- home
- Search
- Energy Research
- 2021-2025
- EU
- Chinese Academy of Sciences
- Energy Research
- 2021-2025
- EU
- Chinese Academy of Sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, Czech Republic, United KingdomPublisher:Wiley Funded by:SNSF | How does forest microclim..., EC | FORMICA, SNSF | Climate change impacts on... +1 projectsSNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| UnderSCOREKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
Journal of Ecology arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 4 Powered bymore_vert Journal of Ecology arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:EC | CO-COOLEC| CO-COOLDing Zhao; Mingbiao Chen; Jie Lv; Zhiguo Lei; Wenji Song;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | RADIOSUNEC| RADIOSUNCaihong Ma; Xin Sui; Yi Zeng; Jin Yang; Yanmei Xie; Tianzhu Li; Pengyu Zhang;doi: 10.3390/su141811228
The development of industrial infrastructure in the Beijing–Tianjin–Hebei(BTH) region has been accompanied by a disorderly expansion of industrial zones and other inappropriate development. Accurate industrial heat source classification data become important to evaluate the policies of industrial restructuring and air quality improvement. In this study, a new classification of industrial heat source objects model based on active fire point density segmentation and spatial topological correlation analysis in the BTH Region was proposed. First, industrial heat source objects were detected with an active fire point density segmentation method using NPP-VIIRS active fire/hotspot data. Then, industrial heat source objects were classified into five categories based on a spatial topological correlation analysis method using POI data. Then, identification and classification results were manually validated based on Google Earth imagery. Finally, we evaluated the factors influencing the number of industrial heat sources based on an OLS regression model. A total of 493 industrial heat source objects were identified in this study with an identification accuracy of 96.14%(474/493). Compared with results for nighttime fires, the number of industrial heat source objects that were identified was higher, and the spatial coverage was greater; the minimum size of the detected objects was also smaller. Based on the function of the identified industrial heat source objects, the objects in the BTH region were then divided into five categories: cement plants (21.73%), steel plants (53.80%), coal and chemical industry (12.66%), oil and gas developments (7.81%), and other (4.01%). An analysis of their operations showed that the number of industrial heat source objects in operation in the BTH region tended to first rise and then decline during the 2012–2021 period, with the peak being reached in 2013. The results of this study will aid the rationalization of industrial infrastructure in the BTH region and, by extension, in China as a whole.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 France, Czech Republic, Italy, Czech Republic, Denmark, GermanyPublisher:American Physical Society (APS) Funded by:EC | STRONG-2020, EC | CosmicAntiNuclei, GSRI +4 projectsEC| STRONG-2020 ,EC| CosmicAntiNuclei ,GSRI ,AKA| Center of Excellence in Quark Matter ,EC| HeavyQGP ,FWF| Studies of dielectrons from open charm and beauty decays ,AKA| Center of Excellence in Quark MatterS. Acharya; D. Adamová; A. Adler; G. Aglieri Rinella; M. Agnello; N. Agrawal; Z. Ahammed; S. Ahmad; S. U. Ahn; I. Ahuja; A. Akindinov; M. Al-Turany; D. Aleksandrov; B. Alessandro; H. M. Alfanda; R. Alfaro Molina; B. Ali; A. Alici; N. Alizadehvandchali; A. Alkin; J. Alme; G. Alocco; T. Alt; I. Altsybeev; M. N. Anaam; C. Andrei; A. Andronic; V. Anguelov; F. Antinori; P. Antonioli; N. Apadula; L. Aphecetche; H. Appelshäuser; C. Arata; S. Arcelli; M. Aresti; R. Arnaldi; J. G. M. C. A. Arneiro; I. C. Arsene; M. Arslandok; A. Augustinus; R. Averbeck; M. D. Azmi; A. Badalà; J. Bae; Y. W. Baek; X. Bai; R. Bailhache; Y. Bailung; A. Balbino; A. Baldisseri; B. Balis; D. Banerjee; Z. Banoo; R. Barbera; F. Barile; L. Barioglio; M. Barlou; G. G. Barnaföldi; L. S. Barnby; V. Barret; L. Barreto; C. Bartels; K. Barth; E. Bartsch; N. Bastid; S. Basu; G. Batigne; D. Battistini; B. Batyunya; D. Bauri; J. L. Bazo Alba; I. G. Bearden; C. Beattie; P. Becht; D. Behera; I. Belikov; A. D. C. Bell Hechavarria; F. Bellini; R. Bellwied; S. Belokurova; V. Belyaev; G. Bencedi; S. Beole; A. Bercuci; Y. Berdnikov; A. Berdnikova; L. Bergmann; M. G. Besoiu; L. Betev; P. P. Bhaduri; A. Bhasin; M. A. Bhat; B. Bhattacharjee; L. Bianchi; N. Bianchi; J. Bielčík; J. Bielčíková; J. Biernat; A. P. Bigot; A. Bilandzic; G. Biro; S. Biswas; N. Bize; J. T. Blair; D. Blau; M. B. Blidaru; N. Bluhme; C. Blume; G. Boca; F. Bock; T. Bodova; A. Bogdanov; S. Boi; J. Bok; L. Boldizsár; A. Bolozdynya; M. Bombara; P. M. Bond; G. Bonomi; H. Borel; A. Borissov; A. G. Borquez Carcamo; H. Bossi; E. Botta; Y. E. M. Bouziani; L. Bratrud; P. Braun-Munzinger; M. Bregant; M. Broz; G. E. Bruno; M. D. Buckland; D. Budnikov; H. Buesching; S. Bufalino; O. Bugnon; P. Buhler; Z. Buthelezi; S. A. Bysiak; M. Cai; H. Caines; A. Caliva; E. Calvo Villar; J. M. M. Camacho; P. Camerini; F. D. M. Canedo; M. Carabas; A. A. Carballo; F. Carnesecchi; R. Caron; L. A. D. Carvalho; J. Castillo Castellanos; F. Catalano; C. Ceballos Sanchez; I. Chakaberia; P. Chakraborty; S. Chandra; S. Chapeland; M. Chartier; S. Chattopadhyay; S. Chattopadhyay; T. G. Chavez; T. Cheng; C. Cheshkov; B. Cheynis; V. Chibante Barroso; D. D. Chinellato; E. S. Chizzali; J. Cho; S. Cho; P. Chochula; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; M. Ciacco; C. Cicalo; F. Cindolo; M. R. Ciupek; G. Clai; F. Colamaria; J. S. Colburn; D. Colella; M. Colocci; M. Concas; G. Conesa Balbastre; Z. Conesa del Valle; G. Contin; J. G. Contreras; M. L. Coquet; T. M. Cormier; P. Cortese; M. R. Cosentino; F. Costa; S. Costanza; C. Cot; J. Crkovská; P. Crochet; R. Cruz-Torres; E. Cuautle;The transverse-momentum ($p_{\rm T}$) spectra and coalescence parameters $B_2$ of (anti)deuterons are measured in pp collisions at $\sqrt{s} = 13$ TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest $p_{\rm T}$ in the event ($p_{\rm T}^{\rm{ lead}} > 5$ GeV/$c$) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions and the jet signal is obtained as the difference between the Toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the Transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons inside the jet cone as compared to the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase space distributions of nucleons are generated using PYTHIA 8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in PYTHIA 8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the $B^{\rm Jet}_2$ is not reproduced by the models, which instead give a decreasing trend. 18 pages, 2 captioned figures, authors from page 13, published version + fix from erratum, figures at http://alice-publications.web.cern.ch/node/8658
Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi del Piemonte Orientale: CINECA IRISArticle . 2023Full-Text: https://hdl.handle.net/11579/166987Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevlett.131.042301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi del Piemonte Orientale: CINECA IRISArticle . 2023Full-Text: https://hdl.handle.net/11579/166987Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevlett.131.042301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Funded by:EC | BLACARATEC| BLACARATUlrike Dusek; Jay G. Slowik; Junji Cao; Giulia Stefenelli; André S. H. Prévôt; Lu Yang; Felix Klein; Ru-Jin Huang; Ru-Jin Huang; Martin Gysel-Beer; Haiyan Ni; Haiyan Ni; Imad El Haddad; Simone M. Pieber; Joel C. Corbin; Veronika Pospisilova; Urs Baltensperger;pmid: 33826309
Smog chamber experiments were conducted to characterize the light absorption of brown carbon (BrC) from primary and photochemically aged coal combustion emissions. Light absorption was measured by the UV-visible spectrophotometric analysis of water and methanol extracts of filter samples. The single-scattering albedo at 450 nm was 0.73 ± 0.10 for primary emissions and 0.75 ± 0.13 for aged emissions. The light absorption coefficient at 365 nm of methanol extracts was higher than that of water extracts by a factor of 10 for primary emissions and a factor of 7 for aged emissions. This suggests that the majority of BrC is water-insoluble even after aging. The mass absorption efficiency of this BrC (MAE365) for primary OA (POA) was dependent on combustion conditions, with an average of 0.84 ± 0.54 m2 g-1, which was significantly higher than that for aged OA (0.24 ± 0.18 m2 g-1). Secondary OA (SOA) dominated aged OA and the decreased MAE365 after aging indicates that SOA is less light absorbing than POA and/or that BrC is bleached (oxidized) with aging. The estimated MAE365 of SOA (0.14 ± 0.08 m2 g-1) was much lower than that of POA. A comparison of MAE365 of residential coal combustion with other anthropogenic sources suggests that residential coal combustion emissions are among the strongest absorbing BrC organics.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 15 Feb 2022 South Africa, Spain, Switzerland, United States, DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:EC | MIDLAND, EC | COUPLED, EC | SystemShift +2 projectsEC| MIDLAND ,EC| COUPLED ,EC| SystemShift ,EC| MAT_STOCKS ,EC| HEFTMeyfroidt, Patrick; De Bremond, Ariane; Ryan, Casey M.; Archer, Emma; Aspinall, Richard; Chhabra, Abha; Camara, Gilberto; Corbera, Esteve; DeFries, Ruth; Díaz, Sandra; Dong, Jinwei; Ellis, Erle C.; Erb, Karl-Heinz; Fisher, Janet A.; Garrett, Rachael D.; Golubiewski, Nancy E.; Grau, H. Ricardo; Grove, J. Morgan; Haberl, Helmut; Heinimann, Andreas; Hostert, Patrick; Jobbágy, Esteban G.; Kerr, Suzi; Kuemmerle, Tobias; Lambin, Eric F.; Lavorel, Sandra; Lele, Sharachandra; Mertz, Ole; Messerli, Peter; Metternicht, Graciela; Munroe, Darla K.; Nagendra, Harini; Nielsen, Jonas Østergaard; Ojima, Dennis S.; Parker, Dawn Cassandra; Pascual, Unai; Porter, John R.; Ramankutty, Navin; Reenberg, Anette; Roy Chowdhury, Rinku; Seto, Karen C.; Seufert, Verena; Shibata, Hideaki; Thomson, Allison; Turner, Billie L.; Urabe, Jotaro; Veldkamp, Tom; Verburg, Peter H.; Zeleke, Gete; zu Ermgassen, Erasmus K. H. J.; Universitat Autònoma de Barcelona. Departament de Geografia;Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 SwitzerlandPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | HYPERRIDEEC| HYPERRIDEAuthors: Willem Lambrichts; Mario Paolone;In this paper, we present an exact (i. e. non-approximated) and linear measurement model for hybrid AC/DC microgrids for recursive state estimation (SE). More specifically, an exact linear model of a voltage source converter (VSC) is proposed. It relies on the complex VSC modulation index to relate the quantities at the converters DC side to the phasors at the AC side. The VSC model is derived from a transformer-like representation and accounts for the VSC conduction and switching losses. In the case of three-phase unbalanced grids, the measurement model is extended using the symmetrical component decomposition where each sequence individually affects the DC quantities. Synchronized measurements are provided by phasor measurement units and DC measurement units in the DC system. To make the SE more resilient to vive step changes in the grid states, an adaptive Kalman Filter that uses an approximation of the prediction-error covariance estimation method is proposed. This approximation reduces the computational speed significantly with only a limited reduction in the SE performance. The hybrid SE is validated in an EMTP-RV time-domain simulation of the CIGRE AC benchmark micro-grid that is connected to a DC grid using 4 VSCs. Bad data detection and identification using the largest normalised residual is assessed with respect to such a system. Furthermore, the proposed method is compared with a non-linear weighted least squares SE in terms of accuracy and computational time.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefInfoscience - École polytechnique fédérale de LausanneConference objectData sources: Infoscience - École polytechnique fédérale de Lausanneadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3190996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefInfoscience - École polytechnique fédérale de LausanneConference objectData sources: Infoscience - École polytechnique fédérale de Lausanneadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3190996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | SIM4NEXUSEC| SIM4NEXUSHubert Hirwa; Qiuying Zhang; Yunfeng Qiao; Yu Peng; Peifang Leng; Chao Tian; Sayidjakhon Khasanov; Fadong Li; Alphonse Kayiranga; Fabien Muhirwa; Auguste Cesar Itangishaka; Gabriel Habiyaremye; Jean Ngamije;doi: 10.3390/su13116483
Water is the key limiting factor in socioeconomic and ecological development, but it is adversely affected by climate change. The novel virtual water (VW) concept and water, energy, food, biodiversity, and human health (WEFBH) nexus approach are powerful tools to assess the sustainability of a region through the lens of climate change. Climate change-related challenges and water are complex and intertwined. This paper analyzed the significant WEFBH sectors using the multicriteria decision-making (MCDM) and analytic hierarchy process (AHP) model. The AHP model demonstrated quantitative relationships among WEFBH nexus sustainability indicators in the Greater Horn of Africa countries. Besides, the net VW imports and water footprints of major staple crops were assessed. The composite WEFBH nexus indices varied from 0.10 to 0.14. The water footprint of crops is increasing period by period. The results also revealed that most countries in the study area are facing WEFBH domains unsustainability due to weak planning or improper management strategies. The strong policy constancy among the WEFBH sector is vital for dissociating the high-water consumption from crop production, energy, environmental, and human health system. Thus, this study enhances insights into the interdependencies, interconnectedness, and interactions of sectors thereby strengthening the coordination, complementarities, and synergies among them. To attain sustainable development, we urgently call all public and private entities to value the amount of VW used in their daily activities and design better policies on the complex WEFBH nexus and future climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13116483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13116483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint , Journal , Other literature type 2021Embargo end date: 01 Jan 2021 France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ARC | Future Fellowships - Gran..., EC | InterLeptons, ARC | Discovery Projects - Gran... +5 projectsARC| Future Fellowships - Grant ID: FT130100303 ,EC| InterLeptons ,ARC| Discovery Projects - Grant ID: DP170102389 ,ARC| Discovery Projects - Grant ID: DP170102204 ,FWF| Searches for Dark Matter and Dark Forces at Belle II ,ARC| Discovery Projects - Grant ID: DP180102629 ,ARC| Discovery Projects - Grant ID: DP150103061 ,EC| FAIMEZ. S. Stottler; H. Kichimi; J. Li; M. Bessner; S. Das; V. Zhukova; M. Masuda; M. Masuda; M. Uchida; Bruce Yabsley; L. Li Gioi; S. Paul; S. Paul; H. Atmacan; C. Schwanda; Y. B. Li; A. Korobov; A. Korobov; Jochen Dingfelder; V. Popov; M. Takizawa; M. Takizawa; M. Z. Wang; K. Cho; E. Prencipe; T. Sumiyoshi; H. Park; M. C. Chang; Semen Eidelman; Semen Eidelman; Semen Eidelman; Samo Stanič; T. E. Browder; T. Iijima; A. Natochii; M. Röhrken; H. Hayashii; B.A. Shwartz; B.A. Shwartz; A. Bozek; S.-H. Park; K. Huang; Dipak Kumar Sahoo; D. Červenkov; M. Campajola; V. Chekelian; C. H. Wang; Yongsun Kim; W. S. Hou; K. Kumara; H. Ono; R. Itoh; R. Itoh; S. Uno; S. Uno; H. Ye; C. Kiesling; H. E. Cho; P. Pakhlov; Y. Jin; G. Pakhlova; G. Pakhlova; U. Tamponi; M. T. Hedges; P. L. Wang; P. Lewis; K. Lieret; K. Hayasaka; J. Bennett; C. P. Shen; B. Golob; B. Golob; Y. Usov; Y. Usov; C. Z. Yuan; S. Ogawa; M. Nakao; M. Nakao; V. Savinov; Sadaharu Uehara; Sadaharu Uehara; M. Starič; K. Nishimura; V. Gaur; Tomoyuki Konno; J. Schueler; A.E. Bondar; A.E. Bondar; Y. Unno; V.M. Aulchenko; V.M. Aulchenko; T. K. Pedlar; Takeo Kawasaki; Y. Iwasaki; N. Dash; D. Liventsev; D. Liventsev; N. Rout; A. Ishikawa; A. Ishikawa; V.N. Zhilich; V.N. Zhilich; M. Mrvar; E. Waheed; L. E. Piilonen; P. Goldenzweig; C. Hadjivasiliou; T. Matsuda; K. Miyabayashi; R. Dhamija; S. K. Choi; X. P. Xu; C. H. Kim; E. Solovieva; Z. P. Zhang; M. Merola; S.-J. Cho; A. Sangal; Andrey Sokolov; E. Won; Prafulla Kumar Behera; P. Križan; P. Križan; F. Tenchini; T. Uglov; T. Uglov; H. Aihara; Peter Kodys; T. Sanuki; Tagir Aushev; M. T. Prim; S. Nishida; S. Nishida; G. De Nardo; Y. Choi; T. Kuhr; Rocky Bala Garg; S. Jia; S. Pardi; R. Ayad; J. H. Yin; A. Chen; A. Garmash; A. Garmash; T. Pang; C. Sharma; D. Y. Kim; Felix Metzner; R. Pestotnik; E.-J. Jang; M. Watanabe; A. Bobrov; A. Bobrov; Shih-Chang Lee; K. Chilikin; R. Kroeger; D. Epifanov; D. Epifanov; Y. J. Kwon; Seema Bahinipati; R. Van Tonder; A. Kuzmin; A. Kuzmin; M. Iwasaki; Seok Kim; S. Watanuki; R. Mizuk; R. Mizuk; Iki Adachi; Iki Adachi; G. Schnell; G. Schnell; D. Matvienko; D. Matvienko; D. Matvienko; J. Libby; P. Oskin; K. Trabelsi; G. B. Mohanty; B. G. Fulsom; G. S. Varner; C.-L. Hsu; K. Belous; Samo Korpar; Samo Korpar; W. W. Jacobs; G.V. Russo; R. Mussa; G. Karyan; Seongbae Yang; Luka Santelj; Luka Santelj; N. K. Nisar; M. Niiyama; Y. Sakai; Y. Sakai; M. Nayak; V. Babu; K. Uno; J. G. Shiu;Abstract We report the first measurement of the exclusive cross sections e+e− → $$ B\overline{B} $$ B B ¯ , e+e− → $$ B{\overline{B}}^{\ast } $$ B B ¯ ∗ , and e+e− → $$ {B}^{\ast }{\overline{B}}^{\ast } $$ B ∗ B ¯ ∗ in the energy range from 10.63 GeV to 11.02 GeV. The B mesons are fully reconstructed in a large number of hadronic final states and the three channels are identified using a beam-constrained-mass variable. The shapes of the exclusive cross sections show oscillatory behavior with several maxima and minima. The results are obtained using data collected by the Belle experiment at the KEKB asymmetric-energy e+e− collider.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep06(2021)137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep06(2021)137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 21 Jul 2022Publisher:Springer Science and Business Media LLC Funded by:ARC | ARC Future Fellowships - ..., ARC | Linkage Projects - Grant ..., EC | CUSTOM-ART +1 projectsARC| ARC Future Fellowships - Grant ID: FT190100756 ,ARC| Linkage Projects - Grant ID: LP150100911 ,EC| CUSTOM-ART ,EC| INFINITE-CELLJianjun Li; Jialiang Huang; Fajun Ma; Heng Sun; Jialin Cong; Karen Privat; Richard F. Webster; Soshan Cheong; Yin Yao; Robert Lee Chin; Xiaojie Yuan; Mingrui He; Kaiwen Sun; Hui Li; Yaohua Mai; Ziv Hameiri; Nicholas J. Ekins-Daukes; Richard D. Tilley; Thomas Unold; Martin A. Green; Xiaojing Hao;AbstractUnderstanding carrier loss mechanisms at microscopic regions is imperative for the development of high-performance polycrystalline inorganic thin-film solar cells. Despite the progress achieved for kesterite, a promising environmentally benign and earth-abundant thin-film photovoltaic material, the microscopic carrier loss mechanisms and their impact on device performance remain largely unknown. Herein, we unveil these mechanisms in state-of-the-art Cu2ZnSnSe4 (CZTSe) solar cells using a framework that integrates multiple microscopic and macroscopic characterizations with three-dimensional device simulations. The results indicate the CZTSe films have a relatively long intragrain electron lifetime of 10–30 ns and small recombination losses through bandgap and/or electrostatic potential fluctuations. We identify that the effective minority carrier lifetime of CZTSe is dominated by a large grain boundary recombination velocity (~104 cm s−1), which is the major limiting factor of present device performance. These findings and the framework can greatly advance the research of kesterite and other emerging photovoltaic materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01078-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01078-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, Czech Republic, United KingdomPublisher:Wiley Funded by:SNSF | How does forest microclim..., EC | FORMICA, SNSF | Climate change impacts on... +1 projectsSNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| UnderSCOREKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
Journal of Ecology arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 4 Powered bymore_vert Journal of Ecology arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:EC | CO-COOLEC| CO-COOLDing Zhao; Mingbiao Chen; Jie Lv; Zhiguo Lei; Wenji Song;Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | RADIOSUNEC| RADIOSUNCaihong Ma; Xin Sui; Yi Zeng; Jin Yang; Yanmei Xie; Tianzhu Li; Pengyu Zhang;doi: 10.3390/su141811228
The development of industrial infrastructure in the Beijing–Tianjin–Hebei(BTH) region has been accompanied by a disorderly expansion of industrial zones and other inappropriate development. Accurate industrial heat source classification data become important to evaluate the policies of industrial restructuring and air quality improvement. In this study, a new classification of industrial heat source objects model based on active fire point density segmentation and spatial topological correlation analysis in the BTH Region was proposed. First, industrial heat source objects were detected with an active fire point density segmentation method using NPP-VIIRS active fire/hotspot data. Then, industrial heat source objects were classified into five categories based on a spatial topological correlation analysis method using POI data. Then, identification and classification results were manually validated based on Google Earth imagery. Finally, we evaluated the factors influencing the number of industrial heat sources based on an OLS regression model. A total of 493 industrial heat source objects were identified in this study with an identification accuracy of 96.14%(474/493). Compared with results for nighttime fires, the number of industrial heat source objects that were identified was higher, and the spatial coverage was greater; the minimum size of the detected objects was also smaller. Based on the function of the identified industrial heat source objects, the objects in the BTH region were then divided into five categories: cement plants (21.73%), steel plants (53.80%), coal and chemical industry (12.66%), oil and gas developments (7.81%), and other (4.01%). An analysis of their operations showed that the number of industrial heat source objects in operation in the BTH region tended to first rise and then decline during the 2012–2021 period, with the peak being reached in 2013. The results of this study will aid the rationalization of industrial infrastructure in the BTH region and, by extension, in China as a whole.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2022 France, Czech Republic, Italy, Czech Republic, Denmark, GermanyPublisher:American Physical Society (APS) Funded by:EC | STRONG-2020, EC | CosmicAntiNuclei, GSRI +4 projectsEC| STRONG-2020 ,EC| CosmicAntiNuclei ,GSRI ,AKA| Center of Excellence in Quark Matter ,EC| HeavyQGP ,FWF| Studies of dielectrons from open charm and beauty decays ,AKA| Center of Excellence in Quark MatterS. Acharya; D. Adamová; A. Adler; G. Aglieri Rinella; M. Agnello; N. Agrawal; Z. Ahammed; S. Ahmad; S. U. Ahn; I. Ahuja; A. Akindinov; M. Al-Turany; D. Aleksandrov; B. Alessandro; H. M. Alfanda; R. Alfaro Molina; B. Ali; A. Alici; N. Alizadehvandchali; A. Alkin; J. Alme; G. Alocco; T. Alt; I. Altsybeev; M. N. Anaam; C. Andrei; A. Andronic; V. Anguelov; F. Antinori; P. Antonioli; N. Apadula; L. Aphecetche; H. Appelshäuser; C. Arata; S. Arcelli; M. Aresti; R. Arnaldi; J. G. M. C. A. Arneiro; I. C. Arsene; M. Arslandok; A. Augustinus; R. Averbeck; M. D. Azmi; A. Badalà; J. Bae; Y. W. Baek; X. Bai; R. Bailhache; Y. Bailung; A. Balbino; A. Baldisseri; B. Balis; D. Banerjee; Z. Banoo; R. Barbera; F. Barile; L. Barioglio; M. Barlou; G. G. Barnaföldi; L. S. Barnby; V. Barret; L. Barreto; C. Bartels; K. Barth; E. Bartsch; N. Bastid; S. Basu; G. Batigne; D. Battistini; B. Batyunya; D. Bauri; J. L. Bazo Alba; I. G. Bearden; C. Beattie; P. Becht; D. Behera; I. Belikov; A. D. C. Bell Hechavarria; F. Bellini; R. Bellwied; S. Belokurova; V. Belyaev; G. Bencedi; S. Beole; A. Bercuci; Y. Berdnikov; A. Berdnikova; L. Bergmann; M. G. Besoiu; L. Betev; P. P. Bhaduri; A. Bhasin; M. A. Bhat; B. Bhattacharjee; L. Bianchi; N. Bianchi; J. Bielčík; J. Bielčíková; J. Biernat; A. P. Bigot; A. Bilandzic; G. Biro; S. Biswas; N. Bize; J. T. Blair; D. Blau; M. B. Blidaru; N. Bluhme; C. Blume; G. Boca; F. Bock; T. Bodova; A. Bogdanov; S. Boi; J. Bok; L. Boldizsár; A. Bolozdynya; M. Bombara; P. M. Bond; G. Bonomi; H. Borel; A. Borissov; A. G. Borquez Carcamo; H. Bossi; E. Botta; Y. E. M. Bouziani; L. Bratrud; P. Braun-Munzinger; M. Bregant; M. Broz; G. E. Bruno; M. D. Buckland; D. Budnikov; H. Buesching; S. Bufalino; O. Bugnon; P. Buhler; Z. Buthelezi; S. A. Bysiak; M. Cai; H. Caines; A. Caliva; E. Calvo Villar; J. M. M. Camacho; P. Camerini; F. D. M. Canedo; M. Carabas; A. A. Carballo; F. Carnesecchi; R. Caron; L. A. D. Carvalho; J. Castillo Castellanos; F. Catalano; C. Ceballos Sanchez; I. Chakaberia; P. Chakraborty; S. Chandra; S. Chapeland; M. Chartier; S. Chattopadhyay; S. Chattopadhyay; T. G. Chavez; T. Cheng; C. Cheshkov; B. Cheynis; V. Chibante Barroso; D. D. Chinellato; E. S. Chizzali; J. Cho; S. Cho; P. Chochula; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; M. Ciacco; C. Cicalo; F. Cindolo; M. R. Ciupek; G. Clai; F. Colamaria; J. S. Colburn; D. Colella; M. Colocci; M. Concas; G. Conesa Balbastre; Z. Conesa del Valle; G. Contin; J. G. Contreras; M. L. Coquet; T. M. Cormier; P. Cortese; M. R. Cosentino; F. Costa; S. Costanza; C. Cot; J. Crkovská; P. Crochet; R. Cruz-Torres; E. Cuautle;The transverse-momentum ($p_{\rm T}$) spectra and coalescence parameters $B_2$ of (anti)deuterons are measured in pp collisions at $\sqrt{s} = 13$ TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest $p_{\rm T}$ in the event ($p_{\rm T}^{\rm{ lead}} > 5$ GeV/$c$) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions and the jet signal is obtained as the difference between the Toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the Transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons inside the jet cone as compared to the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase space distributions of nucleons are generated using PYTHIA 8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in PYTHIA 8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the $B^{\rm Jet}_2$ is not reproduced by the models, which instead give a decreasing trend. 18 pages, 2 captioned figures, authors from page 13, published version + fix from erratum, figures at http://alice-publications.web.cern.ch/node/8658
Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi del Piemonte Orientale: CINECA IRISArticle . 2023Full-Text: https://hdl.handle.net/11579/166987Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevlett.131.042301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli Studi del Piemonte Orientale: CINECA IRISArticle . 2023Full-Text: https://hdl.handle.net/11579/166987Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevlett.131.042301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Funded by:EC | BLACARATEC| BLACARATUlrike Dusek; Jay G. Slowik; Junji Cao; Giulia Stefenelli; André S. H. Prévôt; Lu Yang; Felix Klein; Ru-Jin Huang; Ru-Jin Huang; Martin Gysel-Beer; Haiyan Ni; Haiyan Ni; Imad El Haddad; Simone M. Pieber; Joel C. Corbin; Veronika Pospisilova; Urs Baltensperger;pmid: 33826309
Smog chamber experiments were conducted to characterize the light absorption of brown carbon (BrC) from primary and photochemically aged coal combustion emissions. Light absorption was measured by the UV-visible spectrophotometric analysis of water and methanol extracts of filter samples. The single-scattering albedo at 450 nm was 0.73 ± 0.10 for primary emissions and 0.75 ± 0.13 for aged emissions. The light absorption coefficient at 365 nm of methanol extracts was higher than that of water extracts by a factor of 10 for primary emissions and a factor of 7 for aged emissions. This suggests that the majority of BrC is water-insoluble even after aging. The mass absorption efficiency of this BrC (MAE365) for primary OA (POA) was dependent on combustion conditions, with an average of 0.84 ± 0.54 m2 g-1, which was significantly higher than that for aged OA (0.24 ± 0.18 m2 g-1). Secondary OA (SOA) dominated aged OA and the decreased MAE365 after aging indicates that SOA is less light absorbing than POA and/or that BrC is bleached (oxidized) with aging. The estimated MAE365 of SOA (0.14 ± 0.08 m2 g-1) was much lower than that of POA. A comparison of MAE365 of residential coal combustion with other anthropogenic sources suggests that residential coal combustion emissions are among the strongest absorbing BrC organics.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 15 Feb 2022 South Africa, Spain, Switzerland, United States, DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:EC | MIDLAND, EC | COUPLED, EC | SystemShift +2 projectsEC| MIDLAND ,EC| COUPLED ,EC| SystemShift ,EC| MAT_STOCKS ,EC| HEFTMeyfroidt, Patrick; De Bremond, Ariane; Ryan, Casey M.; Archer, Emma; Aspinall, Richard; Chhabra, Abha; Camara, Gilberto; Corbera, Esteve; DeFries, Ruth; Díaz, Sandra; Dong, Jinwei; Ellis, Erle C.; Erb, Karl-Heinz; Fisher, Janet A.; Garrett, Rachael D.; Golubiewski, Nancy E.; Grau, H. Ricardo; Grove, J. Morgan; Haberl, Helmut; Heinimann, Andreas; Hostert, Patrick; Jobbágy, Esteban G.; Kerr, Suzi; Kuemmerle, Tobias; Lambin, Eric F.; Lavorel, Sandra; Lele, Sharachandra; Mertz, Ole; Messerli, Peter; Metternicht, Graciela; Munroe, Darla K.; Nagendra, Harini; Nielsen, Jonas Østergaard; Ojima, Dennis S.; Parker, Dawn Cassandra; Pascual, Unai; Porter, John R.; Ramankutty, Navin; Reenberg, Anette; Roy Chowdhury, Rinku; Seto, Karen C.; Seufert, Verena; Shibata, Hideaki; Thomson, Allison; Turner, Billie L.; Urabe, Jotaro; Veldkamp, Tom; Verburg, Peter H.; Zeleke, Gete; zu Ermgassen, Erasmus K. H. J.; Universitat Autònoma de Barcelona. Departament de Geografia;Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 SwitzerlandPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | HYPERRIDEEC| HYPERRIDEAuthors: Willem Lambrichts; Mario Paolone;In this paper, we present an exact (i. e. non-approximated) and linear measurement model for hybrid AC/DC microgrids for recursive state estimation (SE). More specifically, an exact linear model of a voltage source converter (VSC) is proposed. It relies on the complex VSC modulation index to relate the quantities at the converters DC side to the phasors at the AC side. The VSC model is derived from a transformer-like representation and accounts for the VSC conduction and switching losses. In the case of three-phase unbalanced grids, the measurement model is extended using the symmetrical component decomposition where each sequence individually affects the DC quantities. Synchronized measurements are provided by phasor measurement units and DC measurement units in the DC system. To make the SE more resilient to vive step changes in the grid states, an adaptive Kalman Filter that uses an approximation of the prediction-error covariance estimation method is proposed. This approximation reduces the computational speed significantly with only a limited reduction in the SE performance. The hybrid SE is validated in an EMTP-RV time-domain simulation of the CIGRE AC benchmark micro-grid that is connected to a DC grid using 4 VSCs. Bad data detection and identification using the largest normalised residual is assessed with respect to such a system. Furthermore, the proposed method is compared with a non-linear weighted least squares SE in terms of accuracy and computational time.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefInfoscience - École polytechnique fédérale de LausanneConference objectData sources: Infoscience - École polytechnique fédérale de Lausanneadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3190996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm5...Conference object . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefInfoscience - École polytechnique fédérale de LausanneConference objectData sources: Infoscience - École polytechnique fédérale de Lausanneadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3190996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | SIM4NEXUSEC| SIM4NEXUSHubert Hirwa; Qiuying Zhang; Yunfeng Qiao; Yu Peng; Peifang Leng; Chao Tian; Sayidjakhon Khasanov; Fadong Li; Alphonse Kayiranga; Fabien Muhirwa; Auguste Cesar Itangishaka; Gabriel Habiyaremye; Jean Ngamije;doi: 10.3390/su13116483
Water is the key limiting factor in socioeconomic and ecological development, but it is adversely affected by climate change. The novel virtual water (VW) concept and water, energy, food, biodiversity, and human health (WEFBH) nexus approach are powerful tools to assess the sustainability of a region through the lens of climate change. Climate change-related challenges and water are complex and intertwined. This paper analyzed the significant WEFBH sectors using the multicriteria decision-making (MCDM) and analytic hierarchy process (AHP) model. The AHP model demonstrated quantitative relationships among WEFBH nexus sustainability indicators in the Greater Horn of Africa countries. Besides, the net VW imports and water footprints of major staple crops were assessed. The composite WEFBH nexus indices varied from 0.10 to 0.14. The water footprint of crops is increasing period by period. The results also revealed that most countries in the study area are facing WEFBH domains unsustainability due to weak planning or improper management strategies. The strong policy constancy among the WEFBH sector is vital for dissociating the high-water consumption from crop production, energy, environmental, and human health system. Thus, this study enhances insights into the interdependencies, interconnectedness, and interactions of sectors thereby strengthening the coordination, complementarities, and synergies among them. To attain sustainable development, we urgently call all public and private entities to value the amount of VW used in their daily activities and design better policies on the complex WEFBH nexus and future climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13116483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13116483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint , Journal , Other literature type 2021Embargo end date: 01 Jan 2021 France, GermanyPublisher:Springer Science and Business Media LLC Funded by:ARC | Future Fellowships - Gran..., EC | InterLeptons, ARC | Discovery Projects - Gran... +5 projectsARC| Future Fellowships - Grant ID: FT130100303 ,EC| InterLeptons ,ARC| Discovery Projects - Grant ID: DP170102389 ,ARC| Discovery Projects - Grant ID: DP170102204 ,FWF| Searches for Dark Matter and Dark Forces at Belle II ,ARC| Discovery Projects - Grant ID: DP180102629 ,ARC| Discovery Projects - Grant ID: DP150103061 ,EC| FAIMEZ. S. Stottler; H. Kichimi; J. Li; M. Bessner; S. Das; V. Zhukova; M. Masuda; M. Masuda; M. Uchida; Bruce Yabsley; L. Li Gioi; S. Paul; S. Paul; H. Atmacan; C. Schwanda; Y. B. Li; A. Korobov; A. Korobov; Jochen Dingfelder; V. Popov; M. Takizawa; M. Takizawa; M. Z. Wang; K. Cho; E. Prencipe; T. Sumiyoshi; H. Park; M. C. Chang; Semen Eidelman; Semen Eidelman; Semen Eidelman; Samo Stanič; T. E. Browder; T. Iijima; A. Natochii; M. Röhrken; H. Hayashii; B.A. Shwartz; B.A. Shwartz; A. Bozek; S.-H. Park; K. Huang; Dipak Kumar Sahoo; D. Červenkov; M. Campajola; V. Chekelian; C. H. Wang; Yongsun Kim; W. S. Hou; K. Kumara; H. Ono; R. Itoh; R. Itoh; S. Uno; S. Uno; H. Ye; C. Kiesling; H. E. Cho; P. Pakhlov; Y. Jin; G. Pakhlova; G. Pakhlova; U. Tamponi; M. T. Hedges; P. L. Wang; P. Lewis; K. Lieret; K. Hayasaka; J. Bennett; C. P. Shen; B. Golob; B. Golob; Y. Usov; Y. Usov; C. Z. Yuan; S. Ogawa; M. Nakao; M. Nakao; V. Savinov; Sadaharu Uehara; Sadaharu Uehara; M. Starič; K. Nishimura; V. Gaur; Tomoyuki Konno; J. Schueler; A.E. Bondar; A.E. Bondar; Y. Unno; V.M. Aulchenko; V.M. Aulchenko; T. K. Pedlar; Takeo Kawasaki; Y. Iwasaki; N. Dash; D. Liventsev; D. Liventsev; N. Rout; A. Ishikawa; A. Ishikawa; V.N. Zhilich; V.N. Zhilich; M. Mrvar; E. Waheed; L. E. Piilonen; P. Goldenzweig; C. Hadjivasiliou; T. Matsuda; K. Miyabayashi; R. Dhamija; S. K. Choi; X. P. Xu; C. H. Kim; E. Solovieva; Z. P. Zhang; M. Merola; S.-J. Cho; A. Sangal; Andrey Sokolov; E. Won; Prafulla Kumar Behera; P. Križan; P. Križan; F. Tenchini; T. Uglov; T. Uglov; H. Aihara; Peter Kodys; T. Sanuki; Tagir Aushev; M. T. Prim; S. Nishida; S. Nishida; G. De Nardo; Y. Choi; T. Kuhr; Rocky Bala Garg; S. Jia; S. Pardi; R. Ayad; J. H. Yin; A. Chen; A. Garmash; A. Garmash; T. Pang; C. Sharma; D. Y. Kim; Felix Metzner; R. Pestotnik; E.-J. Jang; M. Watanabe; A. Bobrov; A. Bobrov; Shih-Chang Lee; K. Chilikin; R. Kroeger; D. Epifanov; D. Epifanov; Y. J. Kwon; Seema Bahinipati; R. Van Tonder; A. Kuzmin; A. Kuzmin; M. Iwasaki; Seok Kim; S. Watanuki; R. Mizuk; R. Mizuk; Iki Adachi; Iki Adachi; G. Schnell; G. Schnell; D. Matvienko; D. Matvienko; D. Matvienko; J. Libby; P. Oskin; K. Trabelsi; G. B. Mohanty; B. G. Fulsom; G. S. Varner; C.-L. Hsu; K. Belous; Samo Korpar; Samo Korpar; W. W. Jacobs; G.V. Russo; R. Mussa; G. Karyan; Seongbae Yang; Luka Santelj; Luka Santelj; N. K. Nisar; M. Niiyama; Y. Sakai; Y. Sakai; M. Nayak; V. Babu; K. Uno; J. G. Shiu;Abstract We report the first measurement of the exclusive cross sections e+e− → $$ B\overline{B} $$ B B ¯ , e+e− → $$ B{\overline{B}}^{\ast } $$ B B ¯ ∗ , and e+e− → $$ {B}^{\ast }{\overline{B}}^{\ast } $$ B ∗ B ¯ ∗ in the energy range from 10.63 GeV to 11.02 GeV. The B mesons are fully reconstructed in a large number of hadronic final states and the three channels are identified using a beam-constrained-mass variable. The shapes of the exclusive cross sections show oscillatory behavior with several maxima and minima. The results are obtained using data collected by the Belle experiment at the KEKB asymmetric-energy e+e− collider.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep06(2021)137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep06(2021)137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 21 Jul 2022Publisher:Springer Science and Business Media LLC Funded by:ARC | ARC Future Fellowships - ..., ARC | Linkage Projects - Grant ..., EC | CUSTOM-ART +1 projectsARC| ARC Future Fellowships - Grant ID: FT190100756 ,ARC| Linkage Projects - Grant ID: LP150100911 ,EC| CUSTOM-ART ,EC| INFINITE-CELLJianjun Li; Jialiang Huang; Fajun Ma; Heng Sun; Jialin Cong; Karen Privat; Richard F. Webster; Soshan Cheong; Yin Yao; Robert Lee Chin; Xiaojie Yuan; Mingrui He; Kaiwen Sun; Hui Li; Yaohua Mai; Ziv Hameiri; Nicholas J. Ekins-Daukes; Richard D. Tilley; Thomas Unold; Martin A. Green; Xiaojing Hao;AbstractUnderstanding carrier loss mechanisms at microscopic regions is imperative for the development of high-performance polycrystalline inorganic thin-film solar cells. Despite the progress achieved for kesterite, a promising environmentally benign and earth-abundant thin-film photovoltaic material, the microscopic carrier loss mechanisms and their impact on device performance remain largely unknown. Herein, we unveil these mechanisms in state-of-the-art Cu2ZnSnSe4 (CZTSe) solar cells using a framework that integrates multiple microscopic and macroscopic characterizations with three-dimensional device simulations. The results indicate the CZTSe films have a relatively long intragrain electron lifetime of 10–30 ns and small recombination losses through bandgap and/or electrostatic potential fluctuations. We identify that the effective minority carrier lifetime of CZTSe is dominated by a large grain boundary recombination velocity (~104 cm s−1), which is the major limiting factor of present device performance. These findings and the framework can greatly advance the research of kesterite and other emerging photovoltaic materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01078-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01078-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu