- home
- Search
- Energy Research
- 6. Clean water
- DE
- GB
- Karlsruhe Institute of Technology
- Energy Research
- 6. Clean water
- DE
- GB
- Karlsruhe Institute of Technology
Research data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:UKRI | High Temperature, High Ef..., UKRI | Integrated Development of...UKRI| High Temperature, High Efficiency PV-Thermal Solar System ,UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National StrategyWinchester, Benedict; Huang, Gan; Beath, Hamish; Sandwell, Philip; Jiajun Cen; Nelson, Jenny; Markides, Christos N.;Optimisation results for the lowest lifetime cost system consisting of solar photovoltaic (PV), hybrid photovoltaic-thermal (PV-T) and solar-thermal collectors alongside battery and hot-water storage systems for meeting the electrical and thermal (hot-water) needs of three multi-effect distillation (MED) plants. The updated results are from optimisations runs carried out in response to peer-review comments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7801892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7801892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | MUSTANGEC| MUSTANGThomas Fierz; Auli Niemi; Kristina Rasmusson; Vladimir Shtivelman; Jacob Bensabat; Michael Gendler; G. Wiegand; Maria Rasmusson; Fritjof Fagerlund; Julia Ghergut; Martin Sauter; Tobias Licha;AbstractThis paper presents the experimental plans and designs as well as examples of predictive modeling of a pilot-scale CO2 injection experiment at the Heletz site (Israel). The overall objective of the experiment is to find optimal ways to characterize CO2 -relevant in-situ medium properties, including field-scale residual and dissolution trapping, to explore ways of characterizing heterogeneity through joint analysis of different types of data, and to detect leakage. The experiment will involve two wells, an injection well and a monitoring well. Prior to the actual CO2 injection, hydraulic, thermal and tracer tests will be carried out for standard site characterization. The actual CO2 injection experiments will include (i) a single well injection-withdrawal experiment, with the main objective to estimate in-situ residual trapping and (ii) a two-well injection-withdrawal test with injection of CO2 in a dipole mode (injection of CO2 in one well with simultaneous withdrawal of water in the monitoring well), with the objective to understand the CO2 transport in heterogeneous geology as well as the associated dissolution and residual trapping. Tracers will be introduced in both experiments to further aid in detecting the development of the phase composition during CO2 transport. Geophysical monitoring will also be implemented. By means of modeling, different experimental sequences and injection/withdrawal patterns have been analyzed, as have parameter uncertainties. The objectives have been to (i) evaluate key aspects of the experimental design, (ii) to identify key parameters affecting the fate of the CO2 and (iii) to evaluate the relationships between measurable quantities and parameters of interest.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:MDPI AG Kristian Näschen; Bernd Diekkrüger; Constanze Leemhuis; Larisa Seregina; Roderick van der Linden;This article illustrates the impact of potential future climate scenarios on water quantity in time and space for an East African floodplain catchment surrounded by mountainous areas. In East Africa, agricultural intensification is shifting from upland cultivation into the wetlands due to year-round water availability and fertile soils. These advantageous agricultural conditions might be hampered through climate change impacts. Additionally, water-related risks, like droughts and flooding events, are likely to increase. Hence, this study investigates future climate patterns and their impact on water resources in one production cluster in Tanzania. To account for these changes, a regional climate model ensemble of the Coordinated Regional Downscaling Experiment (CORDEX) Africa project was analyzed to investigate changes in climatic patterns until 2060, according to the RCP4.5 (representative concentration pathways) and RCP8.5 scenarios. The semi-distributed Soil and Water Assessment Tool (SWAT) was utilized to analyze the impacts on water resources according to all scenarios. Modeling results indicate increasing temperatures, especially in the hot dry season, intensifying the distinctive features of the dry and rainy season. This consequently aggravates hydrological extremes, such as more-pronounced flooding and decreasing low flows. Overall, annual averages of water yield and surface runoff increase up to 61.6% and 67.8%, respectively, within the bias-corrected scenario simulations, compared to the historical simulations. However, changes in precipitation among the analyzed scenarios vary between −8.3% and +22.5% of the annual averages. Hydrological modeling results also show heterogeneous spatial patterns inside the catchment. These spatio-temporal patterns indicate the possibility of an aggravation for severe floods in wet seasons, as well as an increasing drought risk in dry seasons across the scenario simulations. Apart from that, the discharge peak, which is crucial for the flood recession agriculture in the floodplain, is likely to shift from April to May from the 2020s onwards.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w11040859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w11040859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Springer Science and Business Media LLC Behling, R.; Roessner, S.; Förster, S.; Saemian, P.; Tourian, M.; Portele, T.; Lorenz, C.;AbstractIran has experienced a drastic increase in water scarcity in the last decades. The main driver has been the substantial unsustainable water consumption of the agricultural sector. This study quantifies the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation developments. It analyzes globally available reanalysis climate data and satellite time series data and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km$$^2$$ 2 ) and a significant cultivation intensification (48,000 km$$^2$$ 2 ). At the same time, we observe a substantial decline in total water storage that is not represented by a decrease of meteorological water input, confirming an unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km$$^2$$ 2 ), especially in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show declining trends in vegetation growth and land cover degradation from sparse vegetation to barren land in 40,000 km$$^2$$ 2 , mainly along the western plains and foothills of the Zagros Mountains, and at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, the findings provide detailed insights in vegetation-related causes and consequences of Iran’s anthropogenic drought and can support sustainable management plans for Iran or other semi-arid regions worldwide, often facing similar conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 GermanyPublisher:Elsevier BV Zettlitzer, Michael; Moeller, Fabian; Morozova, Daria; Lokay, Peter; Würdemann, Hilke;Abstract The onshore CO2-storage site Ketzin consists of one CO2-injection well and two observation wells. Hydraulic tests revealed permeabilities between 50 and 100 mD for the sandstone rock units. The designated injection well Ktzi 201 showed similar production permeability. After installation of the CO2-injection string, an injection test with water yielded a significantly lower injectivity of 0.002 m3/d kPa, while the observation wells showed an injection permeability in the same range as the productivity. Several possible reasons for the severe decline in injectivity are discussed. Acidification of the reservoir interval, injection at high wellhead pressure, controlled mini-fractures and back-production of the well are discussed to remove the plugging material to re-establish the required injectivity of the well. It has been decided to perform a nitrogen lift and analyse the back-produced fluids. Initially during the lift, the back-produced fluids were dark-black. Chemical and XRD analyses proved that the black solids consisted mainly of iron sulphide. Sulphate-reducing bacteria (SRB) were detected in fluid samples with up to 106 cells/ml by fluorescent in situ hybridisation (FISH) indicating that the formation of iron sulphide was caused by bacterial activity. Organic compounds within the drilling mud and other technical fluids were likely left during the well completion process, thus providing the energy source for strong proliferation of bacteria. During the lift, the fraction of SRB in the whole bacterial community decreased from approximately 32% in downhole samples to less than 5%. The lift of Ktzi 201 succeeded in the full restoration of the well productivity and injectivity. Additionally, the likely energy source of the SRB was largely removed by the lifting, thus ensuring the long-term preservation of the injectivity.
GFZpublic (German Re... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Germany, FrancePublisher:MDPI AG Björn Ole Sander; Pia Schneider; Ryan Romasanta; Kristine Samoy-Pascual; Evangeline B. Sibayan; Constancio A. Asis; Reiner Wassmann;handle: 10568/109955
Reducing methane (CH4) emission from paddy rice production is an important target for many Asian countries in order to comply with their climate policy commitments. National greenhouse gas (GHG) inventory approaches like the Tier-2 approach of the Intergovernmental Panel on Climate Change (IPCC) are useful to assess country-scale emissions from the agricultural sector. In paddy rice, alternate wetting and drying (AWD) is a promising and well-studied water management technique which, as shown in experimental studies, can effectively reduce CH4 emissions. However, so far little is known about GHG emission rates under AWD when the technique is fully controlled by farmers. This study assesses CH4 and nitrous oxide (N2O) fluxes under continuous flooded (CF) and AWD treatments for seven subsequent seasons on farmers’ fields in a pumped irrigation system in Central Luzon, Philippines. Under AWD management, CH4 emissions were substantially reduced (73% in dry season (DS), 21% in wet season (WS)). In all treatments, CH4 is the major contributor to the total GHG emission and is, thus, identified as the driving force to the global warming potential (GWP). The contribution of N2O emissions to the GWP was higher in CF than in AWD, however, these only offset 15% of the decrease in CH4 emission and, therefore, did not jeopardize the strong reduction in the GWP. The study proves the feasibility of AWD under farmers’ management as well as the intended mitigation effect. Resulting from this study, it is recommended to incentivize dissemination strategies in order to improve the effectiveness of mitigation initiatives. A comparison of single CH4 emissions to calculated emissions with the IPCC Tier-2 inventory approach identified that, although averaged values showed a sufficient degree of accuracy, fluctuations for single measurement points have high variation which limit the use of the method for field-level assessments.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/109955Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture10080350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/109955Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture10080350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:Elsevier BV Eckhard Dinjus; U. Galla; Bernd Hitzmann; Nikolaos Boukis; Alexander Hammerschmidt; Alexander Hammerschmidt;Abstract In the work reported here, baker’s yeast ( Saccharomyces cerevisiae ) was used as feed for the production of liquid biofuels in a continuous one-step process under hydrothermal conditions in the presence of excess hydrogen and K 2 CO 3 . The yeast conversion experiments were performed in an up-flow reactor under near-critical water conditions ( T 330–450 °C, p 20–32 MPa). The products consisted of three phases, an oil-like organic phase, a gaseous phase, and an aqueous phase. Higher concentrations of organic carbon in the process resulted in a higher product yield. The heating value of the organic phase was up to 38.6 MJ/kg. Liquefaction of yeast without any addition of K 2 CO 3 also resulted in liquid oil, but the quality and the yield of the oil product were lower. A reaction temperature of 400 °C was found to be optimal for the oil yield and quality.
Fuel arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2011.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2011.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, GermanyPublisher:Elsevier BV Paul Fleuchaus; Simon Schüppler; Martin Bloemendal; Luca Guglielmetti; Oliver Opel; Philipp Blum;Abstract The storage of heat in aquifers, also referred to as Aquifer Thermal Energy Storage (ATES), bears a high potential to bridge the seasonal gap between periods of highest thermal energy demand and supply. With storage temperatures higher than 50 °C, High-Temperature (HT) ATES is capable to facilitate the integration of (non-)renewable heat sources into complex energy systems. While the complexity of ATES technology is positively correlated to the required storage temperature, HT-ATES faces multidisciplinary challenges and risks impeding a rapid market uptake worldwide. Therefore, the aim of this study is to provide an overview and analysis of these risks of HT-ATES to facilitate global technology adoption. Risk are identified considering experiences of past HT-ATES projects and analyzed by ATES and geothermal energy experts. An online survey among 38 international experts revealed that technical risks are expected to be less critical than legal, social and organizational risks. This is confirmed by the lessons learned from past HT-ATES projects, where high heat recovery values were achieved, and technical feasibility was demonstrated. Although HT-ATES is less flexible than competing technologies such as pits or buffer tanks, the main problems encountered are attributed to a loss of the heat source and fluctuating or decreasing heating demands. Considering that a HT-ATES system has a lifetime of more than 30 years, it is crucial to develop energy concepts which take into account the conditions both for heat sources and heat sinks. Finally, a site-specific risk analysis for HT-ATES in the city of Hamburg revealed that some risks strongly depend on local boundary conditions. A project-specific risk management is therefore indispensable and should be addressed in future research and project developments.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 135visibility views 135 download downloads 34 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Elsevier BV Authors: Wagner, V.; Bayer, P.; Kübert, M.; Blum, P.;Abstract Thermal conductivity and thermal borehole resistance are basic parameters for the technical and sustainable design of closed ground source heat pump (GSHP) systems. One of the most common methods to determine these parameters is the thermal response test (TRT). The response data measured are typically evaluated by the Kelvin line source equation which does not consider all relevant processes of heat transfer in the subsurface. The approach only considers conductive heat transfer from the borehole heat exchanger (BHE) and all transport effects are combined in the parameters of effective thermal conductivity and thermal borehole resistance. In order to examine primary effects in more detail, a sensitivity study based on numerically generated TRT data sets is performed considering the effects of (1) the in-situ position of the U-shaped pipes of borehole heat exchangers (shank spacing), (2) a non-uniform initial thermal distribution (such as a geothermal gradient), and (3) thermal dispersivity. It will be demonstrated that the shank spacing and the non-uniform initial thermal distribution have minor effects (less than 10%) on the effective thermal conductivity and the determined borehole resistance. Constant groundwater velocity with varying thermal dispersivity values, however, has a significant influence on the thermal borehole resistance. These effects are even more pronounced for interpreted effective thermal conductivity which is overestimated by a factor of 1.2–2.9 compared to the real thermal conductivity of the saturated porous media.
Renewable Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 132 citations 132 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Prestigiacomo, Claudia; Zimmermann, Joscha; Hornung, Ursel; Raffelt, Klaus; Dahmen, Nicolaus; Scialdone, Onofrio; Galia, Alessandro;KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4097361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4097361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:UKRI | High Temperature, High Ef..., UKRI | Integrated Development of...UKRI| High Temperature, High Efficiency PV-Thermal Solar System ,UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National StrategyWinchester, Benedict; Huang, Gan; Beath, Hamish; Sandwell, Philip; Jiajun Cen; Nelson, Jenny; Markides, Christos N.;Optimisation results for the lowest lifetime cost system consisting of solar photovoltaic (PV), hybrid photovoltaic-thermal (PV-T) and solar-thermal collectors alongside battery and hot-water storage systems for meeting the electrical and thermal (hot-water) needs of three multi-effect distillation (MED) plants. The updated results are from optimisations runs carried out in response to peer-review comments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7801892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7801892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | MUSTANGEC| MUSTANGThomas Fierz; Auli Niemi; Kristina Rasmusson; Vladimir Shtivelman; Jacob Bensabat; Michael Gendler; G. Wiegand; Maria Rasmusson; Fritjof Fagerlund; Julia Ghergut; Martin Sauter; Tobias Licha;AbstractThis paper presents the experimental plans and designs as well as examples of predictive modeling of a pilot-scale CO2 injection experiment at the Heletz site (Israel). The overall objective of the experiment is to find optimal ways to characterize CO2 -relevant in-situ medium properties, including field-scale residual and dissolution trapping, to explore ways of characterizing heterogeneity through joint analysis of different types of data, and to detect leakage. The experiment will involve two wells, an injection well and a monitoring well. Prior to the actual CO2 injection, hydraulic, thermal and tracer tests will be carried out for standard site characterization. The actual CO2 injection experiments will include (i) a single well injection-withdrawal experiment, with the main objective to estimate in-situ residual trapping and (ii) a two-well injection-withdrawal test with injection of CO2 in a dipole mode (injection of CO2 in one well with simultaneous withdrawal of water in the monitoring well), with the objective to understand the CO2 transport in heterogeneous geology as well as the associated dissolution and residual trapping. Tracers will be introduced in both experiments to further aid in detecting the development of the phase composition during CO2 transport. Geophysical monitoring will also be implemented. By means of modeling, different experimental sequences and injection/withdrawal patterns have been analyzed, as have parameter uncertainties. The objectives have been to (i) evaluate key aspects of the experimental design, (ii) to identify key parameters affecting the fate of the CO2 and (iii) to evaluate the relationships between measurable quantities and parameters of interest.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.06.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:MDPI AG Kristian Näschen; Bernd Diekkrüger; Constanze Leemhuis; Larisa Seregina; Roderick van der Linden;This article illustrates the impact of potential future climate scenarios on water quantity in time and space for an East African floodplain catchment surrounded by mountainous areas. In East Africa, agricultural intensification is shifting from upland cultivation into the wetlands due to year-round water availability and fertile soils. These advantageous agricultural conditions might be hampered through climate change impacts. Additionally, water-related risks, like droughts and flooding events, are likely to increase. Hence, this study investigates future climate patterns and their impact on water resources in one production cluster in Tanzania. To account for these changes, a regional climate model ensemble of the Coordinated Regional Downscaling Experiment (CORDEX) Africa project was analyzed to investigate changes in climatic patterns until 2060, according to the RCP4.5 (representative concentration pathways) and RCP8.5 scenarios. The semi-distributed Soil and Water Assessment Tool (SWAT) was utilized to analyze the impacts on water resources according to all scenarios. Modeling results indicate increasing temperatures, especially in the hot dry season, intensifying the distinctive features of the dry and rainy season. This consequently aggravates hydrological extremes, such as more-pronounced flooding and decreasing low flows. Overall, annual averages of water yield and surface runoff increase up to 61.6% and 67.8%, respectively, within the bias-corrected scenario simulations, compared to the historical simulations. However, changes in precipitation among the analyzed scenarios vary between −8.3% and +22.5% of the annual averages. Hydrological modeling results also show heterogeneous spatial patterns inside the catchment. These spatio-temporal patterns indicate the possibility of an aggravation for severe floods in wet seasons, as well as an increasing drought risk in dry seasons across the scenario simulations. Apart from that, the discharge peak, which is crucial for the flood recession agriculture in the floodplain, is likely to shift from April to May from the 2020s onwards.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w11040859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w11040859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Springer Science and Business Media LLC Behling, R.; Roessner, S.; Förster, S.; Saemian, P.; Tourian, M.; Portele, T.; Lorenz, C.;AbstractIran has experienced a drastic increase in water scarcity in the last decades. The main driver has been the substantial unsustainable water consumption of the agricultural sector. This study quantifies the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation developments. It analyzes globally available reanalysis climate data and satellite time series data and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km$$^2$$ 2 ) and a significant cultivation intensification (48,000 km$$^2$$ 2 ). At the same time, we observe a substantial decline in total water storage that is not represented by a decrease of meteorological water input, confirming an unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km$$^2$$ 2 ), especially in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show declining trends in vegetation growth and land cover degradation from sparse vegetation to barren land in 40,000 km$$^2$$ 2 , mainly along the western plains and foothills of the Zagros Mountains, and at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, the findings provide detailed insights in vegetation-related causes and consequences of Iran’s anthropogenic drought and can support sustainable management plans for Iran or other semi-arid regions worldwide, often facing similar conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-24712-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 GermanyPublisher:Elsevier BV Zettlitzer, Michael; Moeller, Fabian; Morozova, Daria; Lokay, Peter; Würdemann, Hilke;Abstract The onshore CO2-storage site Ketzin consists of one CO2-injection well and two observation wells. Hydraulic tests revealed permeabilities between 50 and 100 mD for the sandstone rock units. The designated injection well Ktzi 201 showed similar production permeability. After installation of the CO2-injection string, an injection test with water yielded a significantly lower injectivity of 0.002 m3/d kPa, while the observation wells showed an injection permeability in the same range as the productivity. Several possible reasons for the severe decline in injectivity are discussed. Acidification of the reservoir interval, injection at high wellhead pressure, controlled mini-fractures and back-production of the well are discussed to remove the plugging material to re-establish the required injectivity of the well. It has been decided to perform a nitrogen lift and analyse the back-produced fluids. Initially during the lift, the back-produced fluids were dark-black. Chemical and XRD analyses proved that the black solids consisted mainly of iron sulphide. Sulphate-reducing bacteria (SRB) were detected in fluid samples with up to 106 cells/ml by fluorescent in situ hybridisation (FISH) indicating that the formation of iron sulphide was caused by bacterial activity. Organic compounds within the drilling mud and other technical fluids were likely left during the well completion process, thus providing the energy source for strong proliferation of bacteria. During the lift, the fraction of SRB in the whole bacterial community decreased from approximately 32% in downhole samples to less than 5%. The lift of Ktzi 201 succeeded in the full restoration of the well productivity and injectivity. Additionally, the likely energy source of the SRB was largely removed by the lifting, thus ensuring the long-term preservation of the injectivity.
GFZpublic (German Re... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.05.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Germany, FrancePublisher:MDPI AG Björn Ole Sander; Pia Schneider; Ryan Romasanta; Kristine Samoy-Pascual; Evangeline B. Sibayan; Constancio A. Asis; Reiner Wassmann;handle: 10568/109955
Reducing methane (CH4) emission from paddy rice production is an important target for many Asian countries in order to comply with their climate policy commitments. National greenhouse gas (GHG) inventory approaches like the Tier-2 approach of the Intergovernmental Panel on Climate Change (IPCC) are useful to assess country-scale emissions from the agricultural sector. In paddy rice, alternate wetting and drying (AWD) is a promising and well-studied water management technique which, as shown in experimental studies, can effectively reduce CH4 emissions. However, so far little is known about GHG emission rates under AWD when the technique is fully controlled by farmers. This study assesses CH4 and nitrous oxide (N2O) fluxes under continuous flooded (CF) and AWD treatments for seven subsequent seasons on farmers’ fields in a pumped irrigation system in Central Luzon, Philippines. Under AWD management, CH4 emissions were substantially reduced (73% in dry season (DS), 21% in wet season (WS)). In all treatments, CH4 is the major contributor to the total GHG emission and is, thus, identified as the driving force to the global warming potential (GWP). The contribution of N2O emissions to the GWP was higher in CF than in AWD, however, these only offset 15% of the decrease in CH4 emission and, therefore, did not jeopardize the strong reduction in the GWP. The study proves the feasibility of AWD under farmers’ management as well as the intended mitigation effect. Resulting from this study, it is recommended to incentivize dissemination strategies in order to improve the effectiveness of mitigation initiatives. A comparison of single CH4 emissions to calculated emissions with the IPCC Tier-2 inventory approach identified that, although averaged values showed a sufficient degree of accuracy, fluctuations for single measurement points have high variation which limit the use of the method for field-level assessments.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/109955Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture10080350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/109955Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture10080350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:Elsevier BV Eckhard Dinjus; U. Galla; Bernd Hitzmann; Nikolaos Boukis; Alexander Hammerschmidt; Alexander Hammerschmidt;Abstract In the work reported here, baker’s yeast ( Saccharomyces cerevisiae ) was used as feed for the production of liquid biofuels in a continuous one-step process under hydrothermal conditions in the presence of excess hydrogen and K 2 CO 3 . The yeast conversion experiments were performed in an up-flow reactor under near-critical water conditions ( T 330–450 °C, p 20–32 MPa). The products consisted of three phases, an oil-like organic phase, a gaseous phase, and an aqueous phase. Higher concentrations of organic carbon in the process resulted in a higher product yield. The heating value of the organic phase was up to 38.6 MJ/kg. Liquefaction of yeast without any addition of K 2 CO 3 also resulted in liquid oil, but the quality and the yield of the oil product were lower. A reaction temperature of 400 °C was found to be optimal for the oil yield and quality.
Fuel arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2011.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2011.06.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, GermanyPublisher:Elsevier BV Paul Fleuchaus; Simon Schüppler; Martin Bloemendal; Luca Guglielmetti; Oliver Opel; Philipp Blum;Abstract The storage of heat in aquifers, also referred to as Aquifer Thermal Energy Storage (ATES), bears a high potential to bridge the seasonal gap between periods of highest thermal energy demand and supply. With storage temperatures higher than 50 °C, High-Temperature (HT) ATES is capable to facilitate the integration of (non-)renewable heat sources into complex energy systems. While the complexity of ATES technology is positively correlated to the required storage temperature, HT-ATES faces multidisciplinary challenges and risks impeding a rapid market uptake worldwide. Therefore, the aim of this study is to provide an overview and analysis of these risks of HT-ATES to facilitate global technology adoption. Risk are identified considering experiences of past HT-ATES projects and analyzed by ATES and geothermal energy experts. An online survey among 38 international experts revealed that technical risks are expected to be less critical than legal, social and organizational risks. This is confirmed by the lessons learned from past HT-ATES projects, where high heat recovery values were achieved, and technical feasibility was demonstrated. Although HT-ATES is less flexible than competing technologies such as pits or buffer tanks, the main problems encountered are attributed to a loss of the heat source and fluctuating or decreasing heating demands. Considering that a HT-ATES system has a lifetime of more than 30 years, it is crucial to develop energy concepts which take into account the conditions both for heat sources and heat sinks. Finally, a site-specific risk analysis for HT-ATES in the city of Hamburg revealed that some risks strongly depend on local boundary conditions. A project-specific risk management is therefore indispensable and should be addressed in future research and project developments.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 135visibility views 135 download downloads 34 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Elsevier BV Authors: Wagner, V.; Bayer, P.; Kübert, M.; Blum, P.;Abstract Thermal conductivity and thermal borehole resistance are basic parameters for the technical and sustainable design of closed ground source heat pump (GSHP) systems. One of the most common methods to determine these parameters is the thermal response test (TRT). The response data measured are typically evaluated by the Kelvin line source equation which does not consider all relevant processes of heat transfer in the subsurface. The approach only considers conductive heat transfer from the borehole heat exchanger (BHE) and all transport effects are combined in the parameters of effective thermal conductivity and thermal borehole resistance. In order to examine primary effects in more detail, a sensitivity study based on numerically generated TRT data sets is performed considering the effects of (1) the in-situ position of the U-shaped pipes of borehole heat exchangers (shank spacing), (2) a non-uniform initial thermal distribution (such as a geothermal gradient), and (3) thermal dispersivity. It will be demonstrated that the shank spacing and the non-uniform initial thermal distribution have minor effects (less than 10%) on the effective thermal conductivity and the determined borehole resistance. Constant groundwater velocity with varying thermal dispersivity values, however, has a significant influence on the thermal borehole resistance. These effects are even more pronounced for interpreted effective thermal conductivity which is overestimated by a factor of 1.2–2.9 compared to the real thermal conductivity of the saturated porous media.
Renewable Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 132 citations 132 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Prestigiacomo, Claudia; Zimmermann, Joscha; Hornung, Ursel; Raffelt, Klaus; Dahmen, Nicolaus; Scialdone, Onofrio; Galia, Alessandro;KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4097361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4097361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu