has been selected as phase change material (PCM) due to its convenient melting and crystallization temperatures for thermal energy storage (TES) in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation) into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks). As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2) instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C). Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/mfreview/2018003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/mfreview/2018003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Funded by:EC | SUPERMATEC| SUPERMATAuthors: Romero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; +1 AuthorsRomero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; Tudor, Albert Ioan;NaNO3 has been selected as phase change material (PCM) due to its convenient melting and crystallization temperatures for thermal energy storage (TES) in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation) into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks). As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2) instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C). Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/mfreview/2018003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/mfreview/2018003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Frontiers Media SA Funded by:EC | GrapheneCore3, WTEC| GrapheneCore3 ,WTAuthors: Koliolios, E; Mills, DG; Busfield, JJC; Tan, W;The high surface area, electrical and mechanical properties of carbon nanotube (CNT) composites has rendered them promising candidates for structural power composites. Nevertheless, it is important to understand their mechanical behaviour before they are applied in energy storage devices amid the safety concerns. This work explores the nail penetration behaviours of supercapacitor specimens consisting of CNT electrodes and pseudocapacitor specimens with carbon nanotube-polyaniline (CNT/PANI) electrodes. Specimens with and without electrolyte were tested. The dry cells without electrolyte follow a power law behaviour, while the wet cells with the electrolyte exhibit a piece-wise nonlinear relationship. The force, voltage and temperature of the supercapacitor were recorded during the nail penetration test. No temperature change or overheating was observed after short-circuit. Moreover, electrochemical testing is performed before and after the specimen penetration. The cyclic voltammetry shows the dramatic loss of capacitance, changing the cell behaviour from capacitor to resistor-like manner. Johnson-Cook model was used to predict the nail penetration behaviour. The coefficients of Johnson-Cook model are calibrated from the experimental load-displacement curves. The finite element model predictions are in a good agreement with the experimental results.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2021.741541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2021.741541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Frontiers Media SA Funded by:EC | GrapheneCore3, WTEC| GrapheneCore3 ,WTAuthors: Koliolios, E; Mills, DG; Busfield, JJC; Tan, W;The high surface area, electrical and mechanical properties of carbon nanotube (CNT) composites has rendered them promising candidates for structural power composites. Nevertheless, it is important to understand their mechanical behaviour before they are applied in energy storage devices amid the safety concerns. This work explores the nail penetration behaviours of supercapacitor specimens consisting of CNT electrodes and pseudocapacitor specimens with carbon nanotube-polyaniline (CNT/PANI) electrodes. Specimens with and without electrolyte were tested. The dry cells without electrolyte follow a power law behaviour, while the wet cells with the electrolyte exhibit a piece-wise nonlinear relationship. The force, voltage and temperature of the supercapacitor were recorded during the nail penetration test. No temperature change or overheating was observed after short-circuit. Moreover, electrochemical testing is performed before and after the specimen penetration. The cyclic voltammetry shows the dramatic loss of capacitance, changing the cell behaviour from capacitor to resistor-like manner. Johnson-Cook model was used to predict the nail penetration behaviour. The coefficients of Johnson-Cook model are calibrated from the experimental load-displacement curves. The finite element model predictions are in a good agreement with the experimental results.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2021.741541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2021.741541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2009 SwedenPublisher:The Electrochemical Society Funded by:EC | MMFCSEC| MMFCSAuthors: Andersson, Martin; Yuan, Jinliang; Sundén, Bengt;Fuel cells (FCs) are promising for future energy systems, since they are energy efficient and fuel can be produced locally. When hydrogen is used as fuel, there are no emissions of greenhouse gases. In this study a two dimensional CFD (COMSOL Multiphysics) is employed to study the effect from porous material surface area ratio on reforming reaction rates and gas species distributions for an anode-supported solid oxide fuel cell (SOFC). FCs can be considered as multifunctional energy devises, combining (electro-) chemical reactions, heat exchange, gas- and ionic transport. All these functions are strongly integrated, making modeling an important tool to understand the couplings between mass-, heat-, momentum transport and chemical reactions. Steam reforming takes place at the nickel material surfaces in the anode and water-gas shift reaction occurs where fuel gas is present. Benefit from the internal reforming is that the energy conversion efficiency will be higher, compared to the case of pure hydrogen as fuel.
ECS Transactions arrow_drop_down http://dx.doi.org/10.1149/1.32...Conference object . 2009Data sources: European Research Council (ERC)ECS TransactionsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3205649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Transactions arrow_drop_down http://dx.doi.org/10.1149/1.32...Conference object . 2009Data sources: European Research Council (ERC)ECS TransactionsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3205649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2009 SwedenPublisher:The Electrochemical Society Funded by:EC | MMFCSEC| MMFCSAuthors: Andersson, Martin; Yuan, Jinliang; Sundén, Bengt;Fuel cells (FCs) are promising for future energy systems, since they are energy efficient and fuel can be produced locally. When hydrogen is used as fuel, there are no emissions of greenhouse gases. In this study a two dimensional CFD (COMSOL Multiphysics) is employed to study the effect from porous material surface area ratio on reforming reaction rates and gas species distributions for an anode-supported solid oxide fuel cell (SOFC). FCs can be considered as multifunctional energy devises, combining (electro-) chemical reactions, heat exchange, gas- and ionic transport. All these functions are strongly integrated, making modeling an important tool to understand the couplings between mass-, heat-, momentum transport and chemical reactions. Steam reforming takes place at the nickel material surfaces in the anode and water-gas shift reaction occurs where fuel gas is present. Benefit from the internal reforming is that the energy conversion efficiency will be higher, compared to the case of pure hydrogen as fuel.
ECS Transactions arrow_drop_down http://dx.doi.org/10.1149/1.32...Conference object . 2009Data sources: European Research Council (ERC)ECS TransactionsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3205649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Transactions arrow_drop_down http://dx.doi.org/10.1149/1.32...Conference object . 2009Data sources: European Research Council (ERC)ECS TransactionsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3205649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2021Publisher:MDPI AG Funded by:EC | OK-Net EcoFeedEC| OK-Net EcoFeedAuthors: Marleen Elise van der Heide; Lene Stødkilde; Jan Værum Nørgaard; Merete Studnitz;doi: 10.3390/su13042303
Organic monogastric agriculture is challenged because of a limited availability of regional and organic protein-rich ingredients to fulfill the amino acid requirements. The development of novel feed ingredients is therefore essential. The use of starfish (Asterias rubens), mussel (Mytilus edilus), insect, green and brown seaweed, and forage crop extracts exhibits different approaches to increase protein availability in a sustainable manner through improving the protein quality of existing ingredients, better use of under- or unutilized material, or development of circular bioeconomy. This review assessed limitations and opportunities of producing, processing, and using these novel ingredients in feed. The use of non-renewable resources and the effect on the environment of production and processing the feed ingredients are described. Protein concentration and amino acid quality of the feed ingredients are evaluated to understand their substitution potential compared with protein-rich soya bean and fishmeal. Feedstuffs’ effect on digestibility and animal performance is summarized. With the exception of seaweed, all novel ingredients show potential to partly substitute fishmeal or soya bean fulfilling part of the protein requirement in organic monogastric production. However, improvements during production and processing can be made to enhance protein quality, sustainability of the novel ingredients, and nutrient utilization of novel feed ingredients.
Sustainability arrow_drop_down SustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/4/2303/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 4 Powered bymore_vert Sustainability arrow_drop_down SustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/4/2303/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2021Publisher:MDPI AG Funded by:EC | OK-Net EcoFeedEC| OK-Net EcoFeedAuthors: Marleen Elise van der Heide; Lene Stødkilde; Jan Værum Nørgaard; Merete Studnitz;doi: 10.3390/su13042303
Organic monogastric agriculture is challenged because of a limited availability of regional and organic protein-rich ingredients to fulfill the amino acid requirements. The development of novel feed ingredients is therefore essential. The use of starfish (Asterias rubens), mussel (Mytilus edilus), insect, green and brown seaweed, and forage crop extracts exhibits different approaches to increase protein availability in a sustainable manner through improving the protein quality of existing ingredients, better use of under- or unutilized material, or development of circular bioeconomy. This review assessed limitations and opportunities of producing, processing, and using these novel ingredients in feed. The use of non-renewable resources and the effect on the environment of production and processing the feed ingredients are described. Protein concentration and amino acid quality of the feed ingredients are evaluated to understand their substitution potential compared with protein-rich soya bean and fishmeal. Feedstuffs’ effect on digestibility and animal performance is summarized. With the exception of seaweed, all novel ingredients show potential to partly substitute fishmeal or soya bean fulfilling part of the protein requirement in organic monogastric production. However, improvements during production and processing can be made to enhance protein quality, sustainability of the novel ingredients, and nutrient utilization of novel feed ingredients.
Sustainability arrow_drop_down SustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/4/2303/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 4 Powered bymore_vert Sustainability arrow_drop_down SustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/4/2303/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | THERMOSSEC| THERMOSSAuthors: Manfren, Massimiliano; James, Patrick AB; Aragon, Victoria; Tronchin, Lamberto;handle: 11585/943393
The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refurbishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings, together with other benefits. Measured building performance, however, often reveals a significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement. In this research, interpretable regression models are built with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves (TRVs) and gas absorption heat pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of modelling research, time of week and temperature (TOWT) approach is reformulated and benchmarked against its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible extensions of the use of energy signature modelling, highlighting implications for energy management and innovative building technologies development.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | THERMOSSEC| THERMOSSAuthors: Manfren, Massimiliano; James, Patrick AB; Aragon, Victoria; Tronchin, Lamberto;handle: 11585/943393
The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refurbishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings, together with other benefits. Measured building performance, however, often reveals a significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement. In this research, interpretable regression models are built with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves (TRVs) and gas absorption heat pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of modelling research, time of week and temperature (TOWT) approach is reformulated and benchmarked against its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible extensions of the use of energy signature modelling, highlighting implications for energy management and innovative building technologies development.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Funded by:EC | SUNFUELSEC| SUNFUELSAuthors: Jonathan R. Scheffe; Aldo Steinfeld; Aldo Steinfeld; Michael Welte;doi: 10.1021/ie402620k
An aerosol reactor was tested for the thermal reduction of ceria as part of a solar thermochemical redox cycle for producing H2 and CO from H2O and CO2. The design is based on the downward aerosol flow of ceria particles, counter to an argon sweep gas, which are rapidly heated and thermally reduced within residence times of less than 1 s. When operating in the temperature range of 1723–1873 K and at oxygen partial pressures between 5 × 10–5 and 1.2 × 10–4 atm, reduction extents of small particles (Dv50 = 12 μm) approached those predicted by thermodynamics. However, heat- and mass-transfer effects were found to limit their conversion when the ceria mass flow rate was increased above 100 mg s–1. This reactor concept inherently results in separation of the reduced ceria and evolved O2(g), operates isothermally throughout the day, and decouples the reduction and oxidation steps in both space and time for potential 24-h syngas generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ie402620k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ie402620k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Funded by:EC | SUNFUELSEC| SUNFUELSAuthors: Jonathan R. Scheffe; Aldo Steinfeld; Aldo Steinfeld; Michael Welte;doi: 10.1021/ie402620k
An aerosol reactor was tested for the thermal reduction of ceria as part of a solar thermochemical redox cycle for producing H2 and CO from H2O and CO2. The design is based on the downward aerosol flow of ceria particles, counter to an argon sweep gas, which are rapidly heated and thermally reduced within residence times of less than 1 s. When operating in the temperature range of 1723–1873 K and at oxygen partial pressures between 5 × 10–5 and 1.2 × 10–4 atm, reduction extents of small particles (Dv50 = 12 μm) approached those predicted by thermodynamics. However, heat- and mass-transfer effects were found to limit their conversion when the ceria mass flow rate was increased above 100 mg s–1. This reactor concept inherently results in separation of the reduced ceria and evolved O2(g), operates isothermally throughout the day, and decouples the reduction and oxidation steps in both space and time for potential 24-h syngas generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ie402620k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ie402620k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 04 May 2021 Croatia, South Africa, CroatiaPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITYEC| HYDRIDE4MOBILITYLototskyy, Mykhaylo; Tolj, Ivan; Klochko, Yevgeniy; Davids, Moegamat Wafeeq; Swanepoel, Dana; Linkov, Vladimir;The use of fuel cells (FC) in heavy duty utility vehicles, including material handling units / forklifts or underground mining vehicles, has a number of advantages over similar battery-driven vehicles including: constant power during the entire shift, and shorter refuelling time as compared to the time to recharge the battery. Most of vehicular FC power systems demonstrated so far have utilised compressed H2 stored in gas cylinders at pressures up to 350 bar. This solution, however, results in too light weight of the FC power modules for the utility vehicles which require additional ballast for a proper counterbalancing to provide vehicle stability. In the underground applications, the use of pressurised hydrogen (> 20 bar) is not acceptable at all for the safety reasons. A promising alternative is the application of metal hydrides (MH) for the on-board hydrogen storage [1]. The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles [2]. Here, we present new engineering solutions [3, 4] of a MH hydrogen storage tank for FC utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge / discharge. The tank is an assembly of several MH cassettes. Each cassette comprises several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. H2 input / output pipelines are ended by gas filters inside the MH containers and connected to a common gas manifold from the opposite side. The assembly of the MH containers staggered together with heating / cooling tubes is encased in molten lead followed by the solidification of the latter. During lead encasing, the inner space of the MH containers is evacuated providing initial activation of the MH material. After cooling down, the MH cassette is filled with pressurised H2 for the initial H2 charge which starts immediately and completes in about 1.5 hours. One MH cassette comprising of five 51.3x800 mm MH containers (each filled with ~3 kg of the MH material) has hydrogen storage capacity about 2.5 Nm3 H2. When heated with a running water to T=40– 50 °C (typical coolant temperature during the operation of a PEMFC stack), the cassette can release more than 60% of this maximum amount at the H2 flow rate of 25 NL/min that corresponds to 1 hour long full load operation of 2.5 kWe stack at 50% efficiency. Furthermore, at the heating temperature about 40 °C and H2 output flow rate of 15 NL/min (equivalent to the stack power of 1.38 kWe at the same efficiency) the H2 release remains stable during >2 hours providing utilisation of ~80% of the stored H2. {"references": ["M.V. Lototskyy, et al, . Progr. Natur. Sci., 27 (2017) 3-20", "M.V. Lototskyy, et al, . J. Power Sources, 316 (2016) 239-250", "M.V.Lototskyy, et. al, Patent application WO 2015/189758 A1", "M.V.Lototskyy, et. al, Patent application UK 1806840.3 (2018)"]}
Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 207visibility views 207 download downloads 35 Powered bymore_vert Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 04 May 2021 Croatia, South Africa, CroatiaPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITYEC| HYDRIDE4MOBILITYLototskyy, Mykhaylo; Tolj, Ivan; Klochko, Yevgeniy; Davids, Moegamat Wafeeq; Swanepoel, Dana; Linkov, Vladimir;The use of fuel cells (FC) in heavy duty utility vehicles, including material handling units / forklifts or underground mining vehicles, has a number of advantages over similar battery-driven vehicles including: constant power during the entire shift, and shorter refuelling time as compared to the time to recharge the battery. Most of vehicular FC power systems demonstrated so far have utilised compressed H2 stored in gas cylinders at pressures up to 350 bar. This solution, however, results in too light weight of the FC power modules for the utility vehicles which require additional ballast for a proper counterbalancing to provide vehicle stability. In the underground applications, the use of pressurised hydrogen (> 20 bar) is not acceptable at all for the safety reasons. A promising alternative is the application of metal hydrides (MH) for the on-board hydrogen storage [1]. The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles [2]. Here, we present new engineering solutions [3, 4] of a MH hydrogen storage tank for FC utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge / discharge. The tank is an assembly of several MH cassettes. Each cassette comprises several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. H2 input / output pipelines are ended by gas filters inside the MH containers and connected to a common gas manifold from the opposite side. The assembly of the MH containers staggered together with heating / cooling tubes is encased in molten lead followed by the solidification of the latter. During lead encasing, the inner space of the MH containers is evacuated providing initial activation of the MH material. After cooling down, the MH cassette is filled with pressurised H2 for the initial H2 charge which starts immediately and completes in about 1.5 hours. One MH cassette comprising of five 51.3x800 mm MH containers (each filled with ~3 kg of the MH material) has hydrogen storage capacity about 2.5 Nm3 H2. When heated with a running water to T=40– 50 °C (typical coolant temperature during the operation of a PEMFC stack), the cassette can release more than 60% of this maximum amount at the H2 flow rate of 25 NL/min that corresponds to 1 hour long full load operation of 2.5 kWe stack at 50% efficiency. Furthermore, at the heating temperature about 40 °C and H2 output flow rate of 15 NL/min (equivalent to the stack power of 1.38 kWe at the same efficiency) the H2 release remains stable during >2 hours providing utilisation of ~80% of the stored H2. {"references": ["M.V. Lototskyy, et al, . Progr. Natur. Sci., 27 (2017) 3-20", "M.V. Lototskyy, et al, . J. Power Sources, 316 (2016) 239-250", "M.V.Lototskyy, et. al, Patent application WO 2015/189758 A1", "M.V.Lototskyy, et. al, Patent application UK 1806840.3 (2018)"]}
Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 207visibility views 207 download downloads 35 Powered bymore_vert Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:European Journal of Social Impact and Circular Economy Funded by:EC | BIO-PLASTICS EUROPEEC| BIO-PLASTICS EUROPEAuthors: Eleonora Foschi; Selena Aureli; Angelo Paletta;handle: 11585/939603
Bio-based and biodegradable plastics (BBPs) are innovative materials, wholly or partially produced from biomass, with the potential to enhance the circulation of resources in the biological cycle of the Ellen MacArthur Foundation’s butterfly diagram. Although BBPs are generally considered more environmental-friendly than conventional plastics, robust scientific evidence is still missing. The lack of tools and metrics to assess the circularity and sustainability of the BBPs industry poses relevant challenges for its upscaling and contribution to climate neutrality goals in Europe. It calls for adopting system and life cycle thinking, guided by multi-level and multi-dimensional examinations, which led researchers to build a comprehensive picture of trends, gaps and future orientations that may boost a sustainable circular bioeconomy in the sector. The value- chain based and multi-faceted SWOT analysis that emerged from the intersection of system and corporate data reveals the need to establish a combined circular bioeconomy strategy where incentives to integrated local supply chain, dedicated EPR scheme, eco-design guidelines, revised EoL standards, new clear labelling schemes and harmonised sustainability criteria should be prioritized and conjointly pursued to accelerate the transition towards a sustainable circular bioeconomy of the BBPs value chain. European Journal of Social Impact and Circular Economy, V. 4 N. 2 (2023)
Archivio istituziona... arrow_drop_down European Journal of Social Impact and Circular EconomyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13135/2704-9906/7154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down European Journal of Social Impact and Circular EconomyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13135/2704-9906/7154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:European Journal of Social Impact and Circular Economy Funded by:EC | BIO-PLASTICS EUROPEEC| BIO-PLASTICS EUROPEAuthors: Eleonora Foschi; Selena Aureli; Angelo Paletta;handle: 11585/939603
Bio-based and biodegradable plastics (BBPs) are innovative materials, wholly or partially produced from biomass, with the potential to enhance the circulation of resources in the biological cycle of the Ellen MacArthur Foundation’s butterfly diagram. Although BBPs are generally considered more environmental-friendly than conventional plastics, robust scientific evidence is still missing. The lack of tools and metrics to assess the circularity and sustainability of the BBPs industry poses relevant challenges for its upscaling and contribution to climate neutrality goals in Europe. It calls for adopting system and life cycle thinking, guided by multi-level and multi-dimensional examinations, which led researchers to build a comprehensive picture of trends, gaps and future orientations that may boost a sustainable circular bioeconomy in the sector. The value- chain based and multi-faceted SWOT analysis that emerged from the intersection of system and corporate data reveals the need to establish a combined circular bioeconomy strategy where incentives to integrated local supply chain, dedicated EPR scheme, eco-design guidelines, revised EoL standards, new clear labelling schemes and harmonised sustainability criteria should be prioritized and conjointly pursued to accelerate the transition towards a sustainable circular bioeconomy of the BBPs value chain. European Journal of Social Impact and Circular Economy, V. 4 N. 2 (2023)
Archivio istituziona... arrow_drop_down European Journal of Social Impact and Circular EconomyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13135/2704-9906/7154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down European Journal of Social Impact and Circular EconomyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13135/2704-9906/7154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | OASISEC| OASISAuthors: Parascanu, María Magdalena; Esteban-Arranz, Adrián; de la Osa, Ana Raquel; Romero, Amaya; +1 AuthorsParascanu, María Magdalena; Esteban-Arranz, Adrián; de la Osa, Ana Raquel; Romero, Amaya; Sánchez-Silva, Luz;handle: 10578/29896
Nowadays, organic aerogels have arisen as promising materials for different applications such as: building, construction, energy among others, due to their low density, high thermal insulation capacity and high porosity. In the recent years multiple procedures to synthesize them have been developed, however, the freeze-drying method has gained more importance, being considered a cost-competitive, eco-friendly, and efficient process. Therefore, it is fundamental to evaluate its environmental impacts for its future implementation as a sustainable industrial process. In this work, a Life Cycle Assessment on the synthesis of nanoclay reinforced polyvinyl alcohol aerogels by freeze-drying has been carried out. Furthermore, the influence of the production scale (laboratory and pilot line) and the functional unit (1 kg and 1 m3) have been studied. Additionally, different upgrading approaches carried out in the pilot line, energy efficiency and production capacity, have been evaluated. Results demonstrated that better environmental impact values were obtained with pilot line aerogel production in comparison to laboratory scale for both functional units. Regarding the different upgrade assessment with the pilot line, it has been concluded that the background processes and the energy consumption are the main causes for the increment in the environmental impact values during the aerogel synthesis. En la actualidad, los aerogeles orgánicos han surgido como materiales promisorios para diferentes aplicaciones tales como: edificación, construcción, energía entre otras, debido a su baja densidad, alta capacidad de aislamiento térmico y alta porosidad. En los últimos años se han desarrollado múltiples procedimientos para sintetizarlos, sin embargo, el método de liofilización ha ganado mayor importancia, siendo considerado un proceso rentable, amigable con el medio ambiente y eficiente. Por lo tanto, es fundamental evaluar sus impactos ambientales para su futura implementación como un proceso industrial sostenible. En este trabajo se ha llevado a cabo un análisis del ciclo de vida de la síntesis de aerogeles de poli(alcohol vinílico) reforzados con nanoarcillas mediante liofilización. Además, la influencia de la escala de producción (laboratorio y línea piloto) y la unidad funcional (1 kg y 1 m 3) han sido estudiados. Adicionalmente, se han evaluado diferentes enfoques de mejora llevados a cabo en la línea piloto, eficiencia energética y capacidad de producción. Los resultados demostraron que se obtuvieron mejores valores de impacto ambiental con la producción de aerogel en línea piloto en comparación con la escala de laboratorio para ambas unidades funcionales. En cuanto a la evaluación de diferentes actualizaciones con la línea piloto, se ha concluido que los procesos de fondo y el consumo de energía son las principales causas del incremento en los valores de impacto ambiental durante la síntesis del aerogel.
Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1016/j.ch...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.10.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1016/j.ch...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.10.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | OASISEC| OASISAuthors: Parascanu, María Magdalena; Esteban-Arranz, Adrián; de la Osa, Ana Raquel; Romero, Amaya; +1 AuthorsParascanu, María Magdalena; Esteban-Arranz, Adrián; de la Osa, Ana Raquel; Romero, Amaya; Sánchez-Silva, Luz;handle: 10578/29896
Nowadays, organic aerogels have arisen as promising materials for different applications such as: building, construction, energy among others, due to their low density, high thermal insulation capacity and high porosity. In the recent years multiple procedures to synthesize them have been developed, however, the freeze-drying method has gained more importance, being considered a cost-competitive, eco-friendly, and efficient process. Therefore, it is fundamental to evaluate its environmental impacts for its future implementation as a sustainable industrial process. In this work, a Life Cycle Assessment on the synthesis of nanoclay reinforced polyvinyl alcohol aerogels by freeze-drying has been carried out. Furthermore, the influence of the production scale (laboratory and pilot line) and the functional unit (1 kg and 1 m3) have been studied. Additionally, different upgrading approaches carried out in the pilot line, energy efficiency and production capacity, have been evaluated. Results demonstrated that better environmental impact values were obtained with pilot line aerogel production in comparison to laboratory scale for both functional units. Regarding the different upgrade assessment with the pilot line, it has been concluded that the background processes and the energy consumption are the main causes for the increment in the environmental impact values during the aerogel synthesis. En la actualidad, los aerogeles orgánicos han surgido como materiales promisorios para diferentes aplicaciones tales como: edificación, construcción, energía entre otras, debido a su baja densidad, alta capacidad de aislamiento térmico y alta porosidad. En los últimos años se han desarrollado múltiples procedimientos para sintetizarlos, sin embargo, el método de liofilización ha ganado mayor importancia, siendo considerado un proceso rentable, amigable con el medio ambiente y eficiente. Por lo tanto, es fundamental evaluar sus impactos ambientales para su futura implementación como un proceso industrial sostenible. En este trabajo se ha llevado a cabo un análisis del ciclo de vida de la síntesis de aerogeles de poli(alcohol vinílico) reforzados con nanoarcillas mediante liofilización. Además, la influencia de la escala de producción (laboratorio y línea piloto) y la unidad funcional (1 kg y 1 m 3) han sido estudiados. Adicionalmente, se han evaluado diferentes enfoques de mejora llevados a cabo en la línea piloto, eficiencia energética y capacidad de producción. Los resultados demostraron que se obtuvieron mejores valores de impacto ambiental con la producción de aerogel en línea piloto en comparación con la escala de laboratorio para ambas unidades funcionales. En cuanto a la evaluación de diferentes actualizaciones con la línea piloto, se ha concluido que los procesos de fondo y el consumo de energía son las principales causas del incremento en los valores de impacto ambiental durante la síntesis del aerogel.
Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1016/j.ch...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.10.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1016/j.ch...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.10.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, GermanyPublisher:Institution of Engineering and Technology (IET) Funded by:EC | AMITRANEC| AMITRANMahmod, M.; Jonkers, E.; Klunder, G.A.; Benz, T.; Winder, A.;Transport is an important source of air pollution and greenhouse gas emissions. Although the applications of information and communication technologies (ICTs) for transport, also known as intelligent transport systems, are seen as having great potential to help reduce emissions from road transport, their exact impact on CO2 emissions are uncertain for decision makers from government to industry. This uncertainty hinders the deployment of such applications. Therefore there is a need for a common evaluation approach to assess the CO2 impact of ICT measures in a systemic and realistic way. In this study, a methodology framework to evaluate the impact of ICT measures on CO2 emissions is explained. The methodology was developed within the European Union FP7 project Amitran. In particular, this study focuses on the outline and the framework architecture of the methodology as well as the required interfaces between the required models. The use of the methodology is demonstrated by applying it to a use case of dynamic traffic light systems. Finally, the efforts made to validate the methodology and make it accessible to users are explained.
IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, GermanyPublisher:Institution of Engineering and Technology (IET) Funded by:EC | AMITRANEC| AMITRANMahmod, M.; Jonkers, E.; Klunder, G.A.; Benz, T.; Winder, A.;Transport is an important source of air pollution and greenhouse gas emissions. Although the applications of information and communication technologies (ICTs) for transport, also known as intelligent transport systems, are seen as having great potential to help reduce emissions from road transport, their exact impact on CO2 emissions are uncertain for decision makers from government to industry. This uncertainty hinders the deployment of such applications. Therefore there is a need for a common evaluation approach to assess the CO2 impact of ICT measures in a systemic and realistic way. In this study, a methodology framework to evaluate the impact of ICT measures on CO2 emissions is explained. The methodology was developed within the European Union FP7 project Amitran. In particular, this study focuses on the outline and the framework architecture of the methodology as well as the required interfaces between the required models. The use of the methodology is demonstrated by applying it to a use case of dynamic traffic light systems. Finally, the efforts made to validate the methodology and make it accessible to users are explained.
IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IET Intelligent Tran... arrow_drop_down IET Intelligent Transport SystemsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-its.2014.0058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Funded by:EC | SUPERMATEC| SUPERMATAuthors: Romero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; +1 AuthorsRomero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; Tudor, Albert Ioan;NaNO3 has been selected as phase change material (PCM) due to its convenient melting and crystallization temperatures for thermal energy storage (TES) in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation) into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks). As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2) instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C). Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/mfreview/2018003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/mfreview/2018003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:EDP Sciences Funded by:EC | SUPERMATEC| SUPERMATAuthors: Romero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; +1 AuthorsRomero-Sanchez, Maria Dolores; Piticescu, Radu-Robert; Motoc, Adrian Mihail; Aran-Ais, Francisca; Tudor, Albert Ioan;NaNO3 has been selected as phase change material (PCM) due to its convenient melting and crystallization temperatures for thermal energy storage (TES) in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation) into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks). As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2) instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C). Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/mfreview/2018003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/mfreview/2018003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Frontiers Media SA Funded by:EC | GrapheneCore3, WTEC| GrapheneCore3 ,WTAuthors: Koliolios, E; Mills, DG; Busfield, JJC; Tan, W;The high surface area, electrical and mechanical properties of carbon nanotube (CNT) composites has rendered them promising candidates for structural power composites. Nevertheless, it is important to understand their mechanical behaviour before they are applied in energy storage devices amid the safety concerns. This work explores the nail penetration behaviours of supercapacitor specimens consisting of CNT electrodes and pseudocapacitor specimens with carbon nanotube-polyaniline (CNT/PANI) electrodes. Specimens with and without electrolyte were tested. The dry cells without electrolyte follow a power law behaviour, while the wet cells with the electrolyte exhibit a piece-wise nonlinear relationship. The force, voltage and temperature of the supercapacitor were recorded during the nail penetration test. No temperature change or overheating was observed after short-circuit. Moreover, electrochemical testing is performed before and after the specimen penetration. The cyclic voltammetry shows the dramatic loss of capacitance, changing the cell behaviour from capacitor to resistor-like manner. Johnson-Cook model was used to predict the nail penetration behaviour. The coefficients of Johnson-Cook model are calibrated from the experimental load-displacement curves. The finite element model predictions are in a good agreement with the experimental results.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2021.741541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2021.741541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Frontiers Media SA Funded by:EC | GrapheneCore3, WTEC| GrapheneCore3 ,WTAuthors: Koliolios, E; Mills, DG; Busfield, JJC; Tan, W;The high surface area, electrical and mechanical properties of carbon nanotube (CNT) composites has rendered them promising candidates for structural power composites. Nevertheless, it is important to understand their mechanical behaviour before they are applied in energy storage devices amid the safety concerns. This work explores the nail penetration behaviours of supercapacitor specimens consisting of CNT electrodes and pseudocapacitor specimens with carbon nanotube-polyaniline (CNT/PANI) electrodes. Specimens with and without electrolyte were tested. The dry cells without electrolyte follow a power law behaviour, while the wet cells with the electrolyte exhibit a piece-wise nonlinear relationship. The force, voltage and temperature of the supercapacitor were recorded during the nail penetration test. No temperature change or overheating was observed after short-circuit. Moreover, electrochemical testing is performed before and after the specimen penetration. The cyclic voltammetry shows the dramatic loss of capacitance, changing the cell behaviour from capacitor to resistor-like manner. Johnson-Cook model was used to predict the nail penetration behaviour. The coefficients of Johnson-Cook model are calibrated from the experimental load-displacement curves. The finite element model predictions are in a good agreement with the experimental results.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2021.741541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmats.2021.741541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2009 SwedenPublisher:The Electrochemical Society Funded by:EC | MMFCSEC| MMFCSAuthors: Andersson, Martin; Yuan, Jinliang; Sundén, Bengt;Fuel cells (FCs) are promising for future energy systems, since they are energy efficient and fuel can be produced locally. When hydrogen is used as fuel, there are no emissions of greenhouse gases. In this study a two dimensional CFD (COMSOL Multiphysics) is employed to study the effect from porous material surface area ratio on reforming reaction rates and gas species distributions for an anode-supported solid oxide fuel cell (SOFC). FCs can be considered as multifunctional energy devises, combining (electro-) chemical reactions, heat exchange, gas- and ionic transport. All these functions are strongly integrated, making modeling an important tool to understand the couplings between mass-, heat-, momentum transport and chemical reactions. Steam reforming takes place at the nickel material surfaces in the anode and water-gas shift reaction occurs where fuel gas is present. Benefit from the internal reforming is that the energy conversion efficiency will be higher, compared to the case of pure hydrogen as fuel.
ECS Transactions arrow_drop_down http://dx.doi.org/10.1149/1.32...Conference object . 2009Data sources: European Research Council (ERC)ECS TransactionsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3205649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Transactions arrow_drop_down http://dx.doi.org/10.1149/1.32...Conference object . 2009Data sources: European Research Council (ERC)ECS TransactionsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3205649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2009 SwedenPublisher:The Electrochemical Society Funded by:EC | MMFCSEC| MMFCSAuthors: Andersson, Martin; Yuan, Jinliang; Sundén, Bengt;Fuel cells (FCs) are promising for future energy systems, since they are energy efficient and fuel can be produced locally. When hydrogen is used as fuel, there are no emissions of greenhouse gases. In this study a two dimensional CFD (COMSOL Multiphysics) is employed to study the effect from porous material surface area ratio on reforming reaction rates and gas species distributions for an anode-supported solid oxide fuel cell (SOFC). FCs can be considered as multifunctional energy devises, combining (electro-) chemical reactions, heat exchange, gas- and ionic transport. All these functions are strongly integrated, making modeling an important tool to understand the couplings between mass-, heat-, momentum transport and chemical reactions. Steam reforming takes place at the nickel material surfaces in the anode and water-gas shift reaction occurs where fuel gas is present. Benefit from the internal reforming is that the energy conversion efficiency will be higher, compared to the case of pure hydrogen as fuel.
ECS Transactions arrow_drop_down http://dx.doi.org/10.1149/1.32...Conference object . 2009Data sources: European Research Council (ERC)ECS TransactionsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3205649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Transactions arrow_drop_down http://dx.doi.org/10.1149/1.32...Conference object . 2009Data sources: European Research Council (ERC)ECS TransactionsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.3205649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2021Publisher:MDPI AG Funded by:EC | OK-Net EcoFeedEC| OK-Net EcoFeedAuthors: Marleen Elise van der Heide; Lene Stødkilde; Jan Værum Nørgaard; Merete Studnitz;doi: 10.3390/su13042303
Organic monogastric agriculture is challenged because of a limited availability of regional and organic protein-rich ingredients to fulfill the amino acid requirements. The development of novel feed ingredients is therefore essential. The use of starfish (Asterias rubens), mussel (Mytilus edilus), insect, green and brown seaweed, and forage crop extracts exhibits different approaches to increase protein availability in a sustainable manner through improving the protein quality of existing ingredients, better use of under- or unutilized material, or development of circular bioeconomy. This review assessed limitations and opportunities of producing, processing, and using these novel ingredients in feed. The use of non-renewable resources and the effect on the environment of production and processing the feed ingredients are described. Protein concentration and amino acid quality of the feed ingredients are evaluated to understand their substitution potential compared with protein-rich soya bean and fishmeal. Feedstuffs’ effect on digestibility and animal performance is summarized. With the exception of seaweed, all novel ingredients show potential to partly substitute fishmeal or soya bean fulfilling part of the protein requirement in organic monogastric production. However, improvements during production and processing can be made to enhance protein quality, sustainability of the novel ingredients, and nutrient utilization of novel feed ingredients.
Sustainability arrow_drop_down SustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/4/2303/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 4 Powered bymore_vert Sustainability arrow_drop_down SustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/4/2303/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2021Publisher:MDPI AG Funded by:EC | OK-Net EcoFeedEC| OK-Net EcoFeedAuthors: Marleen Elise van der Heide; Lene Stødkilde; Jan Værum Nørgaard; Merete Studnitz;doi: 10.3390/su13042303
Organic monogastric agriculture is challenged because of a limited availability of regional and organic protein-rich ingredients to fulfill the amino acid requirements. The development of novel feed ingredients is therefore essential. The use of starfish (Asterias rubens), mussel (Mytilus edilus), insect, green and brown seaweed, and forage crop extracts exhibits different approaches to increase protein availability in a sustainable manner through improving the protein quality of existing ingredients, better use of under- or unutilized material, or development of circular bioeconomy. This review assessed limitations and opportunities of producing, processing, and using these novel ingredients in feed. The use of non-renewable resources and the effect on the environment of production and processing the feed ingredients are described. Protein concentration and amino acid quality of the feed ingredients are evaluated to understand their substitution potential compared with protein-rich soya bean and fishmeal. Feedstuffs’ effect on digestibility and animal performance is summarized. With the exception of seaweed, all novel ingredients show potential to partly substitute fishmeal or soya bean fulfilling part of the protein requirement in organic monogastric production. However, improvements during production and processing can be made to enhance protein quality, sustainability of the novel ingredients, and nutrient utilization of novel feed ingredients.
Sustainability arrow_drop_down SustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/4/2303/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 4 Powered bymore_vert Sustainability arrow_drop_down SustainabilityArticleLicense: CC BYFull-Text: https://www.mdpi.com/2071-1050/13/4/2303/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | THERMOSSEC| THERMOSSAuthors: Manfren, Massimiliano; James, Patrick AB; Aragon, Victoria; Tronchin, Lamberto;handle: 11585/943393
The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refurbishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings, together with other benefits. Measured building performance, however, often reveals a significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement. In this research, interpretable regression models are built with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves (TRVs) and gas absorption heat pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of modelling research, time of week and temperature (TOWT) approach is reformulated and benchmarked against its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible extensions of the use of energy signature modelling, highlighting implications for energy management and innovative building technologies development.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | THERMOSSEC| THERMOSSAuthors: Manfren, Massimiliano; James, Patrick AB; Aragon, Victoria; Tronchin, Lamberto;handle: 11585/943393
The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refurbishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings, together with other benefits. Measured building performance, however, often reveals a significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement. In this research, interpretable regression models are built with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves (TRVs) and gas absorption heat pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of modelling research, time of week and temperature (TOWT) approach is reformulated and benchmarked against its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible extensions of the use of energy signature modelling, highlighting implications for energy management and innovative building technologies development.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Funded by:EC | SUNFUELSEC| SUNFUELSAuthors: Jonathan R. Scheffe; Aldo Steinfeld; Aldo Steinfeld; Michael Welte;doi: 10.1021/ie402620k
An aerosol reactor was tested for the thermal reduction of ceria as part of a solar thermochemical redox cycle for producing H2 and CO from H2O and CO2. The design is based on the downward aerosol flow of ceria particles, counter to an argon sweep gas, which are rapidly heated and thermally reduced within residence times of less than 1 s. When operating in the temperature range of 1723–1873 K and at oxygen partial pressures between 5 × 10–5 and 1.2 × 10–4 atm, reduction extents of small particles (Dv50 = 12 μm) approached those predicted by thermodynamics. However, heat- and mass-transfer effects were found to limit their conversion when the ceria mass flow rate was increased above 100 mg s–1. This reactor concept inherently results in separation of the reduced ceria and evolved O2(g), operates isothermally throughout the day, and decouples the reduction and oxidation steps in both space and time for potential 24-h syngas generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ie402620k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ie402620k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Funded by:EC | SUNFUELSEC| SUNFUELSAuthors: Jonathan R. Scheffe; Aldo Steinfeld; Aldo Steinfeld; Michael Welte;doi: 10.1021/ie402620k
An aerosol reactor was tested for the thermal reduction of ceria as part of a solar thermochemical redox cycle for producing H2 and CO from H2O and CO2. The design is based on the downward aerosol flow of ceria particles, counter to an argon sweep gas, which are rapidly heated and thermally reduced within residence times of less than 1 s. When operating in the temperature range of 1723–1873 K and at oxygen partial pressures between 5 × 10–5 and 1.2 × 10–4 atm, reduction extents of small particles (Dv50 = 12 μm) approached those predicted by thermodynamics. However, heat- and mass-transfer effects were found to limit their conversion when the ceria mass flow rate was increased above 100 mg s–1. This reactor concept inherently results in separation of the reduced ceria and evolved O2(g), operates isothermally throughout the day, and decouples the reduction and oxidation steps in both space and time for potential 24-h syngas generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ie402620k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ie402620k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 04 May 2021 Croatia, South Africa, CroatiaPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITYEC| HYDRIDE4MOBILITYLototskyy, Mykhaylo; Tolj, Ivan; Klochko, Yevgeniy; Davids, Moegamat Wafeeq; Swanepoel, Dana; Linkov, Vladimir;The use of fuel cells (FC) in heavy duty utility vehicles, including material handling units / forklifts or underground mining vehicles, has a number of advantages over similar battery-driven vehicles including: constant power during the entire shift, and shorter refuelling time as compared to the time to recharge the battery. Most of vehicular FC power systems demonstrated so far have utilised compressed H2 stored in gas cylinders at pressures up to 350 bar. This solution, however, results in too light weight of the FC power modules for the utility vehicles which require additional ballast for a proper counterbalancing to provide vehicle stability. In the underground applications, the use of pressurised hydrogen (> 20 bar) is not acceptable at all for the safety reasons. A promising alternative is the application of metal hydrides (MH) for the on-board hydrogen storage [1]. The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles [2]. Here, we present new engineering solutions [3, 4] of a MH hydrogen storage tank for FC utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge / discharge. The tank is an assembly of several MH cassettes. Each cassette comprises several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. H2 input / output pipelines are ended by gas filters inside the MH containers and connected to a common gas manifold from the opposite side. The assembly of the MH containers staggered together with heating / cooling tubes is encased in molten lead followed by the solidification of the latter. During lead encasing, the inner space of the MH containers is evacuated providing initial activation of the MH material. After cooling down, the MH cassette is filled with pressurised H2 for the initial H2 charge which starts immediately and completes in about 1.5 hours. One MH cassette comprising of five 51.3x800 mm MH containers (each filled with ~3 kg of the MH material) has hydrogen storage capacity about 2.5 Nm3 H2. When heated with a running water to T=40– 50 °C (typical coolant temperature during the operation of a PEMFC stack), the cassette can release more than 60% of this maximum amount at the H2 flow rate of 25 NL/min that corresponds to 1 hour long full load operation of 2.5 kWe stack at 50% efficiency. Furthermore, at the heating temperature about 40 °C and H2 output flow rate of 15 NL/min (equivalent to the stack power of 1.38 kWe at the same efficiency) the H2 release remains stable during >2 hours providing utilisation of ~80% of the stored H2. {"references": ["M.V. Lototskyy, et al, . Progr. Natur. Sci., 27 (2017) 3-20", "M.V. Lototskyy, et al, . J. Power Sources, 316 (2016) 239-250", "M.V.Lototskyy, et. al, Patent application WO 2015/189758 A1", "M.V.Lototskyy, et. al, Patent application UK 1806840.3 (2018)"]}
Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 207visibility views 207 download downloads 35 Powered bymore_vert Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 04 May 2021 Croatia, South Africa, CroatiaPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITYEC| HYDRIDE4MOBILITYLototskyy, Mykhaylo; Tolj, Ivan; Klochko, Yevgeniy; Davids, Moegamat Wafeeq; Swanepoel, Dana; Linkov, Vladimir;The use of fuel cells (FC) in heavy duty utility vehicles, including material handling units / forklifts or underground mining vehicles, has a number of advantages over similar battery-driven vehicles including: constant power during the entire shift, and shorter refuelling time as compared to the time to recharge the battery. Most of vehicular FC power systems demonstrated so far have utilised compressed H2 stored in gas cylinders at pressures up to 350 bar. This solution, however, results in too light weight of the FC power modules for the utility vehicles which require additional ballast for a proper counterbalancing to provide vehicle stability. In the underground applications, the use of pressurised hydrogen (> 20 bar) is not acceptable at all for the safety reasons. A promising alternative is the application of metal hydrides (MH) for the on-board hydrogen storage [1]. The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles [2]. Here, we present new engineering solutions [3, 4] of a MH hydrogen storage tank for FC utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge / discharge. The tank is an assembly of several MH cassettes. Each cassette comprises several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. H2 input / output pipelines are ended by gas filters inside the MH containers and connected to a common gas manifold from the opposite side. The assembly of the MH containers staggered together with heating / cooling tubes is encased in molten lead followed by the solidification of the latter. During lead encasing, the inner space of the MH containers is evacuated providing initial activation of the MH material. After cooling down, the MH cassette is filled with pressurised H2 for the initial H2 charge which starts immediately and completes in about 1.5 hours. One MH cassette comprising of five 51.3x800 mm MH containers (each filled with ~3 kg of the MH material) has hydrogen storage capacity about 2.5 Nm3 H2. When heated with a running water to T=40– 50 °C (typical coolant temperature during the operation of a PEMFC stack), the cassette can release more than 60% of this maximum amount at the H2 flow rate of 25 NL/min that corresponds to 1 hour long full load operation of 2.5 kWe stack at 50% efficiency. Furthermore, at the heating temperature about 40 °C and H2 output flow rate of 15 NL/min (equivalent to the stack power of 1.38 kWe at the same efficiency) the H2 release remains stable during >2 hours providing utilisation of ~80% of the stored H2. {"references": ["M.V. Lototskyy, et al, . Progr. Natur. Sci., 27 (2017) 3-20", "M.V. Lototskyy, et al, . J. Power Sources, 316 (2016) 239-250", "M.V.Lototskyy, et. al, Patent application WO 2015/189758 A1", "M.V.Lototskyy, et. al, Patent application UK 1806840.3 (2018)"]}
Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 207visibility views 207 download downloads 35 Powered bymore_vert Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu