- home
- Search
- Energy Research
- 2021-2025
- 6. Clean water
- FR
- Energy Research
- 2021-2025
- 6. Clean water
- FR
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 24 Sep 2023Publisher:Dryad Cresswell, Anna; Renton, Michael; Langlois, Timothy; Thomson, Damian; Lynn, Jasmine; Claudet, Joachim;# Coral reef state influences resilience to acute climate-mediated disturbances\_Table S1 [https://doi.org/10.5061/dryad.rfj6q57gz](https://doi.org/10.5061/dryad.rfj6q57gz) The dataset provides a summary of all publications included in the analysis for this study and the key statistics obtained from the studies and used in the analyses. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. ## Description of the data and file structure Each column provides the following information: | Column | Detail | | ------ | ------ | | Realm | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Province | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Ecoregion | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Unique study identifier | Unique identifiers for the lowest sampling unit in the dataset. In cases where there were data for different regions, reefs, islands/atolls, sites, reef zones, depths, and/or multiple disturbances within a publication or time-series, data from these publications were divided into separate ‘studies’. | | Publication/Dataset | Unique identifiers for the publication or dataset (generally the surname of the first author followed by the year of publication). | | Publication title | Title of the publication or dataset from which the data were sourced. | | Publication year | Year the publication from the which the data were sourced was published. | | Country/Territory | Name of the country or location from which the data came. | | Site latitude | Latitude of the study site from where the data came. | | Site longitude | Longitude of the study site from where the data came. | | Disturbance type | Classification of disturbance: Temperature stress, Cyclone/ severe storm, Runoff or Multiple. | | Disturbance.year | Year of the disturbance. | | Mean coral cover pre-disturbance | Pre-disturbance coral cover as extracted from the publication or dataset as the closest data point prior to disturbance. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Mean coral cover post-disturbance | Post-disturbance coral cover as extracted from the publication or dataset as the closest data point prior to disturbance. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Impact (lnRR) | Impact measure: the log response ratio of pre- to post-disturbance percentage coral cover. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Time-averaged recovery rate | Recovery rate as percentage coral cover per year in the approximate 5-year time window following disturbance. See main Methods text in manuscript for more detail. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in the calculation of recovery rate. | | Recovery shape | Recovery shape category: linear, accelerating, decelerating, logistic, flatline or null. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in classification of recovery shape. | | Recovery completeness | Recovery completeness category: complete recovery – coral is observed to reach its pre-disturbance coral cover, signs of recovery – a positive trajectory but not reaching pre-disturbance cover in the time period examined, undetermined – no clear pattern in recovery, the null model was the top model, no recovery – the null model was the top model but the linear model had slope and standard error in slope near zero and further decline – the top model had a negative trend. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in classification of recovery shape. | | Reference | Source for the data. | ## Sharing/Access information Data was derived from the following sources: **Appendix 1. Full list of references providing the data used in impact and recovery analyses supporting Table S1** Arceo, H. O., Quibilan, M. C., Aliño, P. M., Lim, G., & Licuanan, W. Y. (2001). Coral bleaching in Philippine reefs: Coincident evidences with mesoscale thermal anomalies. Bulletin of Marine Science, 69(2), 579-593. Aronson, R. B., Precht, W. F., Toscano, M. A., & Koltes, K. H. (2002). The 1998 bleaching event and its aftermath on a coral reef in Belize. Marine Biology, 141(3), 435-447. Aronson, R. B., Sebens, K. P., & Ebersole, J. P. (1994). Hurricane Hugo's impact on Salt River submarine canyon, St. Croix, US Virgin Islands. Proceedings of the colloquium on global aspects of coral reefs, Miami, 1993, 189-195. Bahr, K. D., Rodgers, K. S., & Jokiel, P. L. (2017). Impact of three bleaching events on the reef resiliency of Kāne'ohe Bay, Hawai'i. Frontiers in Marine Science, 4(DEC). Baird, A. H., Álvarez-Noriega, M., Cumbo, V. R., Connolly, S. R., Dornelas, M., & Madin, J. S. (2018). Effects of tropical storms on the demography of reef corals. Marine Ecology Progress Series, 606, 29-38. Barranco, L. M., Carriquiry, J. D., Rodríguez-Zaragoza, F. A., Cupul-Magaña, A. L., Villaescusa, J. A., & Calderón-Aguilera, L. E. (2016). Spatiotemporal variations of live coral cover in the Northern Mesoamerican reef system, Yucatan Peninsula, Mexico. Scientia Marina, 80(2), 143-150. Bastidas, C., Bone, D., Croquer, A., Debrot, D., Garcia, E., Humanes, A., . . . Rodríguez, S. (2012). Massive hard coral loss after a severe bleaching event in 2010 at Los Roques, Venezuela. Revista de Biologia Tropical, 60(SUPPL. 1), 29-37. Booth, D. J., & Beretta, G. A. (2002). Changes in a fish assemblage after a coral bleaching event. Marine Ecology Progress Series, 245, 205-212. Brandl, S. J., Emslie, M. J., & Ceccarelli, D. M. (2016). Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere, 7(11). Brown, D., & Edmunds, P. J. (2013). Long-term changes in the population dynamics of the Caribbean hydrocoral Millepora spp. Journal of Experimental Marine Biology and Ecology, 441, 62-70. Brown, V. B., Davies, S. A., & Synnot, R. N. (1990). Long-term Monitoring of the Effects of Treated Sewage Effluent on the Intertidal Macroalgal Community Near Cape Schanck, Victoria, Australia. Botanica Marina, 33(1), 85-98. Bruckner, A. W., Coward, G., Bimson, K., & Rattanawongwan, T. (2017). Predation by feeding aggregations of Drupella spp. inhibits the recovery of reefs damaged by a mass bleaching event. Coral Reefs, 36(4), 1181-1187. Burt, J. A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A., & Al-Jailani, H. (2019). Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs. Bythell, J. (1997). Assessment of the impacts of hurricanes Marilyn and Luis and post-hurricane community dynamics at Buck Island Reef National Monument as part of the long-term coral reef monitoring program in the north-eastern Caribbean. Retrieved from Newcastle, United Kingdom: Coles, S. L., & Brown, E. K. (2007). Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai'i: The importance of recruitment. Coral Reefs, 26(3), 705-717. Connell, J. H., Hughes, T. P., Wallace, C. C., Tanner, J. E., Harms, K. E., & Kerr, A. M. (2004). A long‐term study of competition and diversity of corals. Ecological Monographs, 74(2), 179-210. Couch, C. S., Burns, J. H. R., Liu, G., Steward, K., Gutlay, T. N., Kenyon, J., . . . Kosaki, R. K. (2017). Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE, 12(9). Crabbe, M. J. C. (2014). Evidence of initial coral community recovery at Discovery Bay on Jamaica’s north coast. Revista de Biologia Tropical, 62, 137-140. Crosbie, A. J., Bridge, T. C., Jones, G., & Baird, A. H. (2019). Response of reef corals and fish at Osprey Reef to a thermal anomaly across a 30 m depth gradient. Marine Ecology Progress Series, 622, 93-102. Darling, E. S., McClanahan, T. R., & Côté, I. M. (2010). Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conservation Letters, 3(2), 122-130. De Bakker, D. M., Meesters, E. H., Bak, R. P. M., Nieuwland, G., & Van Duyl, F. C. (2016). Long-term Shifts in Coral Communities On Shallow to Deep Reef Slopes of Curaçao and Bonaire: Are There Any Winners? Frontiers in Marine Science, 3(247). Depczynski, M., Gilmour, J. P., Ridgway, T., Barnes, H., Heyward, A. J., Holmes, T. H., . . . Wilson, S. K. (2013). Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs, 32(1), 233-238. Diaz-Pulido, G., McCook, L. J., Dove, S., Berkelmans, R., Roff, G., Kline, D. I., . . . Hoegh-Guldberg, O. (2009). Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery. PLoS ONE, 4(4). Dollar, S. J., & Tribble, G. W. (1993). Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii. Coral Reefs, 12(3-4), 223-233. Donner, S. D., Kirata, T., & Vieux, C. (2010). Recovery from the 2004 coral bleaching event in the Gilbert Islands, Kiribati. Atoll Research Bulletin(587), 1-25. Edmunds, P. J. (2013). Decadal-scale changes in the community structure of coral reefs of St. John, US Virgin Islands. Marine Ecology Progress Series, 489, 107-123. Edmunds, P. J. (2018). Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Scientific Reports, 8(1). Edmunds, P. J. (2019). Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology, 100(3). Edward, J. K. P., Mathews, G., Diraviya Raj, K., Laju, R. L., Selva Bharath, M., Arasamuthu, A., . . . Malleshappa, H. (2018). Coral mortality in the Gulf of Mannar, southeastern India, due to bleaching caused by elevated sea temperature in 2016. Current Science, 114(9), 1967-1972. Edwards, A. J., Clark, S., Zahir, H., Rajasuriya, A., Naseer, A., & Rubens, J. (2001). Coral bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface temperature anomalies and initial recovery. Marine Pollution Bulletin, 42(1), 7-15. Emslie, M. J., Bray, P., Cheal, A. J., Johns, K. A., Osborne, K., Sinclair-Taylor, T., & Thompson, C. A. (2020). Decades of monitoring have informed the stewardship and ecological understanding of Australia's Great Barrier Reef. Biological Conservation, 252, 108854. Fenner, D. P. (1991). Effects of Hurricane Gilbert on coral reefs, fishes and sponges at Cozumel, Mexico. Bulletin of Marine Science, 48(3), 719-730. Fox, M. D., Carter, A. L., Edwards, C. B., Takeshita, Y., Johnson, M. D., Petrovic, V., . . . Smith, J. E. (2019). Limited coral mortality following acute thermal stress and widespread bleaching on Palmyra Atoll, central Pacific. Coral Reefs. García-Sais, J. R., Williams, S. M., & Amirrezvani, A. (2017). Mortality, recovery, and community shifts of scleractinian corals in Puerto Rico one decade after the 2005 regional bleaching event. PeerJ, 2017(7). Garpe, K. C., Yahya, S. A. S., Lindahl, U., & Öhman, M. C. (2006). Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Marine Ecology Progress Series, 315, 237-247. Gilmour, J. P., Cook, K. L., Ryan, N. M., Puotinen, M. L., Green, R. H., Shedrawi, G., . . . Oades, D. (2019). The state of Western Australia’s coral reefs. Coral Reefs. Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H., & Pratchett, M. S. (2013). Recovery of an isolated coral reef system following severe disturbance. Science, 340(6128), 69-71. Glynn, P. W. (1984). Widespread coral mortality and the 1982-1983 El Niño warming event. Environmental Conservation, 11(2), 133-146. Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W., & Serafy, J. E. (2014). Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Marine Ecology Progress Series, 495, 233-247. Gouezo, M., Golbuu, Y., Van Woesik, R., Rehm, L., Koshiba, S., & Doropoulos, C. (2015). Impact of two sequential super typhoons on coral reef communities in Palau. Marine Ecology Progress Series, 540, 73-85. Guest, J. R., Tun, K., Low, J., Vergés, A., Marzinelli, E. M., Campbell, A. H., . . . Steinberg, P. D. (2016). 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Scientific Reports, 6. Guillemot, N., Chabanet, P., & Le Pape, O. (2010). Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs, 29(2), 445-453. Guzmán, H. M., & Cortés, J. (2001). Changes in reef community structure after fifteen years of natural disturbances in the Eastern Pacific (Costa Rica). Bulletin of Marine Science, 69(1), 133-149. Guzman, H. M., Cortes, J., Richmond, R. H., & Glynn, P. W. (1987). Effects of "El Nino - Southern oscillation' 1982/83 in the coral reefs at Isla del Cano, Costa Rica. Revista de Biologia Tropical, 35(2), 325-332. Haapkylä, J., Melbourne-Thomas, J., Flavell, M., & Willis, B. L. (2013). Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef. Coral Reefs, 32(3), 815-824. Hagan, A., & Spencer, T. (2008). Reef resilience and change 1998–2007, Alphonse Atoll, Seychelles. Paper presented at the Proc 11th Int Coral Reef Symp. Harii, S., Hongo, C., Ishihara, M., Ide, Y., & Kayanne, H. (2014). Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey. Marine Ecology Progress Series, 509, 171-180. Harrison, H. B., Álvarez-Noriega, M., Baird, A. H., Heron, S. F., MacDonald, C., & Hughes, T. P. (2018). Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs. Holbrook, S. J., Adam, T. C., Edmunds, P. J., Schmitt, R. J., Carpenter, R. C., Brooks, A. J., . . . Briggs, C. J. (2018). Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Scientific Reports, 8(1). Hongo, C., & Yamano, H. (2013). Species-Specific Responses of Corals to Bleaching Events on Anthropogenically Turbid Reefs on Okinawa Island, Japan, over a 15-year Period (1995-2009). PLoS ONE, 8(4). Huang, H., Yang, Y., Li, X., Yang, J., Lian, J., Lei, X., . . . Zhang, J. (2014). Benthic community changes following the 2010 Hainan flood: Implications for reef resilience. Marine Biology Research, 10(6), 601-611. Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265(5178), 1547-1551. Jokiel, P. L., Hunter, C. L., Taguchi, S., & Watarai, L. (1993). Ecological impact of a fresh-water "reef kill" in Kaneohe Bay, Oahu, Hawaii. Coral Reefs, 12(3-4), 177-184. Jones, A. M., & Berkelmans, R. (2014). Flood impacts in Keppel Bay, Southern Great Barrier Reef in the aftermath of cyclonic rainfall. PLoS ONE, 9(1). Jonker, M., Johns, K., & Osborne, K. (2008). Surveys of benthic reef communities using underwater digital photography and counts of juveniles. Long-term monitoring of the Great Barrier Reef Standard Operation Procedure Number 10. Retrieved from Townsville: Kuo, C. Y., Yuen, Y. S., Meng, P. J., Ho, P. H., Wang, J. T., Liu, P. J., . . . Chen, C. A. (2012). Recurrent Disturbances and the Degradation of Hard Coral Communities in Taiwan. PLoS ONE, 7(8). Lam, V. Y. Y., Chaloupka, M., Thompson, A., Doropoulos, C., & Mumby, P. J. (2018). Acute drivers influence recent inshore Great Barrier Reef dynamics. Proceedings of the Royal Society B: Biological Sciences, 285(1890). Lambo, A. L., & Ormond, R. F. G. (2006). Continued post-bleaching decline and changed benthic community of a Kenyan coral reef. Marine Pollution Bulletin, 52(12), 1617-1624. Lamy, T., Galzin, R., Kulbicki, M., Lison de Loma, T., & Claudet, J. (2016). Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages. Coral Reefs, 35(1), 293-302. Lamy, T., Legendre, P., Chancerelle, Y., Siu, G., & Claudet, J. (2015). Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: Insights from beta-diversity decomposition. PLoS ONE, 10(9). Liddell, W. D., & Ohlhorst, S. L. (1992). Ten years of disturbance and change on a Jamaican fringing reef. Paper presented at the 7th Int. Coral Reef Symp. Lirman, D., Glynn, P. W., Baker, A. C., & Morales, G. E. L. (2001). Combined effects of three sequential storms on the huatulco coral reef tract, mexico. Bulletin of Marine Science, 69(1), 267-278. Lovell, E., & Sykes, H. Rapid recovery from bleaching events-Fiji Coral Reef Monitoring Network Assessment of hard coral cover from. Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., & Van Woesik, R. (2001). Coral bleaching: The winners and the losers. Ecology Letters, 4(2), 122-131. Lozano-Montes, H. M., Keesing, J. K., Grol, M. G., Haywood, M. D. E., Vanderklift, M. A., Babcock, R. C., & Bancroft, K. (2017). Limited effects of an extreme flood event on corals at Ningaloo Reef. Estuarine, Coastal and Shelf Science, 191, 234-238. Madin, J. S., Baird, A. H., Bridge, T. C. L., Connolly, S. R., Zawada, K. J. A., & Dornelas, M. (2018). Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Marine Ecology Progress Series, 604, 263-268. Magdaong, E. T., Fujii, M., Yamano, H., Licuanan, W. Y., Maypa, A., Campos, W. L., . . . Martinez, R. (2014). Long-term change in coral cover and the effectiveness of marine protected areas in the Philippines: A meta-analysis. Hydrobiologia, 733(1), 5-17. McField, M. (2000). Influence of disturbance on coral reef community structure in Belize. Paper presented at the Proc 9th Int Coral Reef Symp. Monaco, M. E., Friedlander, A. M., Caldow, C., Hile, S. D., Menza, C., & Boulon, R. H. (2009). Long-term monitoring of habitats and reef fish found inside and outside the U.S. Virgin Islands Coral Reef National Monument: A comparative assessment. Caribbean Journal of Science, 45(2-3), 338-347. Montefalcone, M., Morri, C., & Bianchi, C. N. (2018). Long-term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies. Global Change Biology, 24(12), 5629-5641. Morgan, K. M., Perry, C. T., Johnson, J. A., & Smithers, S. G. (2017). Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Frontiers in Marine Science, 4. Obura, D., Gudka, M., Rabi, F. A., Gian, S. B., Bijoux, J., Freed, S., . . . Sola, E. (2017). Coral Reef Status Report for the Western Indian Ocean (2017). Paper presented at the Nairobi Convention. Obura, D., & Mangubhai, S. (2011). Coral mortality associated with thermal fluctuations in the Phoenix Islands, 2002-2005. Coral Reefs, 30(3), 607-619. Ostrander, G. K., Armstrong, K. M., Knobbe, E. T., Gerace, D., & Scully, E. P. (2000). Rapid transition the structure of a coral reef community: The effects of coral bleaching and physical disturbance. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5297-5302. Pereira, M. A. M., & Gonçalves, P. M. B. (2004). Effects of the 2000 southern Mozambique floods on a marginal coral community: The case at Xai-Xai. African Journal of Aquatic Science, 29(1), 113-116. Perry, C. T. (2003). Reef development at Inhaca Island, Mozambique: Coral communities and impacts of the 1999/2000 southern African floods. Ambio, 32(2), 134-139. Phongsuwan, N., Chankong, A., Yamarunpatthana, C., Chansang, H., Boonprakob, R., Petchkumnerd, P., . . . Bundit, O. A. (2013). Status and changing patterns on coral reefs in Thailand during the last two decades. Deep-Sea Research Part II: Topical Studies in Oceanography, 96, 19-24. Reyes-Bonilla, H., Carriquiry, J. D., Leyte-Morales, G. E., & Cupul-Magaña, A. L. (2002). Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997-1999) on coral reefs of the western coast of México. Coral Reefs, 21(4), 368-372. Ridgway, T., Inostroza, K., Synnot, L., Trapon, M., Twomey, L., & Westera, M. (2016). Temporal patterns of coral cover in the offshore Pilbara, Western Australia. Marine Biology, 163(9). Riegl, B. (2002). Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Marine Biology, 140(1), 29-40. Rioja-Nieto, R., Chiappa-Carrara, X., & Sheppard, C. (2012). Effects of hurricanes on the stability of reef-associated landscapes. Ciencias Marinas, 38(1), 47-55. Rogers, C. S., Gilnack, M., & Fitz Iii, H. C. (1983). Monitoring of coral reefs with linear transects: A study of storm damage. Journal of Experimental Marine Biology and Ecology, 66(3), 285-300. Rousseau, Y., Galzin, R., & Maréchal, J. P. (2010). Impact of hurricane Dean on coral reef benthic and fish structure of Martinique, French West Indies. Cybium, 34(3), 243-256. Russ, G. R., & Leahy, S. M. (2017). Rapid decline and decadal-scale recovery of corals and Chaetodon butterflyfish on Philippine coral reefs. Marine Biology, 164(1). Ruzicka, R. R., Colella, M. A., Porter, J. W., Morrison, J. M., Kidney, J. A., Brinkhuis, V., . . . Colee, J. (2013). Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Marine Ecology Progress Series, 489, 125-141. Sheppard, C. R. C. (1999). Coral decline and weather patterns over 20 years in the Chagos Archipelago, central Indian Ocean. Ambio, 28(6), 472-478. Shulman, M. J., & Robertson, D. R. (1996). Changes in the coral reefs of San Bias, Caribbean Panama: 1983 to 1990. Coral Reefs, 15(4), 231-236. Smith, T. B., Brandt, M. E., Calnan, J. M., Nemeth, R. S., Blondeau, J., Kadison, E., . . . Rothenberger, P. (2013). Convergent mortality responses of Caribbean coral species to seawater warming. Ecosphere, 4(7). Steneck, R. S., Arnold, S. N., Boenish, R., de León, R., Mumby, P. J., Rasher, D. B., & Wilson, M. W. (2019). Managing Recovery Resilience in Coral Reefs Against Climate-Induced Bleaching and Hurricanes: A 15 Year Case Study From Bonaire, Dutch Caribbean. Frontiers in Marine Science, 6(265). Stobart, B., Teleki, K., Buckley, R., Downing, N., & Callow, M. (2005). Coral recovery at Aldabra Atoll, Seychelles: Five years after the 1998 bleaching event. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1826), 251-255. Torda, G., Sambrook, K., Cross, P., Sato, Y., Bourne, D. G., Lukoschek, V., . . . Willis, B. L. (2018). Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Scientific Reports, 8(1). Trapon, M. L., Pratchett, M. S., & Penin, L. (2011). Comparative effects of different disturbances in coral reef habitats in Moorea, French Polynesia. Journal of Marine Biology, 2011. Tsounis, G., & Edmunds, P. J. (2017). Three decades of coral reef community dynamics in St. John, USVI: A contrast of scleractinians and octocorals. Ecosphere, 8(1). Van Woesik, R., De Vantier, L. M., & Glazebrook, J. S. (1995). Effects of Cyclone "Joy' on nearshore coral communities of the Great Barrier Reef. Marine Ecology Progress Series, 128(1-3), 261-270. Van Woesik, R., Sakai, K., Ganase, A., & Loya, Y. (2011). Revisiting the winners and the losers a decade after coral bleaching. Marine Ecology Progress Series, 434, 67-76. Vercelloni, J., Kayal, M., Chancerelle, Y., & Planes, S. (2019). Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Scientific Reports, 9(1). Walsh, W. J. (1983). Stability of a coral reef fish community following a catastrophic storm. Coral Reefs, 2(1), 49-63. Wilkinson, C. (2004). Status of coral reefs of the world: 2004 (Vol. 2). Queensland, Australia: Global Coral Reef Monitoring Network. Wilkinson, C. R., & Souter, D. (2008). Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Wismer, S., Tebbett, S. B., Streit, R. P., & Bellwood, D. R. (2019). Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Science of the Total Environment, 650, 1487-1498. Woolsey, E., Bainbridge, S. J., Kingsford, M. J., & Byrne, M. (2012). Impacts of cyclone Hamish at One Tree Reef: Integrating environmental and benthic habitat data. Marine Biology, 159(4), 793-803. Aim: Understand the interplay between resistance and recovery on coral reefs, and investigate dependence on pre- and post-disturbance states, to inform generalisable reef resilience theory across large spatial and temporal scales. Location: Tropical coral reefs globally. Time period: 1966 to 2017. Major taxa studied: Scleratinian hard corals. Methods: We conducted a literature search to compile a global dataset of total coral cover before and after acute storms, temperature stress, and coastal runoff from flooding events. We used meta-regression to identify variables that explained significant variation in disturbance impact, including disturbance type, year, depth, and pre-disturbance coral cover. We further investigated the influence of these same variables, as well as post-disturbance coral cover and disturbance impact, on recovery rate. We examined the shape of recovery, assigning qualitatively distinct, ecologically relevant, population growth trajectories: linear, logistic, logarithmic (decelerating), and a second-order quadratic (accelerating). Results: We analysed 427 disturbance impacts and 117 recovery trajectories. Accelerating and logistic were the most common recovery shapes, underscoring non-linearities and recovery lags. A complex but meaningful relationship between the state of a reef pre- and post-disturbance, disturbance impact magnitude, and recovery rate was identified. Fastest recovery rates were predicted for intermediate to large disturbance impacts, but a decline in this rate was predicted when more than ~75% of pre-disturbance cover was lost. We identified a shifting baseline, with declines in both pre-and post-disturbance coral cover over the 50 year study period. Main conclusions: We breakdown the complexities of coral resilience, showing interplay between resistance and recovery, as well as dependence on both pre- and post-disturbance states, alongside documenting a chronic decline in these states. This has implications for predicting coral reef futures and implementing actions to enhance resilience. The dataset provides a summary of all studies included in the analysis and the key statistics obtained from the studies and used in the analyses for the manuscript entitled "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rfj6q57gz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rfj6q57gz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 31 Jan 2023Publisher:Dryad Alon, Asaf; Cohen, Shabtai; Burlett, Regis; Hochberg, Uri; Lukyanov, Victor; Rog, Ido; Klein, Tamir; Cochard, Herve; Delzon, Sylvain; David-Schwartz, Rakefet;Survival and growth of woody species in the Mediterranean are mainly restricted by water availability. We tested the hypothesis that Mediterranean species acclimate their xylem vulnerability and osmotic potential along a precipitation gradient. We studied five predominant co-occurring Mediterranean species; Quercus calliprinos, Pistacia palaestina, Pistacia lentiscus, Rhamnus lycioides, and Phillyrea latifolia, over two summers at three sites. The driest of the sites is the distribution edge for all the five species. We measured key hydraulic and osmotic traits related to drought resistance, including resistance to embolism (Ψ50) and the seasonal dynamics of water and osmotic potentials. The leaf water potentials (Ψ1) of all species declined significantly along the summer, reaching significantly lower Ψl at the end of summer in the drier sites. Surprisingly, we did not find plasticity along the drought gradient in Ψ50 or osmotic potentials. This resulted in much narrower hydraulic safety margins (HSM) in the drier sites, where some species experienced significant embolism. Our analysis indicates that reduction in HSM to null values put Mediterranean species in embolism risk as they approach their hydraulic limit near the geographic dry edge of their distribution. The PLC curves and resistance to embolism were measured using the Cavitron. The pre-dawn and midday water potentials were measured using a pressure bomb. The C13 was measured with a 13C cavity ring-down analyzer. The osmotic potential was measured using an osmometer. All methods are described in Alon et al., Acclimation limits for embolism resistance and osmotic adjustment accompany the geographic dry edge of Mediterranean species. 2023. Functional Ecology Excel
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgqxb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 10 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgqxb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 CroatiaPublisher:SDEWES Centre Authors: Hamed, Tareq A.; Alshare, Aiman;The global energy demand is growing substantially. Clean and secure energy supply is a must for our civilization's sustainable development. Solar and wind energy is growing fast and can contribute significantly to meet the goals set by many countries to reduce greenhouse gas emissions. A deep and wide investigation of the environmental impact of solar and wind energy is important before any solar or wind plants' construction is made. In this study, the literature is reviewed to summarize the environmental impact of solar and wind energy systems in terms of the following factors; land use, water consumption, impact on biodiversity, visual and noise effects, health issues, and impact on micro climate. Although the benefits of solar and wind energy are obvious and great, negative perception of these technologies can inhibit their wide penetration in some regions. This review paper includes a critical and an inclusive analysis of solar and wind energy’s environmental impact and may serve as an important tool to conduct a proper environmental impact assessment. This critical analysis may serve also as a tool for developers, policy, and decision-when planning future solar and wind farms.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Full-Text: https://hrcak.srce.hr/file/398628Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Full-Text: https://hrcak.srce.hr/file/398628Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:MDPI AG Peyrelasse, Christine; Barakat, Abdellatif; Lagnet, Camille; Kaparaju, Prasad; Monlau, Florian;doi: 10.3390/en14175391
During the last decade, the application of pretreatment has been investigated to enhance methane production from lignocellulosic biomass such as wheat straw (WS). Nonetheless, most of these studies were conducted in laboratory batch tests, potentially hiding instability problems or inhibition, which may fail in truly predicting full-scale reactor performance. For this purpose, the effect of an alkaline pretreatment on process performance and methane yields from WS (0.10 g NaOH g−1 WS at 90 °C for 1 h) co-digested with fresh wastewater sludge was evaluated in a pilot-scale reactor (20 L). Results showed that alkaline pretreatment resulted in better delignification (44%) and hemicellulose solubilization (62%) compared to untreated WS. Pilot-scale study showed that the alkaline pretreatment improved the methane production (261 ± 3 Nm3 CH4 t−1 VS) compared to untreated WS (201 ± 6 Nm3 CH4 t−1 VS). Stable process without any inhibition was observed and a high alkalinity was maintained in the reactor due to the NaOH used for pretreatment. The study thus confirms that alkaline pretreatment is a promising technology for full-scale application and could improve the overall economic benefits for biogas plant at 24 EUR t−1 VS treated, improve the energy recovery per unit organic matter, reduce the digestate volume and its disposal costs.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03342217Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03342217Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 FrancePublisher:Frontiers Media SA Funded by:ANR | SOLAB, ANR | ISBlueANR| SOLAB ,ANR| ISBlueEleonora Puccinelli; Fany Sardenne; Laure Pecquerie; Sarah E. Fawcett; Sarah E. Fawcett; Eric Machu; Philippe Soudant;Omega-3 long-chain polyunsaturated fatty acids (hereafter, omega-3), including eicosapentaenoic-acid (EPA) and docosahexaenoic-acid (DHA), are essential nutritional compounds for humans, providing several benefits related to cardiovascular and neural health. Human intake of omega-3 occurs mostly via seafood, particularly fish. The primary source of omega-3 in aquatic systems is represented by primary producers, from which omega-3 are transferred throughout the food web. Nitrogen is an essential nutrient for primary producers and can be supplied to surface waters as nitrate upwelled from below, or as ammonium and other regenerated nitrogen forms recycled in situ. Eastern Boundary Upwelling Systems (EBUS) are the most productive marine systems on Earth, together covering only 2% of the ocean’s surface area but supporting 25% of the global fish catch, thereby providing food for humans. In EBUS, nitrate and other nutrients are advected to the surface to support the proliferation of a phytoplankton community dominated by known omega-3 producers (i.e., diatoms). Given current climate change-related projections of ocean warming, acidification, deoxygenation, and increased upwelling intensity, phytoplankton community composition in EBUS may change. Additionally, the global production of EPA + DHA is expected to decrease by up to 30%, rendering its supply for human consumption insufficient by 2050. Here we discuss the state of knowledge related to omega-3 transfer from phytoplankton to small pelagic fish in EBUS, including factors that can influence omega-3 production, links to nitrogen cycling, climate change implications for the omega-3 supply to humans, and suggestions for future research directions to improve our understanding of omega-3 in the ocean.
Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2021Full-Text: https://hal.univ-brest.fr/hal-03324050Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.univ-brest.fr/hal-03324050Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.664601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2021Full-Text: https://hal.univ-brest.fr/hal-03324050Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.univ-brest.fr/hal-03324050Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.664601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zeng, Kuo; Yang, Xinyi; Xie, Yingpu; Yang, Haiping; Li, Jun; Zhong, Dian; Zuo, Hongyang; Nzihou, Ange; Zhu, YouJian; Chen, Hanping;Abstract To identify the performance and mechanism of variant molten salts during biomass pyrolysis in molten salt, the thermogravimetric and differential scanning calorimetry (TG-DSC) analyzer, fixed-bed reactor and thermodynamic equilibrium simulation were applied to study the thermal melting characteristics and stability of molten salt as well as the selectivity for biomass pyrolysis products. The KCl-ZnCl2 is appropriate for the preparation of H2-rich gas and the carbon material with abundant mesoporous structure due to its activation effect. At 850 °C, the pyrolysis gas obtained from KCl-ZnCl2 contained 42.22 vol% H2 with the H2/CO ratio reaching 1.69. The carbonates demonstrated excellent improvement for the gas composition of biomass pyrolysis products, with 75.43 vol% and 70.52 vol% syngas (H2 + CO) collected from the Li2CO3-K2CO3 and Li2CO3-Na2CO3-K2CO3 pyrolysis systems at 850 °C respectively. With the presence of carbonates, the bio-oil and char prepared by biomass pyrolysis also achieved better quality. The thermodynamic simulation revealed the shifting (formation of Li2O) of molten salt composition during biomass pyrolysis. The interaction between Li2CO3 and char under high temperature explained the high yield of CO in pyrolysis gas products, also resulted in the consumption of salts and limited the sustainable use of the molten salt pyrolysis system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Hernandez-Shek, M.A.; Peultier, P.; Pauss, A.; Ribeiro, T.;pmid: 35452949
Knowledge of rheological evolution of biomass during dry anaerobic digestion (D-AD) is important in the engineering design, modeling, and operation of D-AD reactors. In this work, two methods of rheological analysis, the slump test and the shear-box, were used to measure the evolution of the yield stress, cohesion and friction angle of the straw-cattle manure (SCM) during the D-AD. Firstly, four 60 L batch leach-bed reactors (LBR) were started in parallel and stopped at different stages of the D-AD process on days 0, 10, 21 and 31. Secondly, a 500 L and 2 m length plug flow reactor (PFR) was operated with 40 days of solid retention time and samples were recovered at different positions. The solid degradation during D-AD process was monitored by analysis of the degradation of volatile solids, the fiber content and the Flash BMP. Similar degradation patterns of SCM and rheological evolution were observed in both reactors type. VS content decreased of 10.7% and 10.2% in 30 days in PFR and LBR respectively. VS degradation in both cases was well explained by hemicellulose and cellulose consuming in D-AD process. Considering the rheological analysis, the results showed that D-AD induced a reduction of the yield stress of 28.1 and 24.2% in 30 days in PFR and LBR respectively. Moreover, a similar evolution of cohesion and friction angle value for samples from both reactors was observed. This study demonstrates the close relationship between the state of degradation of the solid biomass and its rheological properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2022.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2022.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2022Publisher:IWA Publishing Parravicini, Vanessa; Filali, Ahlem; Delre, Antonio; Gutierrez, Oriol; Duan, Haoran;International audience The quantification of direct GHG emissions from sewers and wastewater treatment plants is of great importance towards urban sustainable development. In fact, the identification and assessment of anthropogenic sources of GHG emissions (mainly nitrous oxide and methane) in these engineered systems represent the first step in establishing effective mitigation strategies. This chapter provides an overview of the currently available nitrous oxide and methane quantification methods applied at full-scale in sewers and wastewater treatment plants. Since the first measurement campaigns in the early 90s were based on spare grab sampling, quantification methodologies and sampling strategies have evolved significantly, in order to describe the spatio-temporal dynamics of the emissions. The selection of a suitable quantification method is mainly dictated by the objective of the measurement survey and by specific local requirements. Plant-wide quantification methods provide information on the overall emissions of wastewater treatment plants, including unknown sources, which can be used for GHG inventory purposes. To develop on-site mitigation strategies, in-depth analysis of GHG generation pathways and emission patterns is required. In this case, process-unit quantifications can be employed to provide data for developing mechanistic models or to statistically link GHG emissions to operational conditions. With regards to sewers, current available methods are not yet capable to capture the complexity of these systems due to their geographical extension and variability of conditions and only allow to monitor specific locations where hotspots for GHG formation and emission have been identified.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.2166/978178...Part of book or chapter of book . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/9781789060461_0091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.2166/978178...Part of book or chapter of book . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/9781789060461_0091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:EDP Sciences Aliénor Vernay; Caroline Michel; Jean-François Hollebecque; Hélène Nonnet; Maxime Fournier; Régis Didierlaurent;doi: 10.1051/epjn/2022045
After the accident at the Fukushima Dai-ichi Nuclear Power Station, a large amount of contaminated water was treated using several decontamination systems with different natures of adsorbents and chemicals. The resulting wastes, called Fukushima Effluent Treatment Wastes (FETW), were stored at the Fukushima Dai-ichi site. Vitrification could be the most promising treatment method to package these wastes. The consortium gathering CEA, Orano, ECM Technologies and ANDRA, implemented an in situ, robust, simple and versatile In-Can vitrification process, the DEM&MELT technology. Since 2018, the applicability of this technology for FETW treatment and conditioning has been evaluated. In 2021–2022, studies focused on one particular waste, coming from the ALPS system (Advanced Liquid Processing System-Multi Radionuclides Removal) generating around 70%vol. of FETW. This waste is composed of two co-precipitation slurries: one mainly composed of iron hydroxide, and one of calcium carbonate and magnesium hydroxide. The purpose of this article is to highlight the feasibility of ALPS slurries vitrification with DEM&MELT, relying on tests performed from laboratory-scale to full-scale. Macroscopically homogeneous glasses were produced using the DEM&MELT demonstrator, with a waste loading of 60 wt.% (expressed as waste dry mass) and microstructural analyses were performed. It gives promising results for FETW conditioning with the DEM&MELT process.
EPJ Nuclear Sciences... arrow_drop_down EPJ Nuclear Sciences & TechnologiesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjn/2022045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert EPJ Nuclear Sciences... arrow_drop_down EPJ Nuclear Sciences & TechnologiesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjn/2022045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:MDPI AG Authors: Douglas Keller; Vishal Somanna; Philippe Drobinski; Cédric Tard;doi: 10.3390/en15238873
A methanol island, powered by solar or wind energy, indirectly captures atmospheric CO2 through the ocean and combines it with hydrogen gas to produce a synthetic fuel. The island components include a carbon dioxide extractor, a desalinator, an electrolyzer, and a carbon dioxide-hydrogen reactor to complete this process. In this study, the optimal locations to place such a device in the Mediterranean Sea were determined, based on three main constraints: power availability, environmental risk, and methanol production capability. The island was numerically simulated with a purpose built python package pyseafuel. Data from 20 years of ocean and atmospheric simulation data were used to “force” the simulated methanol island. The optimal locations were found to strongly depend on the power availability constraint, with most optimal locations providing the most solar and/or wind power, due to the limited effect the ocean surface variability had on the power requirements of methanol island. Within this context, optimal locations were found to be the Alboran, Cretan, and Levantine Sea due to the availability of insolation for the Alboran and Levantine Sea and availability of wind power for the Cretan Sea. These locations were also not co-located with areas with larger maximum significant wave heights, thereby avoiding areas with higher environmental risk. When we simulate the production at these locations, a 10 L s−1 seawater inflow rate produced 494.21, 495.84, and 484.70 mL m−2 of methanol over the course of a year, respectively. Island communities in these regions could benefit from the energy resource diversification and independence these systems could provide. However, the environmental impact of such systems is poorly understood and requires further investigation.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03895957Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03895957Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03895957Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03895957Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 24 Sep 2023Publisher:Dryad Cresswell, Anna; Renton, Michael; Langlois, Timothy; Thomson, Damian; Lynn, Jasmine; Claudet, Joachim;# Coral reef state influences resilience to acute climate-mediated disturbances\_Table S1 [https://doi.org/10.5061/dryad.rfj6q57gz](https://doi.org/10.5061/dryad.rfj6q57gz) The dataset provides a summary of all publications included in the analysis for this study and the key statistics obtained from the studies and used in the analyses. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. ## Description of the data and file structure Each column provides the following information: | Column | Detail | | ------ | ------ | | Realm | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Province | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Ecoregion | All studies were assigned to an ‘ecoregion’, ‘province’ and ‘realm’ based on their spatial location in Spalding et al. (2007)’s spatial classification system for coastal and shelf waters. | | Unique study identifier | Unique identifiers for the lowest sampling unit in the dataset. In cases where there were data for different regions, reefs, islands/atolls, sites, reef zones, depths, and/or multiple disturbances within a publication or time-series, data from these publications were divided into separate ‘studies’. | | Publication/Dataset | Unique identifiers for the publication or dataset (generally the surname of the first author followed by the year of publication). | | Publication title | Title of the publication or dataset from which the data were sourced. | | Publication year | Year the publication from the which the data were sourced was published. | | Country/Territory | Name of the country or location from which the data came. | | Site latitude | Latitude of the study site from where the data came. | | Site longitude | Longitude of the study site from where the data came. | | Disturbance type | Classification of disturbance: Temperature stress, Cyclone/ severe storm, Runoff or Multiple. | | Disturbance.year | Year of the disturbance. | | Mean coral cover pre-disturbance | Pre-disturbance coral cover as extracted from the publication or dataset as the closest data point prior to disturbance. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Mean coral cover post-disturbance | Post-disturbance coral cover as extracted from the publication or dataset as the closest data point prior to disturbance. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Impact (lnRR) | Impact measure: the log response ratio of pre- to post-disturbance percentage coral cover. If there is an NA value in this column then there was no pre-disturbance data available and a measure of impact was not calculated. | | Time-averaged recovery rate | Recovery rate as percentage coral cover per year in the approximate 5-year time window following disturbance. See main Methods text in manuscript for more detail. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in the calculation of recovery rate. | | Recovery shape | Recovery shape category: linear, accelerating, decelerating, logistic, flatline or null. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in classification of recovery shape. | | Recovery completeness | Recovery completeness category: complete recovery – coral is observed to reach its pre-disturbance coral cover, signs of recovery – a positive trajectory but not reaching pre-disturbance cover in the time period examined, undetermined – no clear pattern in recovery, the null model was the top model, no recovery – the null model was the top model but the linear model had slope and standard error in slope near zero and further decline – the top model had a negative trend. If there is an NA value in this column then the available time-series following disturbance did not satisfy the criteria for inclusion in classification of recovery shape. | | Reference | Source for the data. | ## Sharing/Access information Data was derived from the following sources: **Appendix 1. Full list of references providing the data used in impact and recovery analyses supporting Table S1** Arceo, H. O., Quibilan, M. C., Aliño, P. M., Lim, G., & Licuanan, W. Y. (2001). Coral bleaching in Philippine reefs: Coincident evidences with mesoscale thermal anomalies. Bulletin of Marine Science, 69(2), 579-593. Aronson, R. B., Precht, W. F., Toscano, M. A., & Koltes, K. H. (2002). The 1998 bleaching event and its aftermath on a coral reef in Belize. Marine Biology, 141(3), 435-447. Aronson, R. B., Sebens, K. P., & Ebersole, J. P. (1994). Hurricane Hugo's impact on Salt River submarine canyon, St. Croix, US Virgin Islands. Proceedings of the colloquium on global aspects of coral reefs, Miami, 1993, 189-195. Bahr, K. D., Rodgers, K. S., & Jokiel, P. L. (2017). Impact of three bleaching events on the reef resiliency of Kāne'ohe Bay, Hawai'i. Frontiers in Marine Science, 4(DEC). Baird, A. H., Álvarez-Noriega, M., Cumbo, V. R., Connolly, S. R., Dornelas, M., & Madin, J. S. (2018). Effects of tropical storms on the demography of reef corals. Marine Ecology Progress Series, 606, 29-38. Barranco, L. M., Carriquiry, J. D., Rodríguez-Zaragoza, F. A., Cupul-Magaña, A. L., Villaescusa, J. A., & Calderón-Aguilera, L. E. (2016). Spatiotemporal variations of live coral cover in the Northern Mesoamerican reef system, Yucatan Peninsula, Mexico. Scientia Marina, 80(2), 143-150. Bastidas, C., Bone, D., Croquer, A., Debrot, D., Garcia, E., Humanes, A., . . . Rodríguez, S. (2012). Massive hard coral loss after a severe bleaching event in 2010 at Los Roques, Venezuela. Revista de Biologia Tropical, 60(SUPPL. 1), 29-37. Booth, D. J., & Beretta, G. A. (2002). Changes in a fish assemblage after a coral bleaching event. Marine Ecology Progress Series, 245, 205-212. Brandl, S. J., Emslie, M. J., & Ceccarelli, D. M. (2016). Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere, 7(11). Brown, D., & Edmunds, P. J. (2013). Long-term changes in the population dynamics of the Caribbean hydrocoral Millepora spp. Journal of Experimental Marine Biology and Ecology, 441, 62-70. Brown, V. B., Davies, S. A., & Synnot, R. N. (1990). Long-term Monitoring of the Effects of Treated Sewage Effluent on the Intertidal Macroalgal Community Near Cape Schanck, Victoria, Australia. Botanica Marina, 33(1), 85-98. Bruckner, A. W., Coward, G., Bimson, K., & Rattanawongwan, T. (2017). Predation by feeding aggregations of Drupella spp. inhibits the recovery of reefs damaged by a mass bleaching event. Coral Reefs, 36(4), 1181-1187. Burt, J. A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A., & Al-Jailani, H. (2019). Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs. Bythell, J. (1997). Assessment of the impacts of hurricanes Marilyn and Luis and post-hurricane community dynamics at Buck Island Reef National Monument as part of the long-term coral reef monitoring program in the north-eastern Caribbean. Retrieved from Newcastle, United Kingdom: Coles, S. L., & Brown, E. K. (2007). Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai'i: The importance of recruitment. Coral Reefs, 26(3), 705-717. Connell, J. H., Hughes, T. P., Wallace, C. C., Tanner, J. E., Harms, K. E., & Kerr, A. M. (2004). A long‐term study of competition and diversity of corals. Ecological Monographs, 74(2), 179-210. Couch, C. S., Burns, J. H. R., Liu, G., Steward, K., Gutlay, T. N., Kenyon, J., . . . Kosaki, R. K. (2017). Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE, 12(9). Crabbe, M. J. C. (2014). Evidence of initial coral community recovery at Discovery Bay on Jamaica’s north coast. Revista de Biologia Tropical, 62, 137-140. Crosbie, A. J., Bridge, T. C., Jones, G., & Baird, A. H. (2019). Response of reef corals and fish at Osprey Reef to a thermal anomaly across a 30 m depth gradient. Marine Ecology Progress Series, 622, 93-102. Darling, E. S., McClanahan, T. R., & Côté, I. M. (2010). Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conservation Letters, 3(2), 122-130. De Bakker, D. M., Meesters, E. H., Bak, R. P. M., Nieuwland, G., & Van Duyl, F. C. (2016). Long-term Shifts in Coral Communities On Shallow to Deep Reef Slopes of Curaçao and Bonaire: Are There Any Winners? Frontiers in Marine Science, 3(247). Depczynski, M., Gilmour, J. P., Ridgway, T., Barnes, H., Heyward, A. J., Holmes, T. H., . . . Wilson, S. K. (2013). Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs, 32(1), 233-238. Diaz-Pulido, G., McCook, L. J., Dove, S., Berkelmans, R., Roff, G., Kline, D. I., . . . Hoegh-Guldberg, O. (2009). Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery. PLoS ONE, 4(4). Dollar, S. J., & Tribble, G. W. (1993). Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii. Coral Reefs, 12(3-4), 223-233. Donner, S. D., Kirata, T., & Vieux, C. (2010). Recovery from the 2004 coral bleaching event in the Gilbert Islands, Kiribati. Atoll Research Bulletin(587), 1-25. Edmunds, P. J. (2013). Decadal-scale changes in the community structure of coral reefs of St. John, US Virgin Islands. Marine Ecology Progress Series, 489, 107-123. Edmunds, P. J. (2018). Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Scientific Reports, 8(1). Edmunds, P. J. (2019). Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology, 100(3). Edward, J. K. P., Mathews, G., Diraviya Raj, K., Laju, R. L., Selva Bharath, M., Arasamuthu, A., . . . Malleshappa, H. (2018). Coral mortality in the Gulf of Mannar, southeastern India, due to bleaching caused by elevated sea temperature in 2016. Current Science, 114(9), 1967-1972. Edwards, A. J., Clark, S., Zahir, H., Rajasuriya, A., Naseer, A., & Rubens, J. (2001). Coral bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface temperature anomalies and initial recovery. Marine Pollution Bulletin, 42(1), 7-15. Emslie, M. J., Bray, P., Cheal, A. J., Johns, K. A., Osborne, K., Sinclair-Taylor, T., & Thompson, C. A. (2020). Decades of monitoring have informed the stewardship and ecological understanding of Australia's Great Barrier Reef. Biological Conservation, 252, 108854. Fenner, D. P. (1991). Effects of Hurricane Gilbert on coral reefs, fishes and sponges at Cozumel, Mexico. Bulletin of Marine Science, 48(3), 719-730. Fox, M. D., Carter, A. L., Edwards, C. B., Takeshita, Y., Johnson, M. D., Petrovic, V., . . . Smith, J. E. (2019). Limited coral mortality following acute thermal stress and widespread bleaching on Palmyra Atoll, central Pacific. Coral Reefs. García-Sais, J. R., Williams, S. M., & Amirrezvani, A. (2017). Mortality, recovery, and community shifts of scleractinian corals in Puerto Rico one decade after the 2005 regional bleaching event. PeerJ, 2017(7). Garpe, K. C., Yahya, S. A. S., Lindahl, U., & Öhman, M. C. (2006). Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Marine Ecology Progress Series, 315, 237-247. Gilmour, J. P., Cook, K. L., Ryan, N. M., Puotinen, M. L., Green, R. H., Shedrawi, G., . . . Oades, D. (2019). The state of Western Australia’s coral reefs. Coral Reefs. Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H., & Pratchett, M. S. (2013). Recovery of an isolated coral reef system following severe disturbance. Science, 340(6128), 69-71. Glynn, P. W. (1984). Widespread coral mortality and the 1982-1983 El Niño warming event. Environmental Conservation, 11(2), 133-146. Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W., & Serafy, J. E. (2014). Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Marine Ecology Progress Series, 495, 233-247. Gouezo, M., Golbuu, Y., Van Woesik, R., Rehm, L., Koshiba, S., & Doropoulos, C. (2015). Impact of two sequential super typhoons on coral reef communities in Palau. Marine Ecology Progress Series, 540, 73-85. Guest, J. R., Tun, K., Low, J., Vergés, A., Marzinelli, E. M., Campbell, A. H., . . . Steinberg, P. D. (2016). 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Scientific Reports, 6. Guillemot, N., Chabanet, P., & Le Pape, O. (2010). Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs, 29(2), 445-453. Guzmán, H. M., & Cortés, J. (2001). Changes in reef community structure after fifteen years of natural disturbances in the Eastern Pacific (Costa Rica). Bulletin of Marine Science, 69(1), 133-149. Guzman, H. M., Cortes, J., Richmond, R. H., & Glynn, P. W. (1987). Effects of "El Nino - Southern oscillation' 1982/83 in the coral reefs at Isla del Cano, Costa Rica. Revista de Biologia Tropical, 35(2), 325-332. Haapkylä, J., Melbourne-Thomas, J., Flavell, M., & Willis, B. L. (2013). Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef. Coral Reefs, 32(3), 815-824. Hagan, A., & Spencer, T. (2008). Reef resilience and change 1998–2007, Alphonse Atoll, Seychelles. Paper presented at the Proc 11th Int Coral Reef Symp. Harii, S., Hongo, C., Ishihara, M., Ide, Y., & Kayanne, H. (2014). Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey. Marine Ecology Progress Series, 509, 171-180. Harrison, H. B., Álvarez-Noriega, M., Baird, A. H., Heron, S. F., MacDonald, C., & Hughes, T. P. (2018). Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs. Holbrook, S. J., Adam, T. C., Edmunds, P. J., Schmitt, R. J., Carpenter, R. C., Brooks, A. J., . . . Briggs, C. J. (2018). Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Scientific Reports, 8(1). Hongo, C., & Yamano, H. (2013). Species-Specific Responses of Corals to Bleaching Events on Anthropogenically Turbid Reefs on Okinawa Island, Japan, over a 15-year Period (1995-2009). PLoS ONE, 8(4). Huang, H., Yang, Y., Li, X., Yang, J., Lian, J., Lei, X., . . . Zhang, J. (2014). Benthic community changes following the 2010 Hainan flood: Implications for reef resilience. Marine Biology Research, 10(6), 601-611. Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265(5178), 1547-1551. Jokiel, P. L., Hunter, C. L., Taguchi, S., & Watarai, L. (1993). Ecological impact of a fresh-water "reef kill" in Kaneohe Bay, Oahu, Hawaii. Coral Reefs, 12(3-4), 177-184. Jones, A. M., & Berkelmans, R. (2014). Flood impacts in Keppel Bay, Southern Great Barrier Reef in the aftermath of cyclonic rainfall. PLoS ONE, 9(1). Jonker, M., Johns, K., & Osborne, K. (2008). Surveys of benthic reef communities using underwater digital photography and counts of juveniles. Long-term monitoring of the Great Barrier Reef Standard Operation Procedure Number 10. Retrieved from Townsville: Kuo, C. Y., Yuen, Y. S., Meng, P. J., Ho, P. H., Wang, J. T., Liu, P. J., . . . Chen, C. A. (2012). Recurrent Disturbances and the Degradation of Hard Coral Communities in Taiwan. PLoS ONE, 7(8). Lam, V. Y. Y., Chaloupka, M., Thompson, A., Doropoulos, C., & Mumby, P. J. (2018). Acute drivers influence recent inshore Great Barrier Reef dynamics. Proceedings of the Royal Society B: Biological Sciences, 285(1890). Lambo, A. L., & Ormond, R. F. G. (2006). Continued post-bleaching decline and changed benthic community of a Kenyan coral reef. Marine Pollution Bulletin, 52(12), 1617-1624. Lamy, T., Galzin, R., Kulbicki, M., Lison de Loma, T., & Claudet, J. (2016). Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages. Coral Reefs, 35(1), 293-302. Lamy, T., Legendre, P., Chancerelle, Y., Siu, G., & Claudet, J. (2015). Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: Insights from beta-diversity decomposition. PLoS ONE, 10(9). Liddell, W. D., & Ohlhorst, S. L. (1992). Ten years of disturbance and change on a Jamaican fringing reef. Paper presented at the 7th Int. Coral Reef Symp. Lirman, D., Glynn, P. W., Baker, A. C., & Morales, G. E. L. (2001). Combined effects of three sequential storms on the huatulco coral reef tract, mexico. Bulletin of Marine Science, 69(1), 267-278. Lovell, E., & Sykes, H. Rapid recovery from bleaching events-Fiji Coral Reef Monitoring Network Assessment of hard coral cover from. Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., & Van Woesik, R. (2001). Coral bleaching: The winners and the losers. Ecology Letters, 4(2), 122-131. Lozano-Montes, H. M., Keesing, J. K., Grol, M. G., Haywood, M. D. E., Vanderklift, M. A., Babcock, R. C., & Bancroft, K. (2017). Limited effects of an extreme flood event on corals at Ningaloo Reef. Estuarine, Coastal and Shelf Science, 191, 234-238. Madin, J. S., Baird, A. H., Bridge, T. C. L., Connolly, S. R., Zawada, K. J. A., & Dornelas, M. (2018). Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Marine Ecology Progress Series, 604, 263-268. Magdaong, E. T., Fujii, M., Yamano, H., Licuanan, W. Y., Maypa, A., Campos, W. L., . . . Martinez, R. (2014). Long-term change in coral cover and the effectiveness of marine protected areas in the Philippines: A meta-analysis. Hydrobiologia, 733(1), 5-17. McField, M. (2000). Influence of disturbance on coral reef community structure in Belize. Paper presented at the Proc 9th Int Coral Reef Symp. Monaco, M. E., Friedlander, A. M., Caldow, C., Hile, S. D., Menza, C., & Boulon, R. H. (2009). Long-term monitoring of habitats and reef fish found inside and outside the U.S. Virgin Islands Coral Reef National Monument: A comparative assessment. Caribbean Journal of Science, 45(2-3), 338-347. Montefalcone, M., Morri, C., & Bianchi, C. N. (2018). Long-term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies. Global Change Biology, 24(12), 5629-5641. Morgan, K. M., Perry, C. T., Johnson, J. A., & Smithers, S. G. (2017). Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Frontiers in Marine Science, 4. Obura, D., Gudka, M., Rabi, F. A., Gian, S. B., Bijoux, J., Freed, S., . . . Sola, E. (2017). Coral Reef Status Report for the Western Indian Ocean (2017). Paper presented at the Nairobi Convention. Obura, D., & Mangubhai, S. (2011). Coral mortality associated with thermal fluctuations in the Phoenix Islands, 2002-2005. Coral Reefs, 30(3), 607-619. Ostrander, G. K., Armstrong, K. M., Knobbe, E. T., Gerace, D., & Scully, E. P. (2000). Rapid transition the structure of a coral reef community: The effects of coral bleaching and physical disturbance. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5297-5302. Pereira, M. A. M., & Gonçalves, P. M. B. (2004). Effects of the 2000 southern Mozambique floods on a marginal coral community: The case at Xai-Xai. African Journal of Aquatic Science, 29(1), 113-116. Perry, C. T. (2003). Reef development at Inhaca Island, Mozambique: Coral communities and impacts of the 1999/2000 southern African floods. Ambio, 32(2), 134-139. Phongsuwan, N., Chankong, A., Yamarunpatthana, C., Chansang, H., Boonprakob, R., Petchkumnerd, P., . . . Bundit, O. A. (2013). Status and changing patterns on coral reefs in Thailand during the last two decades. Deep-Sea Research Part II: Topical Studies in Oceanography, 96, 19-24. Reyes-Bonilla, H., Carriquiry, J. D., Leyte-Morales, G. E., & Cupul-Magaña, A. L. (2002). Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997-1999) on coral reefs of the western coast of México. Coral Reefs, 21(4), 368-372. Ridgway, T., Inostroza, K., Synnot, L., Trapon, M., Twomey, L., & Westera, M. (2016). Temporal patterns of coral cover in the offshore Pilbara, Western Australia. Marine Biology, 163(9). Riegl, B. (2002). Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Marine Biology, 140(1), 29-40. Rioja-Nieto, R., Chiappa-Carrara, X., & Sheppard, C. (2012). Effects of hurricanes on the stability of reef-associated landscapes. Ciencias Marinas, 38(1), 47-55. Rogers, C. S., Gilnack, M., & Fitz Iii, H. C. (1983). Monitoring of coral reefs with linear transects: A study of storm damage. Journal of Experimental Marine Biology and Ecology, 66(3), 285-300. Rousseau, Y., Galzin, R., & Maréchal, J. P. (2010). Impact of hurricane Dean on coral reef benthic and fish structure of Martinique, French West Indies. Cybium, 34(3), 243-256. Russ, G. R., & Leahy, S. M. (2017). Rapid decline and decadal-scale recovery of corals and Chaetodon butterflyfish on Philippine coral reefs. Marine Biology, 164(1). Ruzicka, R. R., Colella, M. A., Porter, J. W., Morrison, J. M., Kidney, J. A., Brinkhuis, V., . . . Colee, J. (2013). Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Marine Ecology Progress Series, 489, 125-141. Sheppard, C. R. C. (1999). Coral decline and weather patterns over 20 years in the Chagos Archipelago, central Indian Ocean. Ambio, 28(6), 472-478. Shulman, M. J., & Robertson, D. R. (1996). Changes in the coral reefs of San Bias, Caribbean Panama: 1983 to 1990. Coral Reefs, 15(4), 231-236. Smith, T. B., Brandt, M. E., Calnan, J. M., Nemeth, R. S., Blondeau, J., Kadison, E., . . . Rothenberger, P. (2013). Convergent mortality responses of Caribbean coral species to seawater warming. Ecosphere, 4(7). Steneck, R. S., Arnold, S. N., Boenish, R., de León, R., Mumby, P. J., Rasher, D. B., & Wilson, M. W. (2019). Managing Recovery Resilience in Coral Reefs Against Climate-Induced Bleaching and Hurricanes: A 15 Year Case Study From Bonaire, Dutch Caribbean. Frontiers in Marine Science, 6(265). Stobart, B., Teleki, K., Buckley, R., Downing, N., & Callow, M. (2005). Coral recovery at Aldabra Atoll, Seychelles: Five years after the 1998 bleaching event. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1826), 251-255. Torda, G., Sambrook, K., Cross, P., Sato, Y., Bourne, D. G., Lukoschek, V., . . . Willis, B. L. (2018). Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Scientific Reports, 8(1). Trapon, M. L., Pratchett, M. S., & Penin, L. (2011). Comparative effects of different disturbances in coral reef habitats in Moorea, French Polynesia. Journal of Marine Biology, 2011. Tsounis, G., & Edmunds, P. J. (2017). Three decades of coral reef community dynamics in St. John, USVI: A contrast of scleractinians and octocorals. Ecosphere, 8(1). Van Woesik, R., De Vantier, L. M., & Glazebrook, J. S. (1995). Effects of Cyclone "Joy' on nearshore coral communities of the Great Barrier Reef. Marine Ecology Progress Series, 128(1-3), 261-270. Van Woesik, R., Sakai, K., Ganase, A., & Loya, Y. (2011). Revisiting the winners and the losers a decade after coral bleaching. Marine Ecology Progress Series, 434, 67-76. Vercelloni, J., Kayal, M., Chancerelle, Y., & Planes, S. (2019). Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Scientific Reports, 9(1). Walsh, W. J. (1983). Stability of a coral reef fish community following a catastrophic storm. Coral Reefs, 2(1), 49-63. Wilkinson, C. (2004). Status of coral reefs of the world: 2004 (Vol. 2). Queensland, Australia: Global Coral Reef Monitoring Network. Wilkinson, C. R., & Souter, D. (2008). Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Wismer, S., Tebbett, S. B., Streit, R. P., & Bellwood, D. R. (2019). Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Science of the Total Environment, 650, 1487-1498. Woolsey, E., Bainbridge, S. J., Kingsford, M. J., & Byrne, M. (2012). Impacts of cyclone Hamish at One Tree Reef: Integrating environmental and benthic habitat data. Marine Biology, 159(4), 793-803. Aim: Understand the interplay between resistance and recovery on coral reefs, and investigate dependence on pre- and post-disturbance states, to inform generalisable reef resilience theory across large spatial and temporal scales. Location: Tropical coral reefs globally. Time period: 1966 to 2017. Major taxa studied: Scleratinian hard corals. Methods: We conducted a literature search to compile a global dataset of total coral cover before and after acute storms, temperature stress, and coastal runoff from flooding events. We used meta-regression to identify variables that explained significant variation in disturbance impact, including disturbance type, year, depth, and pre-disturbance coral cover. We further investigated the influence of these same variables, as well as post-disturbance coral cover and disturbance impact, on recovery rate. We examined the shape of recovery, assigning qualitatively distinct, ecologically relevant, population growth trajectories: linear, logistic, logarithmic (decelerating), and a second-order quadratic (accelerating). Results: We analysed 427 disturbance impacts and 117 recovery trajectories. Accelerating and logistic were the most common recovery shapes, underscoring non-linearities and recovery lags. A complex but meaningful relationship between the state of a reef pre- and post-disturbance, disturbance impact magnitude, and recovery rate was identified. Fastest recovery rates were predicted for intermediate to large disturbance impacts, but a decline in this rate was predicted when more than ~75% of pre-disturbance cover was lost. We identified a shifting baseline, with declines in both pre-and post-disturbance coral cover over the 50 year study period. Main conclusions: We breakdown the complexities of coral resilience, showing interplay between resistance and recovery, as well as dependence on both pre- and post-disturbance states, alongside documenting a chronic decline in these states. This has implications for predicting coral reef futures and implementing actions to enhance resilience. The dataset provides a summary of all studies included in the analysis and the key statistics obtained from the studies and used in the analyses for the manuscript entitled "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography. The dataset includes details about the publication, spatial identifiers (e.g. realm, province, ecoregion) unique site code, information on the disturbance type and timing, the pre-and post-disturbance coral cover, the 5-year annual recovery rate, the recovery shape and recovery completeness classifications. Please see details Methods in the journal article "Coral reef state influences resilience to acute climate-mediated disturbances" as published in Global Ecology and Biogeography.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rfj6q57gz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.rfj6q57gz&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 31 Jan 2023Publisher:Dryad Alon, Asaf; Cohen, Shabtai; Burlett, Regis; Hochberg, Uri; Lukyanov, Victor; Rog, Ido; Klein, Tamir; Cochard, Herve; Delzon, Sylvain; David-Schwartz, Rakefet;Survival and growth of woody species in the Mediterranean are mainly restricted by water availability. We tested the hypothesis that Mediterranean species acclimate their xylem vulnerability and osmotic potential along a precipitation gradient. We studied five predominant co-occurring Mediterranean species; Quercus calliprinos, Pistacia palaestina, Pistacia lentiscus, Rhamnus lycioides, and Phillyrea latifolia, over two summers at three sites. The driest of the sites is the distribution edge for all the five species. We measured key hydraulic and osmotic traits related to drought resistance, including resistance to embolism (Ψ50) and the seasonal dynamics of water and osmotic potentials. The leaf water potentials (Ψ1) of all species declined significantly along the summer, reaching significantly lower Ψl at the end of summer in the drier sites. Surprisingly, we did not find plasticity along the drought gradient in Ψ50 or osmotic potentials. This resulted in much narrower hydraulic safety margins (HSM) in the drier sites, where some species experienced significant embolism. Our analysis indicates that reduction in HSM to null values put Mediterranean species in embolism risk as they approach their hydraulic limit near the geographic dry edge of their distribution. The PLC curves and resistance to embolism were measured using the Cavitron. The pre-dawn and midday water potentials were measured using a pressure bomb. The C13 was measured with a 13C cavity ring-down analyzer. The osmotic potential was measured using an osmometer. All methods are described in Alon et al., Acclimation limits for embolism resistance and osmotic adjustment accompany the geographic dry edge of Mediterranean species. 2023. Functional Ecology Excel
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgqxb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 10 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgqxb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 CroatiaPublisher:SDEWES Centre Authors: Hamed, Tareq A.; Alshare, Aiman;The global energy demand is growing substantially. Clean and secure energy supply is a must for our civilization's sustainable development. Solar and wind energy is growing fast and can contribute significantly to meet the goals set by many countries to reduce greenhouse gas emissions. A deep and wide investigation of the environmental impact of solar and wind energy is important before any solar or wind plants' construction is made. In this study, the literature is reviewed to summarize the environmental impact of solar and wind energy systems in terms of the following factors; land use, water consumption, impact on biodiversity, visual and noise effects, health issues, and impact on micro climate. Although the benefits of solar and wind energy are obvious and great, negative perception of these technologies can inhibit their wide penetration in some regions. This review paper includes a critical and an inclusive analysis of solar and wind energy’s environmental impact and may serve as an important tool to conduct a proper environmental impact assessment. This critical analysis may serve also as a tool for developers, policy, and decision-when planning future solar and wind farms.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Full-Text: https://hrcak.srce.hr/file/398628Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Full-Text: https://hrcak.srce.hr/file/398628Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2022Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d9.0387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:MDPI AG Peyrelasse, Christine; Barakat, Abdellatif; Lagnet, Camille; Kaparaju, Prasad; Monlau, Florian;doi: 10.3390/en14175391
During the last decade, the application of pretreatment has been investigated to enhance methane production from lignocellulosic biomass such as wheat straw (WS). Nonetheless, most of these studies were conducted in laboratory batch tests, potentially hiding instability problems or inhibition, which may fail in truly predicting full-scale reactor performance. For this purpose, the effect of an alkaline pretreatment on process performance and methane yields from WS (0.10 g NaOH g−1 WS at 90 °C for 1 h) co-digested with fresh wastewater sludge was evaluated in a pilot-scale reactor (20 L). Results showed that alkaline pretreatment resulted in better delignification (44%) and hemicellulose solubilization (62%) compared to untreated WS. Pilot-scale study showed that the alkaline pretreatment improved the methane production (261 ± 3 Nm3 CH4 t−1 VS) compared to untreated WS (201 ± 6 Nm3 CH4 t−1 VS). Stable process without any inhibition was observed and a high alkalinity was maintained in the reactor due to the NaOH used for pretreatment. The study thus confirms that alkaline pretreatment is a promising technology for full-scale application and could improve the overall economic benefits for biogas plant at 24 EUR t−1 VS treated, improve the energy recovery per unit organic matter, reduce the digestate volume and its disposal costs.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03342217Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03342217Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 FrancePublisher:Frontiers Media SA Funded by:ANR | SOLAB, ANR | ISBlueANR| SOLAB ,ANR| ISBlueEleonora Puccinelli; Fany Sardenne; Laure Pecquerie; Sarah E. Fawcett; Sarah E. Fawcett; Eric Machu; Philippe Soudant;Omega-3 long-chain polyunsaturated fatty acids (hereafter, omega-3), including eicosapentaenoic-acid (EPA) and docosahexaenoic-acid (DHA), are essential nutritional compounds for humans, providing several benefits related to cardiovascular and neural health. Human intake of omega-3 occurs mostly via seafood, particularly fish. The primary source of omega-3 in aquatic systems is represented by primary producers, from which omega-3 are transferred throughout the food web. Nitrogen is an essential nutrient for primary producers and can be supplied to surface waters as nitrate upwelled from below, or as ammonium and other regenerated nitrogen forms recycled in situ. Eastern Boundary Upwelling Systems (EBUS) are the most productive marine systems on Earth, together covering only 2% of the ocean’s surface area but supporting 25% of the global fish catch, thereby providing food for humans. In EBUS, nitrate and other nutrients are advected to the surface to support the proliferation of a phytoplankton community dominated by known omega-3 producers (i.e., diatoms). Given current climate change-related projections of ocean warming, acidification, deoxygenation, and increased upwelling intensity, phytoplankton community composition in EBUS may change. Additionally, the global production of EPA + DHA is expected to decrease by up to 30%, rendering its supply for human consumption insufficient by 2050. Here we discuss the state of knowledge related to omega-3 transfer from phytoplankton to small pelagic fish in EBUS, including factors that can influence omega-3 production, links to nitrogen cycling, climate change implications for the omega-3 supply to humans, and suggestions for future research directions to improve our understanding of omega-3 in the ocean.
Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2021Full-Text: https://hal.univ-brest.fr/hal-03324050Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.univ-brest.fr/hal-03324050Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.664601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2021Full-Text: https://hal.univ-brest.fr/hal-03324050Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.univ-brest.fr/hal-03324050Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.664601&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zeng, Kuo; Yang, Xinyi; Xie, Yingpu; Yang, Haiping; Li, Jun; Zhong, Dian; Zuo, Hongyang; Nzihou, Ange; Zhu, YouJian; Chen, Hanping;Abstract To identify the performance and mechanism of variant molten salts during biomass pyrolysis in molten salt, the thermogravimetric and differential scanning calorimetry (TG-DSC) analyzer, fixed-bed reactor and thermodynamic equilibrium simulation were applied to study the thermal melting characteristics and stability of molten salt as well as the selectivity for biomass pyrolysis products. The KCl-ZnCl2 is appropriate for the preparation of H2-rich gas and the carbon material with abundant mesoporous structure due to its activation effect. At 850 °C, the pyrolysis gas obtained from KCl-ZnCl2 contained 42.22 vol% H2 with the H2/CO ratio reaching 1.69. The carbonates demonstrated excellent improvement for the gas composition of biomass pyrolysis products, with 75.43 vol% and 70.52 vol% syngas (H2 + CO) collected from the Li2CO3-K2CO3 and Li2CO3-Na2CO3-K2CO3 pyrolysis systems at 850 °C respectively. With the presence of carbonates, the bio-oil and char prepared by biomass pyrolysis also achieved better quality. The thermodynamic simulation revealed the shifting (formation of Li2O) of molten salt composition during biomass pyrolysis. The interaction between Li2CO3 and char under high temperature explained the high yield of CO in pyrolysis gas products, also resulted in the consumption of salts and limited the sustainable use of the molten salt pyrolysis system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Hernandez-Shek, M.A.; Peultier, P.; Pauss, A.; Ribeiro, T.;pmid: 35452949
Knowledge of rheological evolution of biomass during dry anaerobic digestion (D-AD) is important in the engineering design, modeling, and operation of D-AD reactors. In this work, two methods of rheological analysis, the slump test and the shear-box, were used to measure the evolution of the yield stress, cohesion and friction angle of the straw-cattle manure (SCM) during the D-AD. Firstly, four 60 L batch leach-bed reactors (LBR) were started in parallel and stopped at different stages of the D-AD process on days 0, 10, 21 and 31. Secondly, a 500 L and 2 m length plug flow reactor (PFR) was operated with 40 days of solid retention time and samples were recovered at different positions. The solid degradation during D-AD process was monitored by analysis of the degradation of volatile solids, the fiber content and the Flash BMP. Similar degradation patterns of SCM and rheological evolution were observed in both reactors type. VS content decreased of 10.7% and 10.2% in 30 days in PFR and LBR respectively. VS degradation in both cases was well explained by hemicellulose and cellulose consuming in D-AD process. Considering the rheological analysis, the results showed that D-AD induced a reduction of the yield stress of 28.1 and 24.2% in 30 days in PFR and LBR respectively. Moreover, a similar evolution of cohesion and friction angle value for samples from both reactors was observed. This study demonstrates the close relationship between the state of degradation of the solid biomass and its rheological properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2022.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2022.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2022Publisher:IWA Publishing Parravicini, Vanessa; Filali, Ahlem; Delre, Antonio; Gutierrez, Oriol; Duan, Haoran;International audience The quantification of direct GHG emissions from sewers and wastewater treatment plants is of great importance towards urban sustainable development. In fact, the identification and assessment of anthropogenic sources of GHG emissions (mainly nitrous oxide and methane) in these engineered systems represent the first step in establishing effective mitigation strategies. This chapter provides an overview of the currently available nitrous oxide and methane quantification methods applied at full-scale in sewers and wastewater treatment plants. Since the first measurement campaigns in the early 90s were based on spare grab sampling, quantification methodologies and sampling strategies have evolved significantly, in order to describe the spatio-temporal dynamics of the emissions. The selection of a suitable quantification method is mainly dictated by the objective of the measurement survey and by specific local requirements. Plant-wide quantification methods provide information on the overall emissions of wastewater treatment plants, including unknown sources, which can be used for GHG inventory purposes. To develop on-site mitigation strategies, in-depth analysis of GHG generation pathways and emission patterns is required. In this case, process-unit quantifications can be employed to provide data for developing mechanistic models or to statistically link GHG emissions to operational conditions. With regards to sewers, current available methods are not yet capable to capture the complexity of these systems due to their geographical extension and variability of conditions and only allow to monitor specific locations where hotspots for GHG formation and emission have been identified.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.2166/978178...Part of book or chapter of book . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/9781789060461_0091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.2166/978178...Part of book or chapter of book . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/9781789060461_0091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:EDP Sciences Aliénor Vernay; Caroline Michel; Jean-François Hollebecque; Hélène Nonnet; Maxime Fournier; Régis Didierlaurent;doi: 10.1051/epjn/2022045
After the accident at the Fukushima Dai-ichi Nuclear Power Station, a large amount of contaminated water was treated using several decontamination systems with different natures of adsorbents and chemicals. The resulting wastes, called Fukushima Effluent Treatment Wastes (FETW), were stored at the Fukushima Dai-ichi site. Vitrification could be the most promising treatment method to package these wastes. The consortium gathering CEA, Orano, ECM Technologies and ANDRA, implemented an in situ, robust, simple and versatile In-Can vitrification process, the DEM&MELT technology. Since 2018, the applicability of this technology for FETW treatment and conditioning has been evaluated. In 2021–2022, studies focused on one particular waste, coming from the ALPS system (Advanced Liquid Processing System-Multi Radionuclides Removal) generating around 70%vol. of FETW. This waste is composed of two co-precipitation slurries: one mainly composed of iron hydroxide, and one of calcium carbonate and magnesium hydroxide. The purpose of this article is to highlight the feasibility of ALPS slurries vitrification with DEM&MELT, relying on tests performed from laboratory-scale to full-scale. Macroscopically homogeneous glasses were produced using the DEM&MELT demonstrator, with a waste loading of 60 wt.% (expressed as waste dry mass) and microstructural analyses were performed. It gives promising results for FETW conditioning with the DEM&MELT process.
EPJ Nuclear Sciences... arrow_drop_down EPJ Nuclear Sciences & TechnologiesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjn/2022045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert EPJ Nuclear Sciences... arrow_drop_down EPJ Nuclear Sciences & TechnologiesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjn/2022045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:MDPI AG Authors: Douglas Keller; Vishal Somanna; Philippe Drobinski; Cédric Tard;doi: 10.3390/en15238873
A methanol island, powered by solar or wind energy, indirectly captures atmospheric CO2 through the ocean and combines it with hydrogen gas to produce a synthetic fuel. The island components include a carbon dioxide extractor, a desalinator, an electrolyzer, and a carbon dioxide-hydrogen reactor to complete this process. In this study, the optimal locations to place such a device in the Mediterranean Sea were determined, based on three main constraints: power availability, environmental risk, and methanol production capability. The island was numerically simulated with a purpose built python package pyseafuel. Data from 20 years of ocean and atmospheric simulation data were used to “force” the simulated methanol island. The optimal locations were found to strongly depend on the power availability constraint, with most optimal locations providing the most solar and/or wind power, due to the limited effect the ocean surface variability had on the power requirements of methanol island. Within this context, optimal locations were found to be the Alboran, Cretan, and Levantine Sea due to the availability of insolation for the Alboran and Levantine Sea and availability of wind power for the Cretan Sea. These locations were also not co-located with areas with larger maximum significant wave heights, thereby avoiding areas with higher environmental risk. When we simulate the production at these locations, a 10 L s−1 seawater inflow rate produced 494.21, 495.84, and 484.70 mL m−2 of methanol over the course of a year, respectively. Island communities in these regions could benefit from the energy resource diversification and independence these systems could provide. However, the environmental impact of such systems is poorly understood and requires further investigation.
École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03895957Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03895957Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert École Polytechnique,... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03895957Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03895957Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu