search
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
424 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Embargo
  • GB
  • ES
  • CN
  • US
  • CA

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wing, Trevelyan Sherman;

    This thesis explores Germany’s *Energiewende* (‘energy transition’) and the role of citizen/community energy democracy initiatives at municipal and state levels in shaping developments that underpin this society-wide transformation - examining how grassroots agitation, in particular, has prompted meaningful action and policy change on the part of government at multiple levels. Using Berlin and Hamburg - Germany’s largest urban centers and leading city-states in the country’s federal system - as case studies, the research examines how citizens’ initiatives in both cities have campaigned for the remunicipalization of local energy networks to expedite, democratize, and incorporate social justice goals into each region’s Energiewende. Finally, this study pivots to consider the progress of the transition nationally in recent years, investigating how major events like the Covid-19 pandemic, watershed federal elections in 2021, war in Ukraine, and the resultant energy crisis have affected the evolution and direction of the Energiewende, and the important contributions of citizen/community energy initiatives to the national response here. The analytical framework draws on over 100 interviews conducted with relevant stakeholders and experts involved in the transition, representing different perspectives (e.g. on remunicipalization and the Energiewende itself) and diverse levels of government (e.g. from the district to federal level). This extensive body of original research is complemented by a wide array of other relevant source material that has likewise been consulted to inform this work and further evaluate the impacts of bottom-up energy democracy initiatives on the broader transition in Germany’s regions - and, by extension, nationally - as they continue to affect the pace and trajectory of the now-famous Energiewende. Ultimately, this study contributes an in-depth, ground-level analysis to the literature of key elements that have driven energy system change in Germany, shining a fresh light on the complex and interrelated nexus of sustained grassroots action, policy responses, and shifting sociopolitical realities that form the context in which the Energiewende has been (re)launched, reformed, and reimagined over the decades.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wing, Trevelyan Sherman;

    This thesis explores Germany’s *Energiewende* (‘energy transition’) and the role of citizen/community energy democracy initiatives at municipal and state levels in shaping developments that underpin this society-wide transformation - examining how grassroots agitation, in particular, has prompted meaningful action and policy change on the part of government at multiple levels. Using Berlin and Hamburg - Germany’s largest urban centers and leading city-states in the country’s federal system - as case studies, the research examines how citizens’ initiatives in both cities have campaigned for the remunicipalization of local energy networks to expedite, democratize, and incorporate social justice goals into each region’s Energiewende. Finally, this study pivots to consider the progress of the transition nationally in recent years, investigating how major events like the Covid-19 pandemic, watershed federal elections in 2021, war in Ukraine, and the resultant energy crisis have affected the evolution and direction of the Energiewende, and the important contributions of citizen/community energy initiatives to the national response here. The analytical framework draws on over 100 interviews conducted with relevant stakeholders and experts involved in the transition, representing different perspectives (e.g. on remunicipalization and the Energiewende itself) and diverse levels of government (e.g. from the district to federal level). This extensive body of original research is complemented by a wide array of other relevant source material that has likewise been consulted to inform this work and further evaluate the impacts of bottom-up energy democracy initiatives on the broader transition in Germany’s regions - and, by extension, nationally - as they continue to affect the pace and trajectory of the now-famous Energiewende. Ultimately, this study contributes an in-depth, ground-level analysis to the literature of key elements that have driven energy system change in Germany, shining a fresh light on the complex and interrelated nexus of sustained grassroots action, policy responses, and shifting sociopolitical realities that form the context in which the Energiewende has been (re)launched, reformed, and reimagined over the decades.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juan Cruz, Alejandro;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juan Cruz, Alejandro;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vera Burau, María Alejandra; Sanmiquel Pera, Lluís; Bascompta Massanes, Marc;

    Integrating environmental, social and governance (ESG) variables into the assessment of a mining project is essential to ensure the short and long term acceptance by the various stakeholders involved and the lack of doing so can put the sustainability of a project at risk. Thus, a holistic approach has been proposed which combines profitability and sustainability analysis with social and environmental considerations for any decisions made on processing operation selection or mine expansion. The potential economic implications of these factors would be used for determining the operational strategy. This study is based on an actual quarry case study and statistical data taken from Spain. Quantitative variables related to ESG aspects have been integrated into a block model, and optimisations were performed based on different plant types and waste disposal strategies. Results demonstrate a strong interdependence between profitability and sustainability. It is observed that strategies related to operating costs impact the environmental and social impacts. A green index is also incorporated to evaluate and compare the different scenarios, determining that the most relevant strategies in adding value to mining projects include investment in new technologies, environmental solutions, and economic and social benefits. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement Econòmic Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vera Burau, María Alejandra; Sanmiquel Pera, Lluís; Bascompta Massanes, Marc;

    Integrating environmental, social and governance (ESG) variables into the assessment of a mining project is essential to ensure the short and long term acceptance by the various stakeholders involved and the lack of doing so can put the sustainability of a project at risk. Thus, a holistic approach has been proposed which combines profitability and sustainability analysis with social and environmental considerations for any decisions made on processing operation selection or mine expansion. The potential economic implications of these factors would be used for determining the operational strategy. This study is based on an actual quarry case study and statistical data taken from Spain. Quantitative variables related to ESG aspects have been integrated into a block model, and optimisations were performed based on different plant types and waste disposal strategies. Results demonstrate a strong interdependence between profitability and sustainability. It is observed that strategies related to operating costs impact the environmental and social impacts. A green index is also incorporated to evaluate and compare the different scenarios, determining that the most relevant strategies in adding value to mining projects include investment in new technologies, environmental solutions, and economic and social benefits. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement Econòmic Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jonas Wortmann; Larry Lüer; Thomas Heumüller; Karen Forberich; +7 Authors

    Organic solar cells utilize an energy-level offset to generate free charge carriers. Although a very small energy-level offset increases the open-circuit voltage, it remains unclear how exactly charge generation is affected. Here we investigate organic solar cell blends with highest occupied molecular orbital energy-level offsets (∆EHOMO) between the donor and acceptor that range from 0 to 300 meV. We demonstrate that exciton quenching at a negligible ∆EHOMO takes place on timescales that approach the exciton lifetime of the pristine materials, which drastically limits the external quantum efficiency. We quantitatively describe this finding via the Boltzmann stationary-state equilibrium between charge-transfer states and excitons and further reveal a long exciton lifetime to be decisive in maintaining an efficient charge generation at a negligible ∆EHOMO. Moreover, the Boltzmann equilibrium quantitatively describes the major reduction in non-radiative voltage losses at a very small ∆EHOMO. Ultimately, highly luminescent near-infrared emitters with very long exciton lifetimes are suggested to enable highly efficient organic solar cells. Donor–acceptor systems with low energy-level offset enable high power efficiency in organic solar cells yet it is unclear what drives charge generation. Classen et al. show that long exciton lifetimes enable efficient exciton splitting and thus generation of free charges while also suppressing voltage losses.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Energy
    Article . 2020 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    264
    citations264
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Energy
      Article . 2020 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jonas Wortmann; Larry Lüer; Thomas Heumüller; Karen Forberich; +7 Authors

    Organic solar cells utilize an energy-level offset to generate free charge carriers. Although a very small energy-level offset increases the open-circuit voltage, it remains unclear how exactly charge generation is affected. Here we investigate organic solar cell blends with highest occupied molecular orbital energy-level offsets (∆EHOMO) between the donor and acceptor that range from 0 to 300 meV. We demonstrate that exciton quenching at a negligible ∆EHOMO takes place on timescales that approach the exciton lifetime of the pristine materials, which drastically limits the external quantum efficiency. We quantitatively describe this finding via the Boltzmann stationary-state equilibrium between charge-transfer states and excitons and further reveal a long exciton lifetime to be decisive in maintaining an efficient charge generation at a negligible ∆EHOMO. Moreover, the Boltzmann equilibrium quantitatively describes the major reduction in non-radiative voltage losses at a very small ∆EHOMO. Ultimately, highly luminescent near-infrared emitters with very long exciton lifetimes are suggested to enable highly efficient organic solar cells. Donor–acceptor systems with low energy-level offset enable high power efficiency in organic solar cells yet it is unclear what drives charge generation. Classen et al. show that long exciton lifetimes enable efficient exciton splitting and thus generation of free charges while also suppressing voltage losses.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Energy
    Article . 2020 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    264
    citations264
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Energy
      Article . 2020 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gomezgil Yaspik, Vianney;

    In recent decades, many societal changes have unfolded, including population ageing, reconfigurations of household structures, labour market transformation, and a secular deceleration of economic growth. These shifts pose considerable challenges to preexisting welfare states, particularly to the efficacy of countries’ pension systems. This dissertation examines the context and trajectory of pension reforms in Mexico, the United Kingdom, and the United States. Its contribution is to ascertain the viability and political feasibility of reforms that enhance the financial sustainability of their pension systems, while maintaining adequate income and coverage levels. The dissertation builds on political economy approaches and on the institutionalist literature, which highlight how the role of interest groups and structure of institutions and political systems shape policy outcomes. The frameworks of blame avoidance and credit-claiming are also considered, to provide a comprehensive analysis of the complex dynamics surrounding pension systems and reform efforts. This dissertation uses a mixed-methods approach – including public opinion surveys of 3,000+ individuals, semi-structured elite interviews, historical document analyses, and specialized fiscal and actuarial projections of selected pension reforms in the three selected countries. It addresses three core research questions: 1) What is the current context for pension reform in Mexico, the United Kingdom, and the United States given their histories? 2) Is the necessary (for achieving specific minimum levels of sustainability, adequacy, and coverage) pension reform politically feasible? 3) How do the characteristics of each reform affect its political feasibility? Corollary: The modification of which channel (benefits, contributions, retirement age) is perceived as more politically feasible for diverse stakeholders? The methodology chosen provides a timely picture of the context surrounding potential pension reforms in the three case studies. In Mexico, credit-claiming and the interests of private stakeholders explain the success of recent pension reforms, and partisan politics are the key determinants for future fiscal changes. For the United Kingdom, the institutionalist literature helps explain the reasons for the relatively easier reform avenues; the most politically feasible reforms are those in the private sector, while the housing market is of key importance for pensions. In the United States, the institutionalist literature and the framework of blame avoidance also help explain the current legislative gridlock and the reasons why no major reform has been enacted for decades. For Mexico and the United Kingdom there exist politically feasible reforms, notably a modification of the retirement age channel, that can increase the system’s sustainability while maintaining income adequacy and coverage; whereas based on the current context of extreme polarisation and legislative gridlock, there do not seem to exist politically feasible pension reforms that preserve the structure of Social Security in the United States. The dissertation brings the lens of political feasibility to bear on a previously technical literature on the structure of the pension systems in the three countries, and thus on the feasibility of reform to deliver financial sustainability, adequacy of retirement incomes, and adequate coverage of the old age population. It identifies the feasible routes for reform in Mexico and the United Kingdom, but concludes that the political economy context the United States has reached rules out feasible reforms of its current pension structures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gomezgil Yaspik, Vianney;

    In recent decades, many societal changes have unfolded, including population ageing, reconfigurations of household structures, labour market transformation, and a secular deceleration of economic growth. These shifts pose considerable challenges to preexisting welfare states, particularly to the efficacy of countries’ pension systems. This dissertation examines the context and trajectory of pension reforms in Mexico, the United Kingdom, and the United States. Its contribution is to ascertain the viability and political feasibility of reforms that enhance the financial sustainability of their pension systems, while maintaining adequate income and coverage levels. The dissertation builds on political economy approaches and on the institutionalist literature, which highlight how the role of interest groups and structure of institutions and political systems shape policy outcomes. The frameworks of blame avoidance and credit-claiming are also considered, to provide a comprehensive analysis of the complex dynamics surrounding pension systems and reform efforts. This dissertation uses a mixed-methods approach – including public opinion surveys of 3,000+ individuals, semi-structured elite interviews, historical document analyses, and specialized fiscal and actuarial projections of selected pension reforms in the three selected countries. It addresses three core research questions: 1) What is the current context for pension reform in Mexico, the United Kingdom, and the United States given their histories? 2) Is the necessary (for achieving specific minimum levels of sustainability, adequacy, and coverage) pension reform politically feasible? 3) How do the characteristics of each reform affect its political feasibility? Corollary: The modification of which channel (benefits, contributions, retirement age) is perceived as more politically feasible for diverse stakeholders? The methodology chosen provides a timely picture of the context surrounding potential pension reforms in the three case studies. In Mexico, credit-claiming and the interests of private stakeholders explain the success of recent pension reforms, and partisan politics are the key determinants for future fiscal changes. For the United Kingdom, the institutionalist literature helps explain the reasons for the relatively easier reform avenues; the most politically feasible reforms are those in the private sector, while the housing market is of key importance for pensions. In the United States, the institutionalist literature and the framework of blame avoidance also help explain the current legislative gridlock and the reasons why no major reform has been enacted for decades. For Mexico and the United Kingdom there exist politically feasible reforms, notably a modification of the retirement age channel, that can increase the system’s sustainability while maintaining income adequacy and coverage; whereas based on the current context of extreme polarisation and legislative gridlock, there do not seem to exist politically feasible pension reforms that preserve the structure of Social Security in the United States. The dissertation brings the lens of political feasibility to bear on a previously technical literature on the structure of the pension systems in the three countries, and thus on the feasibility of reform to deliver financial sustainability, adequacy of retirement incomes, and adequate coverage of the old age population. It identifies the feasible routes for reform in Mexico and the United Kingdom, but concludes that the political economy context the United States has reached rules out feasible reforms of its current pension structures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luyun Jiang; Seong OK Han; Melissa Pirie; Hyun Hee Kim; +3 Authors

    Seaweed fibre is usually discarded as biomass waste after extraction of useful ingredients from seaweed. However this seaweed fibre, a natural abundant cellulose material with uniform dimensions 10 times smaller than other plant-based fibre can be utilized as electrode material for energy storage. In this work, we converted seaweed fibre into conductive carbon electrodes by a thermal carbonisation method. The morphology, chemical composition and conductivity are highly influenced by the carbonisation temperature. In comparison to other biomass sources such as cotton pulp, seaweed fibre is finer, smoother and more conductive at low carbonisation temperature. These carbonized seaweeds were then used as a supercapacitor, giving a high supercapacitance (226.3 Fg−1) at the carbonisation temperature of 900°C, and good stability within 2400 cycles. This specific capacitance is significantly higher than values obtained from filter paper or cotton pulp.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luyun Jiang; Seong OK Han; Melissa Pirie; Hyun Hee Kim; +3 Authors

    Seaweed fibre is usually discarded as biomass waste after extraction of useful ingredients from seaweed. However this seaweed fibre, a natural abundant cellulose material with uniform dimensions 10 times smaller than other plant-based fibre can be utilized as electrode material for energy storage. In this work, we converted seaweed fibre into conductive carbon electrodes by a thermal carbonisation method. The morphology, chemical composition and conductivity are highly influenced by the carbonisation temperature. In comparison to other biomass sources such as cotton pulp, seaweed fibre is finer, smoother and more conductive at low carbonisation temperature. These carbonized seaweeds were then used as a supercapacitor, giving a high supercapacitance (226.3 Fg−1) at the carbonisation temperature of 900°C, and good stability within 2400 cycles. This specific capacitance is significantly higher than values obtained from filter paper or cotton pulp.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azarian Borojeni, Iman;

    An important limitation of polymer electrolyte fuel cell technology is the low mechanical strength and dimensional instability with changes of water content of proton exchange membranes (PEMs). A range of different approaches to more stable PEMs based on Nafion have been studied of which composite materials of Nafion with mechanically stronger polymers is one of the most promising directions. If successful, they will lead to thinner composite PEMs with enhanced fuel cell performance, life span, and cost-effectiveness. Developed in this thesis are electrospinning conditions for the fabrication of electrospun mats for potential application in PEMs. Polysulfone (PSU), poly vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), and polyvinylidene fluoride (PVDF) were tested as mechanically stronger but inert (minimal contribution to proton transport) polymers that can tolerate the fuel cell condition. PVDF-HFP generated defect free electrospun mats over a wide range of spinning conditions, while PSU required very specific conditions and no successful conditions were found for PVDF mostly due to over-wetting. These mats might function as mechanical support and could be tested as PEMs when filled with Nafion, but the complete filling of electrospun mats with Nafion has been proven difficult. Instead, the electrospinning of Nafion was tested to explore options of electrospinning mixed mats of two different polymers and co-electrospinning of core-sheath fibers. Two commercial Nafion solutions D520 and D2020 with 5 wt% and 20 wt% content of Nafion were electrospun together with polyethylene oxide of two different molecular weights as a carrier polymer. Mats of sufficient quality for PEM tests were obtained with solutions based on 20 wt% content of Nafion, a low flow rate of 0.2 mL/h, and the lower molecular weight polyethylene oxide as the carrier. Finally, coaxial electrospinning conditions for the formation of core-sheath fibers were developed for Nafion as sheath material and PVDF-HFP or PSU as the core material. Defect-free, core-sheath fibers were generated when the concentration of both solutions was high (20 wt%), the Nafion flow rate was about 0.2 mL/h for the sheath, and the core flow rate was below the flow rate of the sheath (0.1-0.15 mL/h for PVDF-HFP and 0.15 mL/h for PSU). Mats of these core-sheath fibers should provide good mechanical strength combined with much better compatibility with Nafion. A straightforward pore filling with Nafion solutions is expected and their investigation as PEMs in fuel cells is planned as future work.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Scholarship at UWindsor
    Master thesis . 2019
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Scholarship at UWindsor
      Master thesis . 2019
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azarian Borojeni, Iman;

    An important limitation of polymer electrolyte fuel cell technology is the low mechanical strength and dimensional instability with changes of water content of proton exchange membranes (PEMs). A range of different approaches to more stable PEMs based on Nafion have been studied of which composite materials of Nafion with mechanically stronger polymers is one of the most promising directions. If successful, they will lead to thinner composite PEMs with enhanced fuel cell performance, life span, and cost-effectiveness. Developed in this thesis are electrospinning conditions for the fabrication of electrospun mats for potential application in PEMs. Polysulfone (PSU), poly vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), and polyvinylidene fluoride (PVDF) were tested as mechanically stronger but inert (minimal contribution to proton transport) polymers that can tolerate the fuel cell condition. PVDF-HFP generated defect free electrospun mats over a wide range of spinning conditions, while PSU required very specific conditions and no successful conditions were found for PVDF mostly due to over-wetting. These mats might function as mechanical support and could be tested as PEMs when filled with Nafion, but the complete filling of electrospun mats with Nafion has been proven difficult. Instead, the electrospinning of Nafion was tested to explore options of electrospinning mixed mats of two different polymers and co-electrospinning of core-sheath fibers. Two commercial Nafion solutions D520 and D2020 with 5 wt% and 20 wt% content of Nafion were electrospun together with polyethylene oxide of two different molecular weights as a carrier polymer. Mats of sufficient quality for PEM tests were obtained with solutions based on 20 wt% content of Nafion, a low flow rate of 0.2 mL/h, and the lower molecular weight polyethylene oxide as the carrier. Finally, coaxial electrospinning conditions for the formation of core-sheath fibers were developed for Nafion as sheath material and PVDF-HFP or PSU as the core material. Defect-free, core-sheath fibers were generated when the concentration of both solutions was high (20 wt%), the Nafion flow rate was about 0.2 mL/h for the sheath, and the core flow rate was below the flow rate of the sheath (0.1-0.15 mL/h for PVDF-HFP and 0.15 mL/h for PSU). Mats of these core-sheath fibers should provide good mechanical strength combined with much better compatibility with Nafion. A straightforward pore filling with Nafion solutions is expected and their investigation as PEMs in fuel cells is planned as future work.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Scholarship at UWindsor
    Master thesis . 2019
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Scholarship at UWindsor
      Master thesis . 2019
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fusté Raurich, Jaume;

    Resumen: En este Trabajo de Final de Grado se aborda, como principal objetivo la reducción del consumo energético, en una bodega construida en el año 1965 con posteriores modificaciones para adaptarse a las demandas de la producción, en la actualidad tiene capacidad para procesa un máximo de 10 millones de kilos de uva por vendimia. Una de las modificaciones fue el cambio de ubicación de la zona de recepción del mosto, pasando de la cota más alta a la parte más baja de la finca, de unos depósitos de cemento a los de acero inoxidable i de estar ubicados en el interior de la bodega a la intemperie. Como se ha apuntado anteriormente, el principal objetivo de este proyecto es la reducción del consumo energético y concretamente de la zona de recepción, para tal fin se construirá un cofre aislante con las siguientes medidas 35 x 16 x 14 m, albergando en su interior los depósitos y el intercambiador de calor, ejecutándose la obra con dichos elementos inamovibles. Se han realizado los cálculos pertinentes para el dimensionado de la estructura metálica del cofre, de los cabales y dimensiones de los nuevos circuitos de refrigeración, calculando la potencia frigorífica necesaria para mantener la temperatura deseada, con una entrada máxima diaria de 200 tn de uva por día. Los cerramientos se realizarán con paneles aislantes que permitan mantener la temperatura del mosto refrigerado inicialmente hasta su clarificación y trasiego. Se ha calculado un presupuesto de ejecución de obra por contrato y se han elaborado los planos correspondientes. Así pues el proyecto consta de los siguientes documentos: Documento N.º 1 Memoria y 9 Anejos Documento N.º 2 Planos Documento N.º 4 Presupuesto detallado Como conclusión, podemos afirmar que con este proyecto se espera una reducción del 55% en el consumo energético de la zona de Recepción del mosto, mejoraría el rendimiento, tanto energético como en eficiencia con la automatización de las instalaciones entre la zona de Recepción y el Lagar. Abstract: This Final Degree Work addresses the reduction of energy consumption, mainly electricity, of a winery built in 1965, with subsequent modifications adapting to production circumstances, with the capacity to process 10 million kilos of grapes. One of the modifications was the change in location of the must reception area, moving from the highest to the lowest level of the farm, from cement tanks to stainless steel tanks and to be located inside the cellar in the open air. The objective of the project is the reduction of energy consumption in the must reception area, through the construction of an insulating box of 35 x 16 x 14 m, closing the six tanks and the tubular heat exchanger inside. the work being carried out with said immovable elements inside. The necessary calculations have been made for the dimensioning of the metal structure of the chest, the flow rates and the dimensions of the new refrigeration circuits, as well as the refrigeration power necessary to maintain them at the desired temperature, with a daily input of 200 t of grape The enclosures will be made with insulating panels that allow the temperature of the initially cooled must to be maintained until its clarification by gravity. A contract execution budget has been calculated and the corresponding plans have been drawn up. So, the project consists of the following documents: Document Nº1: Memory and 9 chapters. Document No. 2: 19 plans Document Nº4: Detailed budget. As a conclusion we will say that this project is expected to reduce energy consumption in the reception area by 55% and we can affirm that the performance, both energy and efficiency, would improve if the facilities between the Reception area and the Presses. Resum: En aquest treball de Final de Grau s'aborda la reducció del consum energètic d'un celler construït l'any 1965, amb posteriors modificacions per adaptar-se a les circumstancies de la producció, amb capacitat per processar 10 milions de quilos de raïm . Una d'elles va ser el canvi d'ubicació de la zona de recepció del most, passant de la cota mes alta a la part mes baixa de la finca, d'uns dipòsits de ciment a uns d'acer inoxidable i d'estar en el interior del celler al intempèrie. L'objectiu del projecte serà doncs, la reducció del consum energètic de la zona de recepció del most, mitjançant la construcció d'un cofre aïllant de 35 x 16 x 14 m, tancant en el seu interior els dipòsits i l'intercanviador de calor que romandran en el seu lloc mentre s'executi el projecte. S'han realitzat els càlculs necessaris per dimensionar l'estructura metàl·lica del cofre, dels cabals i dimensions dels nous circuits de refrigeració i de la potencia frigorífica necessària per mantenir-los, amb una entrada màxima diària de 200 tn de raïm per dia. Els tancaments es realitzaran amb panells aïllants que permetin mantenir la temperatura del most refredat inicialment, fins al seu desfangat estàtic. S'ha calculat un pressupost d'execució d'obra per contracta i s'han elaborat els plànols corresponents. Així doncs, el projecte consta del: Document Nº 1: Memòria i 9 Annexes. Document Nº 2: 19 plànols Document Nº 4: Pressupost detallat Com a conclusió direm que d'aquest projecte s'espera una reducció del 55% en el consum energètic a la zona de recepció del most i que es milloraria el rendiment, tant energètic com en eficiència amb l'automatització de les instal·lacions entre la Recepció i el Lagar. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fusté Raurich, Jaume;

    Resumen: En este Trabajo de Final de Grado se aborda, como principal objetivo la reducción del consumo energético, en una bodega construida en el año 1965 con posteriores modificaciones para adaptarse a las demandas de la producción, en la actualidad tiene capacidad para procesa un máximo de 10 millones de kilos de uva por vendimia. Una de las modificaciones fue el cambio de ubicación de la zona de recepción del mosto, pasando de la cota más alta a la parte más baja de la finca, de unos depósitos de cemento a los de acero inoxidable i de estar ubicados en el interior de la bodega a la intemperie. Como se ha apuntado anteriormente, el principal objetivo de este proyecto es la reducción del consumo energético y concretamente de la zona de recepción, para tal fin se construirá un cofre aislante con las siguientes medidas 35 x 16 x 14 m, albergando en su interior los depósitos y el intercambiador de calor, ejecutándose la obra con dichos elementos inamovibles. Se han realizado los cálculos pertinentes para el dimensionado de la estructura metálica del cofre, de los cabales y dimensiones de los nuevos circuitos de refrigeración, calculando la potencia frigorífica necesaria para mantener la temperatura deseada, con una entrada máxima diaria de 200 tn de uva por día. Los cerramientos se realizarán con paneles aislantes que permitan mantener la temperatura del mosto refrigerado inicialmente hasta su clarificación y trasiego. Se ha calculado un presupuesto de ejecución de obra por contrato y se han elaborado los planos correspondientes. Así pues el proyecto consta de los siguientes documentos: Documento N.º 1 Memoria y 9 Anejos Documento N.º 2 Planos Documento N.º 4 Presupuesto detallado Como conclusión, podemos afirmar que con este proyecto se espera una reducción del 55% en el consumo energético de la zona de Recepción del mosto, mejoraría el rendimiento, tanto energético como en eficiencia con la automatización de las instalaciones entre la zona de Recepción y el Lagar. Abstract: This Final Degree Work addresses the reduction of energy consumption, mainly electricity, of a winery built in 1965, with subsequent modifications adapting to production circumstances, with the capacity to process 10 million kilos of grapes. One of the modifications was the change in location of the must reception area, moving from the highest to the lowest level of the farm, from cement tanks to stainless steel tanks and to be located inside the cellar in the open air. The objective of the project is the reduction of energy consumption in the must reception area, through the construction of an insulating box of 35 x 16 x 14 m, closing the six tanks and the tubular heat exchanger inside. the work being carried out with said immovable elements inside. The necessary calculations have been made for the dimensioning of the metal structure of the chest, the flow rates and the dimensions of the new refrigeration circuits, as well as the refrigeration power necessary to maintain them at the desired temperature, with a daily input of 200 t of grape The enclosures will be made with insulating panels that allow the temperature of the initially cooled must to be maintained until its clarification by gravity. A contract execution budget has been calculated and the corresponding plans have been drawn up. So, the project consists of the following documents: Document Nº1: Memory and 9 chapters. Document No. 2: 19 plans Document Nº4: Detailed budget. As a conclusion we will say that this project is expected to reduce energy consumption in the reception area by 55% and we can affirm that the performance, both energy and efficiency, would improve if the facilities between the Reception area and the Presses. Resum: En aquest treball de Final de Grau s'aborda la reducció del consum energètic d'un celler construït l'any 1965, amb posteriors modificacions per adaptar-se a les circumstancies de la producció, amb capacitat per processar 10 milions de quilos de raïm . Una d'elles va ser el canvi d'ubicació de la zona de recepció del most, passant de la cota mes alta a la part mes baixa de la finca, d'uns dipòsits de ciment a uns d'acer inoxidable i d'estar en el interior del celler al intempèrie. L'objectiu del projecte serà doncs, la reducció del consum energètic de la zona de recepció del most, mitjançant la construcció d'un cofre aïllant de 35 x 16 x 14 m, tancant en el seu interior els dipòsits i l'intercanviador de calor que romandran en el seu lloc mentre s'executi el projecte. S'han realitzat els càlculs necessaris per dimensionar l'estructura metàl·lica del cofre, dels cabals i dimensions dels nous circuits de refrigeració i de la potencia frigorífica necessària per mantenir-los, amb una entrada màxima diària de 200 tn de raïm per dia. Els tancaments es realitzaran amb panells aïllants que permetin mantenir la temperatura del most refredat inicialment, fins al seu desfangat estàtic. S'ha calculat un pressupost d'execució d'obra per contracta i s'han elaborat els plànols corresponents. Així doncs, el projecte consta del: Document Nº 1: Memòria i 9 Annexes. Document Nº 2: 19 plànols Document Nº 4: Pressupost detallat Com a conclusió direm que d'aquest projecte s'espera una reducció del 55% en el consum energètic a la zona de recepció del most i que es milloraria el rendiment, tant energètic com en eficiència amb l'automatització de les instal·lacions entre la Recepció i el Lagar. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martínez García, Daniel;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martínez García, Daniel;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Manuel Schnabel; Sergi Hernández; J. López-Vidrier; Philipp Löper; +4 Authors

    The optical and photovoltaic properties of Si NCs / SiC multilayers (MLs) are investigated using a membrane-based solar cell structure. By removing the Si substrate in the active cell area, the MLs are studied without any bulk Si substrate contribution. The occurrence is confirmed by scanning electron microscopy and light-beam induced current mapping . Optical characterization combined with simulations allows us to determine the absorption within the ML absorber layer, isolated from the other cell stack layers. The results indicate that the absorption at wavelengths longer than 800 nm is only due to the SiC matrix. The measured short-circuit current is significantly lower than that theoretically obtained from absorption within the ML absorber, which is ascribed to losses that limit carrier extraction. The origin of these losses is discussed in terms of the material regions where recombination takes place. Our results indicate that carrier extraction is most efficient from the Si NCs themselves, whereas recombination is strongest in SiC and residual a-Si domains . Together with the observed onset of the external quantum efficiency (EQE) at 700-800 nm, this fact is an evidence of quantum confinement in Si NCs embedded in SiC on device level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2016
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2016
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Manuel Schnabel; Sergi Hernández; J. López-Vidrier; Philipp Löper; +4 Authors

    The optical and photovoltaic properties of Si NCs / SiC multilayers (MLs) are investigated using a membrane-based solar cell structure. By removing the Si substrate in the active cell area, the MLs are studied without any bulk Si substrate contribution. The occurrence is confirmed by scanning electron microscopy and light-beam induced current mapping . Optical characterization combined with simulations allows us to determine the absorption within the ML absorber layer, isolated from the other cell stack layers. The results indicate that the absorption at wavelengths longer than 800 nm is only due to the SiC matrix. The measured short-circuit current is significantly lower than that theoretically obtained from absorption within the ML absorber, which is ascribed to losses that limit carrier extraction. The origin of these losses is discussed in terms of the material regions where recombination takes place. Our results indicate that carrier extraction is most efficient from the Si NCs themselves, whereas recombination is strongest in SiC and residual a-Si domains . Together with the observed onset of the external quantum efficiency (EQE) at 700-800 nm, this fact is an evidence of quantum confinement in Si NCs embedded in SiC on device level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2016
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2016
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
424 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wing, Trevelyan Sherman;

    This thesis explores Germany’s *Energiewende* (‘energy transition’) and the role of citizen/community energy democracy initiatives at municipal and state levels in shaping developments that underpin this society-wide transformation - examining how grassroots agitation, in particular, has prompted meaningful action and policy change on the part of government at multiple levels. Using Berlin and Hamburg - Germany’s largest urban centers and leading city-states in the country’s federal system - as case studies, the research examines how citizens’ initiatives in both cities have campaigned for the remunicipalization of local energy networks to expedite, democratize, and incorporate social justice goals into each region’s Energiewende. Finally, this study pivots to consider the progress of the transition nationally in recent years, investigating how major events like the Covid-19 pandemic, watershed federal elections in 2021, war in Ukraine, and the resultant energy crisis have affected the evolution and direction of the Energiewende, and the important contributions of citizen/community energy initiatives to the national response here. The analytical framework draws on over 100 interviews conducted with relevant stakeholders and experts involved in the transition, representing different perspectives (e.g. on remunicipalization and the Energiewende itself) and diverse levels of government (e.g. from the district to federal level). This extensive body of original research is complemented by a wide array of other relevant source material that has likewise been consulted to inform this work and further evaluate the impacts of bottom-up energy democracy initiatives on the broader transition in Germany’s regions - and, by extension, nationally - as they continue to affect the pace and trajectory of the now-famous Energiewende. Ultimately, this study contributes an in-depth, ground-level analysis to the literature of key elements that have driven energy system change in Germany, shining a fresh light on the complex and interrelated nexus of sustained grassroots action, policy responses, and shifting sociopolitical realities that form the context in which the Energiewende has been (re)launched, reformed, and reimagined over the decades.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wing, Trevelyan Sherman;

    This thesis explores Germany’s *Energiewende* (‘energy transition’) and the role of citizen/community energy democracy initiatives at municipal and state levels in shaping developments that underpin this society-wide transformation - examining how grassroots agitation, in particular, has prompted meaningful action and policy change on the part of government at multiple levels. Using Berlin and Hamburg - Germany’s largest urban centers and leading city-states in the country’s federal system - as case studies, the research examines how citizens’ initiatives in both cities have campaigned for the remunicipalization of local energy networks to expedite, democratize, and incorporate social justice goals into each region’s Energiewende. Finally, this study pivots to consider the progress of the transition nationally in recent years, investigating how major events like the Covid-19 pandemic, watershed federal elections in 2021, war in Ukraine, and the resultant energy crisis have affected the evolution and direction of the Energiewende, and the important contributions of citizen/community energy initiatives to the national response here. The analytical framework draws on over 100 interviews conducted with relevant stakeholders and experts involved in the transition, representing different perspectives (e.g. on remunicipalization and the Energiewende itself) and diverse levels of government (e.g. from the district to federal level). This extensive body of original research is complemented by a wide array of other relevant source material that has likewise been consulted to inform this work and further evaluate the impacts of bottom-up energy democracy initiatives on the broader transition in Germany’s regions - and, by extension, nationally - as they continue to affect the pace and trajectory of the now-famous Energiewende. Ultimately, this study contributes an in-depth, ground-level analysis to the literature of key elements that have driven energy system change in Germany, shining a fresh light on the complex and interrelated nexus of sustained grassroots action, policy responses, and shifting sociopolitical realities that form the context in which the Energiewende has been (re)launched, reformed, and reimagined over the decades.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juan Cruz, Alejandro;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juan Cruz, Alejandro;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vera Burau, María Alejandra; Sanmiquel Pera, Lluís; Bascompta Massanes, Marc;

    Integrating environmental, social and governance (ESG) variables into the assessment of a mining project is essential to ensure the short and long term acceptance by the various stakeholders involved and the lack of doing so can put the sustainability of a project at risk. Thus, a holistic approach has been proposed which combines profitability and sustainability analysis with social and environmental considerations for any decisions made on processing operation selection or mine expansion. The potential economic implications of these factors would be used for determining the operational strategy. This study is based on an actual quarry case study and statistical data taken from Spain. Quantitative variables related to ESG aspects have been integrated into a block model, and optimisations were performed based on different plant types and waste disposal strategies. Results demonstrate a strong interdependence between profitability and sustainability. It is observed that strategies related to operating costs impact the environmental and social impacts. A green index is also incorporated to evaluate and compare the different scenarios, determining that the most relevant strategies in adding value to mining projects include investment in new technologies, environmental solutions, and economic and social benefits. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement Econòmic Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vera Burau, María Alejandra; Sanmiquel Pera, Lluís; Bascompta Massanes, Marc;

    Integrating environmental, social and governance (ESG) variables into the assessment of a mining project is essential to ensure the short and long term acceptance by the various stakeholders involved and the lack of doing so can put the sustainability of a project at risk. Thus, a holistic approach has been proposed which combines profitability and sustainability analysis with social and environmental considerations for any decisions made on processing operation selection or mine expansion. The potential economic implications of these factors would be used for determining the operational strategy. This study is based on an actual quarry case study and statistical data taken from Spain. Quantitative variables related to ESG aspects have been integrated into a block model, and optimisations were performed based on different plant types and waste disposal strategies. Results demonstrate a strong interdependence between profitability and sustainability. It is observed that strategies related to operating costs impact the environmental and social impacts. A green index is also incorporated to evaluate and compare the different scenarios, determining that the most relevant strategies in adding value to mining projects include investment in new technologies, environmental solutions, and economic and social benefits. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement Econòmic Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jonas Wortmann; Larry Lüer; Thomas Heumüller; Karen Forberich; +7 Authors

    Organic solar cells utilize an energy-level offset to generate free charge carriers. Although a very small energy-level offset increases the open-circuit voltage, it remains unclear how exactly charge generation is affected. Here we investigate organic solar cell blends with highest occupied molecular orbital energy-level offsets (∆EHOMO) between the donor and acceptor that range from 0 to 300 meV. We demonstrate that exciton quenching at a negligible ∆EHOMO takes place on timescales that approach the exciton lifetime of the pristine materials, which drastically limits the external quantum efficiency. We quantitatively describe this finding via the Boltzmann stationary-state equilibrium between charge-transfer states and excitons and further reveal a long exciton lifetime to be decisive in maintaining an efficient charge generation at a negligible ∆EHOMO. Moreover, the Boltzmann equilibrium quantitatively describes the major reduction in non-radiative voltage losses at a very small ∆EHOMO. Ultimately, highly luminescent near-infrared emitters with very long exciton lifetimes are suggested to enable highly efficient organic solar cells. Donor–acceptor systems with low energy-level offset enable high power efficiency in organic solar cells yet it is unclear what drives charge generation. Classen et al. show that long exciton lifetimes enable efficient exciton splitting and thus generation of free charges while also suppressing voltage losses.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Energy
    Article . 2020 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    264
    citations264
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Energy
      Article . 2020 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jonas Wortmann; Larry Lüer; Thomas Heumüller; Karen Forberich; +7 Authors

    Organic solar cells utilize an energy-level offset to generate free charge carriers. Although a very small energy-level offset increases the open-circuit voltage, it remains unclear how exactly charge generation is affected. Here we investigate organic solar cell blends with highest occupied molecular orbital energy-level offsets (∆EHOMO) between the donor and acceptor that range from 0 to 300 meV. We demonstrate that exciton quenching at a negligible ∆EHOMO takes place on timescales that approach the exciton lifetime of the pristine materials, which drastically limits the external quantum efficiency. We quantitatively describe this finding via the Boltzmann stationary-state equilibrium between charge-transfer states and excitons and further reveal a long exciton lifetime to be decisive in maintaining an efficient charge generation at a negligible ∆EHOMO. Moreover, the Boltzmann equilibrium quantitatively describes the major reduction in non-radiative voltage losses at a very small ∆EHOMO. Ultimately, highly luminescent near-infrared emitters with very long exciton lifetimes are suggested to enable highly efficient organic solar cells. Donor–acceptor systems with low energy-level offset enable high power efficiency in organic solar cells yet it is unclear what drives charge generation. Classen et al. show that long exciton lifetimes enable efficient exciton splitting and thus generation of free charges while also suppressing voltage losses.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Energy
    Article . 2020 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    264
    citations264
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Energy
      Article . 2020 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gomezgil Yaspik, Vianney;

    In recent decades, many societal changes have unfolded, including population ageing, reconfigurations of household structures, labour market transformation, and a secular deceleration of economic growth. These shifts pose considerable challenges to preexisting welfare states, particularly to the efficacy of countries’ pension systems. This dissertation examines the context and trajectory of pension reforms in Mexico, the United Kingdom, and the United States. Its contribution is to ascertain the viability and political feasibility of reforms that enhance the financial sustainability of their pension systems, while maintaining adequate income and coverage levels. The dissertation builds on political economy approaches and on the institutionalist literature, which highlight how the role of interest groups and structure of institutions and political systems shape policy outcomes. The frameworks of blame avoidance and credit-claiming are also considered, to provide a comprehensive analysis of the complex dynamics surrounding pension systems and reform efforts. This dissertation uses a mixed-methods approach – including public opinion surveys of 3,000+ individuals, semi-structured elite interviews, historical document analyses, and specialized fiscal and actuarial projections of selected pension reforms in the three selected countries. It addresses three core research questions: 1) What is the current context for pension reform in Mexico, the United Kingdom, and the United States given their histories? 2) Is the necessary (for achieving specific minimum levels of sustainability, adequacy, and coverage) pension reform politically feasible? 3) How do the characteristics of each reform affect its political feasibility? Corollary: The modification of which channel (benefits, contributions, retirement age) is perceived as more politically feasible for diverse stakeholders? The methodology chosen provides a timely picture of the context surrounding potential pension reforms in the three case studies. In Mexico, credit-claiming and the interests of private stakeholders explain the success of recent pension reforms, and partisan politics are the key determinants for future fiscal changes. For the United Kingdom, the institutionalist literature helps explain the reasons for the relatively easier reform avenues; the most politically feasible reforms are those in the private sector, while the housing market is of key importance for pensions. In the United States, the institutionalist literature and the framework of blame avoidance also help explain the current legislative gridlock and the reasons why no major reform has been enacted for decades. For Mexico and the United Kingdom there exist politically feasible reforms, notably a modification of the retirement age channel, that can increase the system’s sustainability while maintaining income adequacy and coverage; whereas based on the current context of extreme polarisation and legislative gridlock, there do not seem to exist politically feasible pension reforms that preserve the structure of Social Security in the United States. The dissertation brings the lens of political feasibility to bear on a previously technical literature on the structure of the pension systems in the three countries, and thus on the feasibility of reform to deliver financial sustainability, adequacy of retirement incomes, and adequate coverage of the old age population. It identifies the feasible routes for reform in Mexico and the United Kingdom, but concludes that the political economy context the United States has reached rules out feasible reforms of its current pension structures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gomezgil Yaspik, Vianney;

    In recent decades, many societal changes have unfolded, including population ageing, reconfigurations of household structures, labour market transformation, and a secular deceleration of economic growth. These shifts pose considerable challenges to preexisting welfare states, particularly to the efficacy of countries’ pension systems. This dissertation examines the context and trajectory of pension reforms in Mexico, the United Kingdom, and the United States. Its contribution is to ascertain the viability and political feasibility of reforms that enhance the financial sustainability of their pension systems, while maintaining adequate income and coverage levels. The dissertation builds on political economy approaches and on the institutionalist literature, which highlight how the role of interest groups and structure of institutions and political systems shape policy outcomes. The frameworks of blame avoidance and credit-claiming are also considered, to provide a comprehensive analysis of the complex dynamics surrounding pension systems and reform efforts. This dissertation uses a mixed-methods approach – including public opinion surveys of 3,000+ individuals, semi-structured elite interviews, historical document analyses, and specialized fiscal and actuarial projections of selected pension reforms in the three selected countries. It addresses three core research questions: 1) What is the current context for pension reform in Mexico, the United Kingdom, and the United States given their histories? 2) Is the necessary (for achieving specific minimum levels of sustainability, adequacy, and coverage) pension reform politically feasible? 3) How do the characteristics of each reform affect its political feasibility? Corollary: The modification of which channel (benefits, contributions, retirement age) is perceived as more politically feasible for diverse stakeholders? The methodology chosen provides a timely picture of the context surrounding potential pension reforms in the three case studies. In Mexico, credit-claiming and the interests of private stakeholders explain the success of recent pension reforms, and partisan politics are the key determinants for future fiscal changes. For the United Kingdom, the institutionalist literature helps explain the reasons for the relatively easier reform avenues; the most politically feasible reforms are those in the private sector, while the housing market is of key importance for pensions. In the United States, the institutionalist literature and the framework of blame avoidance also help explain the current legislative gridlock and the reasons why no major reform has been enacted for decades. For Mexico and the United Kingdom there exist politically feasible reforms, notably a modification of the retirement age channel, that can increase the system’s sustainability while maintaining income adequacy and coverage; whereas based on the current context of extreme polarisation and legislative gridlock, there do not seem to exist politically feasible pension reforms that preserve the structure of Social Security in the United States. The dissertation brings the lens of political feasibility to bear on a previously technical literature on the structure of the pension systems in the three countries, and thus on the feasibility of reform to deliver financial sustainability, adequacy of retirement incomes, and adequate coverage of the old age population. It identifies the feasible routes for reform in Mexico and the United Kingdom, but concludes that the political economy context the United States has reached rules out feasible reforms of its current pension structures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luyun Jiang; Seong OK Han; Melissa Pirie; Hyun Hee Kim; +3 Authors

    Seaweed fibre is usually discarded as biomass waste after extraction of useful ingredients from seaweed. However this seaweed fibre, a natural abundant cellulose material with uniform dimensions 10 times smaller than other plant-based fibre can be utilized as electrode material for energy storage. In this work, we converted seaweed fibre into conductive carbon electrodes by a thermal carbonisation method. The morphology, chemical composition and conductivity are highly influenced by the carbonisation temperature. In comparison to other biomass sources such as cotton pulp, seaweed fibre is finer, smoother and more conductive at low carbonisation temperature. These carbonized seaweeds were then used as a supercapacitor, giving a high supercapacitance (226.3 Fg−1) at the carbonisation temperature of 900°C, and good stability within 2400 cycles. This specific capacitance is significantly higher than values obtained from filter paper or cotton pulp.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luyun Jiang; Seong OK Han; Melissa Pirie; Hyun Hee Kim; +3 Authors

    Seaweed fibre is usually discarded as biomass waste after extraction of useful ingredients from seaweed. However this seaweed fibre, a natural abundant cellulose material with uniform dimensions 10 times smaller than other plant-based fibre can be utilized as electrode material for energy storage. In this work, we converted seaweed fibre into conductive carbon electrodes by a thermal carbonisation method. The morphology, chemical composition and conductivity are highly influenced by the carbonisation temperature. In comparison to other biomass sources such as cotton pulp, seaweed fibre is finer, smoother and more conductive at low carbonisation temperature. These carbonized seaweeds were then used as a supercapacitor, giving a high supercapacitance (226.3 Fg−1) at the carbonisation temperature of 900°C, and good stability within 2400 cycles. This specific capacitance is significantly higher than values obtained from filter paper or cotton pulp.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azarian Borojeni, Iman;

    An important limitation of polymer electrolyte fuel cell technology is the low mechanical strength and dimensional instability with changes of water content of proton exchange membranes (PEMs). A range of different approaches to more stable PEMs based on Nafion have been studied of which composite materials of Nafion with mechanically stronger polymers is one of the most promising directions. If successful, they will lead to thinner composite PEMs with enhanced fuel cell performance, life span, and cost-effectiveness. Developed in this thesis are electrospinning conditions for the fabrication of electrospun mats for potential application in PEMs. Polysulfone (PSU), poly vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), and polyvinylidene fluoride (PVDF) were tested as mechanically stronger but inert (minimal contribution to proton transport) polymers that can tolerate the fuel cell condition. PVDF-HFP generated defect free electrospun mats over a wide range of spinning conditions, while PSU required very specific conditions and no successful conditions were found for PVDF mostly due to over-wetting. These mats might function as mechanical support and could be tested as PEMs when filled with Nafion, but the complete filling of electrospun mats with Nafion has been proven difficult. Instead, the electrospinning of Nafion was tested to explore options of electrospinning mixed mats of two different polymers and co-electrospinning of core-sheath fibers. Two commercial Nafion solutions D520 and D2020 with 5 wt% and 20 wt% content of Nafion were electrospun together with polyethylene oxide of two different molecular weights as a carrier polymer. Mats of sufficient quality for PEM tests were obtained with solutions based on 20 wt% content of Nafion, a low flow rate of 0.2 mL/h, and the lower molecular weight polyethylene oxide as the carrier. Finally, coaxial electrospinning conditions for the formation of core-sheath fibers were developed for Nafion as sheath material and PVDF-HFP or PSU as the core material. Defect-free, core-sheath fibers were generated when the concentration of both solutions was high (20 wt%), the Nafion flow rate was about 0.2 mL/h for the sheath, and the core flow rate was below the flow rate of the sheath (0.1-0.15 mL/h for PVDF-HFP and 0.15 mL/h for PSU). Mats of these core-sheath fibers should provide good mechanical strength combined with much better compatibility with Nafion. A straightforward pore filling with Nafion solutions is expected and their investigation as PEMs in fuel cells is planned as future work.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Scholarship at UWindsor
    Master thesis . 2019
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Scholarship at UWindsor
      Master thesis . 2019
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azarian Borojeni, Iman;

    An important limitation of polymer electrolyte fuel cell technology is the low mechanical strength and dimensional instability with changes of water content of proton exchange membranes (PEMs). A range of different approaches to more stable PEMs based on Nafion have been studied of which composite materials of Nafion with mechanically stronger polymers is one of the most promising directions. If successful, they will lead to thinner composite PEMs with enhanced fuel cell performance, life span, and cost-effectiveness. Developed in this thesis are electrospinning conditions for the fabrication of electrospun mats for potential application in PEMs. Polysulfone (PSU), poly vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), and polyvinylidene fluoride (PVDF) were tested as mechanically stronger but inert (minimal contribution to proton transport) polymers that can tolerate the fuel cell condition. PVDF-HFP generated defect free electrospun mats over a wide range of spinning conditions, while PSU required very specific conditions and no successful conditions were found for PVDF mostly due to over-wetting. These mats might function as mechanical support and could be tested as PEMs when filled with Nafion, but the complete filling of electrospun mats with Nafion has been proven difficult. Instead, the electrospinning of Nafion was tested to explore options of electrospinning mixed mats of two different polymers and co-electrospinning of core-sheath fibers. Two commercial Nafion solutions D520 and D2020 with 5 wt% and 20 wt% content of Nafion were electrospun together with polyethylene oxide of two different molecular weights as a carrier polymer. Mats of sufficient quality for PEM tests were obtained with solutions based on 20 wt% content of Nafion, a low flow rate of 0.2 mL/h, and the lower molecular weight polyethylene oxide as the carrier. Finally, coaxial electrospinning conditions for the formation of core-sheath fibers were developed for Nafion as sheath material and PVDF-HFP or PSU as the core material. Defect-free, core-sheath fibers were generated when the concentration of both solutions was high (20 wt%), the Nafion flow rate was about 0.2 mL/h for the sheath, and the core flow rate was below the flow rate of the sheath (0.1-0.15 mL/h for PVDF-HFP and 0.15 mL/h for PSU). Mats of these core-sheath fibers should provide good mechanical strength combined with much better compatibility with Nafion. A straightforward pore filling with Nafion solutions is expected and their investigation as PEMs in fuel cells is planned as future work.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Scholarship at UWindsor
    Master thesis . 2019
    License: CC BY NC ND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Scholarship at UWind...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Scholarship at UWindsor
      Master thesis . 2019
      License: CC BY NC ND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fusté Raurich, Jaume;

    Resumen: En este Trabajo de Final de Grado se aborda, como principal objetivo la reducción del consumo energético, en una bodega construida en el año 1965 con posteriores modificaciones para adaptarse a las demandas de la producción, en la actualidad tiene capacidad para procesa un máximo de 10 millones de kilos de uva por vendimia. Una de las modificaciones fue el cambio de ubicación de la zona de recepción del mosto, pasando de la cota más alta a la parte más baja de la finca, de unos depósitos de cemento a los de acero inoxidable i de estar ubicados en el interior de la bodega a la intemperie. Como se ha apuntado anteriormente, el principal objetivo de este proyecto es la reducción del consumo energético y concretamente de la zona de recepción, para tal fin se construirá un cofre aislante con las siguientes medidas 35 x 16 x 14 m, albergando en su interior los depósitos y el intercambiador de calor, ejecutándose la obra con dichos elementos inamovibles. Se han realizado los cálculos pertinentes para el dimensionado de la estructura metálica del cofre, de los cabales y dimensiones de los nuevos circuitos de refrigeración, calculando la potencia frigorífica necesaria para mantener la temperatura deseada, con una entrada máxima diaria de 200 tn de uva por día. Los cerramientos se realizarán con paneles aislantes que permitan mantener la temperatura del mosto refrigerado inicialmente hasta su clarificación y trasiego. Se ha calculado un presupuesto de ejecución de obra por contrato y se han elaborado los planos correspondientes. Así pues el proyecto consta de los siguientes documentos: Documento N.º 1 Memoria y 9 Anejos Documento N.º 2 Planos Documento N.º 4 Presupuesto detallado Como conclusión, podemos afirmar que con este proyecto se espera una reducción del 55% en el consumo energético de la zona de Recepción del mosto, mejoraría el rendimiento, tanto energético como en eficiencia con la automatización de las instalaciones entre la zona de Recepción y el Lagar. Abstract: This Final Degree Work addresses the reduction of energy consumption, mainly electricity, of a winery built in 1965, with subsequent modifications adapting to production circumstances, with the capacity to process 10 million kilos of grapes. One of the modifications was the change in location of the must reception area, moving from the highest to the lowest level of the farm, from cement tanks to stainless steel tanks and to be located inside the cellar in the open air. The objective of the project is the reduction of energy consumption in the must reception area, through the construction of an insulating box of 35 x 16 x 14 m, closing the six tanks and the tubular heat exchanger inside. the work being carried out with said immovable elements inside. The necessary calculations have been made for the dimensioning of the metal structure of the chest, the flow rates and the dimensions of the new refrigeration circuits, as well as the refrigeration power necessary to maintain them at the desired temperature, with a daily input of 200 t of grape The enclosures will be made with insulating panels that allow the temperature of the initially cooled must to be maintained until its clarification by gravity. A contract execution budget has been calculated and the corresponding plans have been drawn up. So, the project consists of the following documents: Document Nº1: Memory and 9 chapters. Document No. 2: 19 plans Document Nº4: Detailed budget. As a conclusion we will say that this project is expected to reduce energy consumption in the reception area by 55% and we can affirm that the performance, both energy and efficiency, would improve if the facilities between the Reception area and the Presses. Resum: En aquest treball de Final de Grau s'aborda la reducció del consum energètic d'un celler construït l'any 1965, amb posteriors modificacions per adaptar-se a les circumstancies de la producció, amb capacitat per processar 10 milions de quilos de raïm . Una d'elles va ser el canvi d'ubicació de la zona de recepció del most, passant de la cota mes alta a la part mes baixa de la finca, d'uns dipòsits de ciment a uns d'acer inoxidable i d'estar en el interior del celler al intempèrie. L'objectiu del projecte serà doncs, la reducció del consum energètic de la zona de recepció del most, mitjançant la construcció d'un cofre aïllant de 35 x 16 x 14 m, tancant en el seu interior els dipòsits i l'intercanviador de calor que romandran en el seu lloc mentre s'executi el projecte. S'han realitzat els càlculs necessaris per dimensionar l'estructura metàl·lica del cofre, dels cabals i dimensions dels nous circuits de refrigeració i de la potencia frigorífica necessària per mantenir-los, amb una entrada màxima diària de 200 tn de raïm per dia. Els tancaments es realitzaran amb panells aïllants que permetin mantenir la temperatura del most refredat inicialment, fins al seu desfangat estàtic. S'ha calculat un pressupost d'execució d'obra per contracta i s'han elaborat els plànols corresponents. Així doncs, el projecte consta del: Document Nº 1: Memòria i 9 Annexes. Document Nº 2: 19 plànols Document Nº 4: Pressupost detallat Com a conclusió direm que d'aquest projecte s'espera una reducció del 55% en el consum energètic a la zona de recepció del most i que es milloraria el rendiment, tant energètic com en eficiència amb l'automatització de les instal·lacions entre la Recepció i el Lagar. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fusté Raurich, Jaume;

    Resumen: En este Trabajo de Final de Grado se aborda, como principal objetivo la reducción del consumo energético, en una bodega construida en el año 1965 con posteriores modificaciones para adaptarse a las demandas de la producción, en la actualidad tiene capacidad para procesa un máximo de 10 millones de kilos de uva por vendimia. Una de las modificaciones fue el cambio de ubicación de la zona de recepción del mosto, pasando de la cota más alta a la parte más baja de la finca, de unos depósitos de cemento a los de acero inoxidable i de estar ubicados en el interior de la bodega a la intemperie. Como se ha apuntado anteriormente, el principal objetivo de este proyecto es la reducción del consumo energético y concretamente de la zona de recepción, para tal fin se construirá un cofre aislante con las siguientes medidas 35 x 16 x 14 m, albergando en su interior los depósitos y el intercambiador de calor, ejecutándose la obra con dichos elementos inamovibles. Se han realizado los cálculos pertinentes para el dimensionado de la estructura metálica del cofre, de los cabales y dimensiones de los nuevos circuitos de refrigeración, calculando la potencia frigorífica necesaria para mantener la temperatura deseada, con una entrada máxima diaria de 200 tn de uva por día. Los cerramientos se realizarán con paneles aislantes que permitan mantener la temperatura del mosto refrigerado inicialmente hasta su clarificación y trasiego. Se ha calculado un presupuesto de ejecución de obra por contrato y se han elaborado los planos correspondientes. Así pues el proyecto consta de los siguientes documentos: Documento N.º 1 Memoria y 9 Anejos Documento N.º 2 Planos Documento N.º 4 Presupuesto detallado Como conclusión, podemos afirmar que con este proyecto se espera una reducción del 55% en el consumo energético de la zona de Recepción del mosto, mejoraría el rendimiento, tanto energético como en eficiencia con la automatización de las instalaciones entre la zona de Recepción y el Lagar. Abstract: This Final Degree Work addresses the reduction of energy consumption, mainly electricity, of a winery built in 1965, with subsequent modifications adapting to production circumstances, with the capacity to process 10 million kilos of grapes. One of the modifications was the change in location of the must reception area, moving from the highest to the lowest level of the farm, from cement tanks to stainless steel tanks and to be located inside the cellar in the open air. The objective of the project is the reduction of energy consumption in the must reception area, through the construction of an insulating box of 35 x 16 x 14 m, closing the six tanks and the tubular heat exchanger inside. the work being carried out with said immovable elements inside. The necessary calculations have been made for the dimensioning of the metal structure of the chest, the flow rates and the dimensions of the new refrigeration circuits, as well as the refrigeration power necessary to maintain them at the desired temperature, with a daily input of 200 t of grape The enclosures will be made with insulating panels that allow the temperature of the initially cooled must to be maintained until its clarification by gravity. A contract execution budget has been calculated and the corresponding plans have been drawn up. So, the project consists of the following documents: Document Nº1: Memory and 9 chapters. Document No. 2: 19 plans Document Nº4: Detailed budget. As a conclusion we will say that this project is expected to reduce energy consumption in the reception area by 55% and we can affirm that the performance, both energy and efficiency, would improve if the facilities between the Reception area and the Presses. Resum: En aquest treball de Final de Grau s'aborda la reducció del consum energètic d'un celler construït l'any 1965, amb posteriors modificacions per adaptar-se a les circumstancies de la producció, amb capacitat per processar 10 milions de quilos de raïm . Una d'elles va ser el canvi d'ubicació de la zona de recepció del most, passant de la cota mes alta a la part mes baixa de la finca, d'uns dipòsits de ciment a uns d'acer inoxidable i d'estar en el interior del celler al intempèrie. L'objectiu del projecte serà doncs, la reducció del consum energètic de la zona de recepció del most, mitjançant la construcció d'un cofre aïllant de 35 x 16 x 14 m, tancant en el seu interior els dipòsits i l'intercanviador de calor que romandran en el seu lloc mentre s'executi el projecte. S'han realitzat els càlculs necessaris per dimensionar l'estructura metàl·lica del cofre, dels cabals i dimensions dels nous circuits de refrigeració i de la potencia frigorífica necessària per mantenir-los, amb una entrada màxima diària de 200 tn de raïm per dia. Els tancaments es realitzaran amb panells aïllants que permetin mantenir la temperatura del most refredat inicialment, fins al seu desfangat estàtic. S'ha calculat un pressupost d'execució d'obra per contracta i s'han elaborat els plànols corresponents. Així doncs, el projecte consta del: Document Nº 1: Memòria i 9 Annexes. Document Nº 2: 19 plànols Document Nº 4: Pressupost detallat Com a conclusió direm que d'aquest projecte s'espera una reducció del 55% en el consum energètic a la zona de recepció del most i que es milloraria el rendiment, tant energètic com en eficiència amb l'automatització de les instal·lacions entre la Recepció i el Lagar. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martínez García, Daniel;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martínez García, Daniel;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Manuel Schnabel; Sergi Hernández; J. López-Vidrier; Philipp Löper; +4 Authors

    The optical and photovoltaic properties of Si NCs / SiC multilayers (MLs) are investigated using a membrane-based solar cell structure. By removing the Si substrate in the active cell area, the MLs are studied without any bulk Si substrate contribution. The occurrence is confirmed by scanning electron microscopy and light-beam induced current mapping . Optical characterization combined with simulations allows us to determine the absorption within the ML absorber layer, isolated from the other cell stack layers. The results indicate that the absorption at wavelengths longer than 800 nm is only due to the SiC matrix. The measured short-circuit current is significantly lower than that theoretically obtained from absorption within the ML absorber, which is ascribed to losses that limit carrier extraction. The origin of these losses is discussed in terms of the material regions where recombination takes place. Our results indicate that carrier extraction is most efficient from the Si NCs themselves, whereas recombination is strongest in SiC and residual a-Si domains . Together with the observed onset of the external quantum efficiency (EQE) at 700-800 nm, this fact is an evidence of quantum confinement in Si NCs embedded in SiC on device level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2016
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2016
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Manuel Schnabel; Sergi Hernández; J. López-Vidrier; Philipp Löper; +4 Authors

    The optical and photovoltaic properties of Si NCs / SiC multilayers (MLs) are investigated using a membrane-based solar cell structure. By removing the Si substrate in the active cell area, the MLs are studied without any bulk Si substrate contribution. The occurrence is confirmed by scanning electron microscopy and light-beam induced current mapping . Optical characterization combined with simulations allows us to determine the absorption within the ML absorber layer, isolated from the other cell stack layers. The results indicate that the absorption at wavelengths longer than 800 nm is only due to the SiC matrix. The measured short-circuit current is significantly lower than that theoretically obtained from absorption within the ML absorber, which is ascribed to losses that limit carrier extraction. The origin of these losses is discussed in terms of the material regions where recombination takes place. Our results indicate that carrier extraction is most efficient from the Si NCs themselves, whereas recombination is strongest in SiC and residual a-Si domains . Together with the observed onset of the external quantum efficiency (EQE) at 700-800 nm, this fact is an evidence of quantum confinement in Si NCs embedded in SiC on device level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2016
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2016
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph