- home
- Search
- Energy Research
- Closed Access
- DE
- IT
- FR
- Solar Energy
- Energy Research
- Closed Access
- DE
- IT
- FR
- Solar Energy
description Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 1999 GermanyPublisher:Elsevier BV Authors: Funken, K.-H.; Pohlmann, B.; Lüpfert, E.; Dominik, R.;Abstract In many cases, hazardous wastes are subject to thermal treatment at elevated temperatures. Some types of wastes do not have a sufficient calorific value to cover the heat demand of the high temperature process. For thermal treatment of e.g. filter residues, dusts, sulfuric acid, aluminium dross, foundry sand, or waste water, supplementary energy supply is needed. The specific energy demand ranges from 0.5 to 2.5 kWh/kg (2–10 MJ/kg). An important aim of process optimisation is the reduction of (fossil) energy consumption and exhaust gas flow. Concentrated solar energy promises advantages when applied to high energy consuming waste treatment processes with regard to substitute fossil or electric energy consumption, to reduce CO2 emissions, and exhaust gas flow. In parallel to conceptional studies, a solar-heated rotary kiln mini-plant has been designed and constructed for tests in the DLR solar furnace. The tests will give indications of boundary conditions for solar thermal treatment or conversion of selected hazardous materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-092x(98)00089-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-092x(98)00089-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors:Ghafoor, A.;
Ghafoor, A.
Ghafoor, A. in OpenAIREFRACASTORO, GIOVANNI VINCENZO;
FRACASTORO, GIOVANNI VINCENZO
FRACASTORO, GIOVANNI VINCENZO in OpenAIREhandle: 11583/2631777
Abstract Even under the powerful thrust of 20–20–20 measures, solar thermal systems are experiencing a slow-down in their development in most EU countries. One reason is their traditional confinement to sanitary hot water (SHW) production; another one is the growing competition with photovoltaic (PV) systems. In order to widen the use of solar thermal collectors, they should also be able to contribute to space heating and cooling and become Multi-Purpose Solar Thermal Systems (MPSTS). This paper addresses the issue of optimal sizing of MPSTS. The criterion adopted is based on maximization of Net Present Value and has been applied to some cities in Italy and in Pakistan with diverse climate conditions. Results show that optimal thermal collector areas per peak cooling demand ( A c / P c ) can be conveniently expressed as a function of Peak Heating to Cooling Ratio ( P h / P c ). Optimum A c / P c varies between 3 and 5 m 2 /kW c and decreases with increasing P h / P c . The paper also analyses and compares a MPSTS with a multi-purpose PV-based heat pump system using a traditional one (boiler and compression chiller) as reference. Results show that steadily decreasing prices have made PV systems more favorable, even without consideration of public subsidies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Abstract A method to quantify spectral effects on the electric parameters of multi-junction solar cells is presented. The method is based on measuring the short circuit current of at least two monitor cells. Ideally these monitor cells have the same spectral responses as the subcells in the investigated multi-junction solar cell. In contrast to the subcells, the current of the individual monitor cells can be measured separately. This allows conclusions to be drawn about the spectral impact on the current mismatch of the multi-junction solar cell. A spectrometric evaluation method is then applied. The method has been tested experimentally with three concentrator modules using III–V triple-junction solar cells. These modules were measured outdoors for several months under variable solar spectral conditions. In parallel, the IV curves of the modules and the current of two component cells were measured. A spectral parameter Z was derived from the monitor cell current signals, which was correlated to the short circuit current and the fill factor of the modules. A linear correlation was found between Z and the normalized short circuit current of the concentrator modules. Translation equations were derived from the linear correlation. These enable the calculation of a module’s short circuit current under any spectral conditions. In particular, the short circuit currents of the modules were derived for direct normal irradiance of 850 W/m 2 and spectral conditions corresponding to the AM1.5d low AOD spectrum. This is an important step towards comparing the performance of modules which show strong spectral sensitivity. Future rating methods can benefit from the presented simple method for quantifying spectral impacts on multi-junction solar cells. Furthermore, the method can be of interest for tuning the spectrum of pulsed solar simulators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2009.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2009.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012Publisher:Elsevier BV Funded by:EC | HYDROSOL-3DEC| HYDROSOL-3DAuthors: Säck, J.-P.;Roeb, M.;
Roeb, M.
Roeb, M. in OpenAIRESattler, C.;
Sattler, C.
Sattler, C. in OpenAIREPitz-Paal, R.;
+1 AuthorsPitz-Paal, R.
Pitz-Paal, R. in OpenAIRESäck, J.-P.;Roeb, M.;
Roeb, M.
Roeb, M. in OpenAIRESattler, C.;
Sattler, C.
Sattler, C. in OpenAIREPitz-Paal, R.;
Heinzel, Angelika;Pitz-Paal, R.
Pitz-Paal, R. in OpenAIREAbstract An attractive path to the production of hydrogen from water is a two-step thermo chemical cycle powered by concentrated sunlight from a solar tower system. In the first process step the redox system, a ferrite coated on a monolithic honeycomb absorber, is present in its reduced form while the concentrated solar energy hits the ceramic absorber. When water vapour is fed to the honeycomb at 800 °C, oxygen is abstracted from the water molecules, bond in the redox system and hydrogen is produced. When the metal oxide system is completely oxidised it is heated up for regeneration at 1100–1200 °C in an oxygen-lean atmosphere. Under those conditions and in the second process step, oxygen is set free from the redox system, so the metal oxide is being reduced and after completion of the reaction again capable for water splitting. Since the overall process consists of two core reaction steps, which need to be carried out sequentially in a reactor unit at two different temperature steps, a special process and plant concept had to be developed enabling the continuous supply of product regardless of the alternating nature of the solar reactor operation. The challenge of the process control is to keep the two core reaction temperatures constant and to ensure regular temperature switches after completion of the individual process steps, independent of the weather conditions, like DNI fluctuation, clouds and wind speed. Also start-up, the fast switching after completion of half-cycles and the shutdown must be controlled. State of the art is the manual switching of heliostats to fulfil those control tasks. This paper describes the development and use of a system model of this process. The model consists of three main parts: the simulation of the solar flux distribution at the receiver aperture, the simulation of the temperatures in the reactor modules and the simulation of the hydrogen generation. It can be used for the analysis of the operational behaviour. The model is intended to be used in the future for the control of the whole process.
Solar Energy arrow_drop_down http://dx.doi.org/doi:10.1016/...Other literature typeData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down http://dx.doi.org/doi:10.1016/...Other literature typeData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2012Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Volker Probst; Jörg Palm; Franz Karg;Abstract Multinary Cu(In,Ga)(Se,S) 2 absorbers (abrev. CIGSSe) are promising candidates for reducing the cost of photovoltaics well below the cost of crystalline silicon. Shell Solar has pioneered production of this new thin film technology and is now with the first generation at a volume of well over 1 MW/year. In a separate pilot line for second generation products we have further improved the performance of CIGSSE based solar modules. We developed a novel CIGSSE formation technique called stacked elemental layer rapid thermal processing (SEL-RTP). This process has recently been scaled up from initial laboratory sized mini-modules (10 × 10 cm 2 ) to full sized power modules of 60 × 90 cm 2 . The present paper concentrates on in situ and ex situ characterization techniques that were developed to control and further improve large area CIGSSE processing. The crystalline thin film formation process has been analyzed with in situ thin film calorimetry and in situ X-ray diffraction (XRD). That work has added fundamental insights and accelerates the optimization process. The depth distribution of gallium and sulfur has been determined by secondary ion mass spectroscopy (SIMS) for different selenization and sulfurization processes. Appropriate profiles of these elements allow for a deliberate bandgap profiling within the Cu(In,Ga)(S,Se) 2 absorber. In addition further quality control tools like X-ray fluorescence analysis and Raman spectroscopy for stoichiometry monitoring, photoluminescence lifetime mapping and thermographic imaging have been developed in order to improve large area uniformity and reproducibility. Some first full sized modules from the new pilot line look very promising: Aperture area efficiencies of up to 13.1% for monolithic thin film circuits on 0.54 m 2 and a module power of 65 W represent an international champion value for large are thin film solar modules.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2004.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu111 citations 111 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2004.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Antonino Nucara;
Antonino Nucara
Antonino Nucara in OpenAIREConcettina Marino;
Matilde Pietrafesa;Concettina Marino
Concettina Marino in OpenAIREThis paper investigates the influence of solar radiation on thermal comfort inside an indoor environment and its effect on the building energy consumptions. Furthermore, it draws up a procedure which allows the rating of the thermal comfort quality of indoor environments in the presence of solar radiation, to be used in correlation with the energy classification of building in order to refer the energy performance to the indoor environmental conditions. Mean Radiant Temperatures (MRT) for a subject exposed to solar radiation in different positions of the environment were calculated, with an hourly time step and for a whole year. These values were utilized to assess the Predicted Percentage of Dissatisfied (PPD) and its variation with time and space, so that long term thermal comfort evaluations were able to be carried out and comparisons among irradiated and not irradiated positions were able to be made.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1990Publisher:Elsevier BV Authors: Z.-G. Du; E. Bilgen;Abstract Steady natural convection heat transfer has been studied in a modified Trombe wall solar collector with a porous medium used as an absorber. The boundary conditions were: Two isothermal walls at different temperatures, two horizontal bounding adiabatic walls and either uniform or nonuniform heat generating porous layer with orifices. The aspect ratio A was from 5 to 10. The influence of orifice opening and position as well as the nonuniform heat generation within the porous medium have been studied in detail with the Darcy number varying from 10−8 to 10−2. The results are presented in terms of practical parameters (θ, θmax, q) as a function of Ra, Da and other nondimensional geometrical parameters. The isotherms and stream lines within the cavity are also produced. The overall results indicate that Da and geometrical parameters are the most important parameters affecting system performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0038-092x(90)90153-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0038-092x(90)90153-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Mohammad I. Hossain;
Nivedita Yumnam;Mohammad I. Hossain
Mohammad I. Hossain in OpenAIREWayesh Qarony;
Alberto Salleo; +3 AuthorsWayesh Qarony
Wayesh Qarony in OpenAIREMohammad I. Hossain;
Nivedita Yumnam;Mohammad I. Hossain
Mohammad I. Hossain in OpenAIREWayesh Qarony;
Alberto Salleo; Veit Wagner; Dietmar Knipp;Wayesh Qarony
Wayesh Qarony in OpenAIREYuen H. Tsang;
Yuen H. Tsang
Yuen H. Tsang in OpenAIREAbstract The short-circuit current density and energy conversion efficiency of single-junction perovskite and perovskite/perovskite tandem solar cells can be increased by photon management. In this study, optical metasurfaces were investigated as potential light trapping structures oppose to commonly used pyramidal surface textures. Herein, metal oxide-based non-resonant metasurfaces were investigated as potential light-trapping structures in perovskite solar cells. The zinc oxide nanowire-based building blocks of the metasurface can be prepared by a templated electrodeposition through a mask of resist. The phase of the incident light can be controlled by the edge length of the subwavelength large zinc oxide nanowires. An array of zinc oxide nanowires was prepared and characterized in the current study. Three-dimensional (3D) finite-difference time-domain (FDTD) optical simulations were used to compare solar cells covered with non-resonant metasurfaces with commonly used light trapping structures. As compared to the solar cells covered with zinc oxide pyramid surface texture, solar cells with the integrated non-resonant metasurfaces exhibit almost identical quantum efficiencies and short-circuit current densities. Investigations of such metasurfaces will not only improve the photon absorption in perovskite solar cells but also reveal a pathway to make high-efficiency next-generation solar cells. Detailed guidelines for the realization of non-resonant metal oxide metasurfaces will be provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Elsevier BV Authors: Singh, Dileep;Timofeeva, Elena V.;
Moravek, Michael R.; Cingarapu, Sreeram; +3 AuthorsTimofeeva, Elena V.
Timofeeva, Elena V. in OpenAIRESingh, Dileep;Timofeeva, Elena V.;
Moravek, Michael R.; Cingarapu, Sreeram; Yu, Wenhua; Fischer, Thomas; Mathur, Sanjay;Timofeeva, Elena V.
Timofeeva, Elena V. in OpenAIREAbstract One of the approaches to enhance the efficiency, and consequently, reduce costs to produce electricity from concentrated solar power (CSP) is by the development of advanced high temperature heat transfer fluids (HTFs). Incorporation of metallic nanoparticles into conventional heat transfer fluids could significantly improve the thermal transport properties of the HTFs. This study reports on the synthesis and investigation of copper nanoparticles synthesized in-house and dispersed in two synthetic HTFs Therminol 59 (TH59) and Therminol 66 (TH66). Liquid phase reduction of a copper salt was used to produce copper nanoparticles. Suspensions with various copper nanoparticle loadings (0.5–2 vol.%) were prepared. Characterizations such as the thermal conductivity, dynamic viscosity, mass specific heat capacity, and fluid stability were performed on the suspensions. Thermal conductivity enhancements over the base fluids were as high as approximately 20% at a 2 vol.% particle loading. These enhancements in the thermal conductivity are higher than the predictions based on the Effective Medium Theory (EMT). Dynamic viscosity measurements showed that if good dispersion of nanoparticles is achieved, the composite fluids behave in a Newtonian manner and the dynamic viscosity increases over the base fluid are minor at temperatures 125 °C and above. Stability of the suspensions with time was also investigated. Based on the measured properties of the suspensions, a figure of merit for heat transfer was calculated to evaluate the viability of the suspensions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.02.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.02.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: N. Eswara Prasad; Prabhat K. Dwivedi; Shailendra Kumar Dwivedi; Santosh K. Tripathi; +3 AuthorsN. Eswara Prasad; Prabhat K. Dwivedi; Shailendra Kumar Dwivedi; Santosh K. Tripathi; D. C. Tiwari; Tarun Chandel; Pukhrambam Dipak;Abstract Thin film solar cells with ITO/ZnO/P3HT:PCM:CTSe NCs/Ag structure were fabricated employing a fast and cost-effective procedure using blended solution of P3HT:PCBM:CTSe NCs deposited by spin casting, followed by thermal annealing steps. The CTSe NCs are prepared via solvothermal method. An inverted architecture of device with structure ITO/ZnO/P3HT: PCBM:CTSe NCs/Ag have been fabricated with different concentration of CTSe NCs in poly(3-hexyle thiophene) (P3HT): [6,6]phenyl-C61-butyric-acid-methyl-ester (PCBM) matrix. The effect of CTSe NCs on the performance of hybrid solar cell with optimized blend ratio of P3HT:PCBM and CTSe NCs has been investigated for optimum power conversion. The charge carrier extraction and recombination at the interface of donor-acceptor material were studied using Electrochemical impedance spectroscopy (EIS) under dark condition. EIS study has demonstrated that the charge transfer rate was higher for the device having optimized wt% of CTSe NCs (10 wt%) in P3HT:PCBM active layer. A significant improvement in the device performances was observed on incorporation of CTSe NCs. The device exhibited open circuit voltage (Voc) of 0.475 V, short circuit current density (Jsc) of 6.95 mA/cm2, fill factor (FF) of 0.41 and power conversion efficiency (PCE) of 1.35%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu