search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
51 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • 9. Industry and infrastructure
  • 1. No poverty
  • IT
  • GB
  • CN

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Agatino Nicita; Antonio P. F. Andaloro; Fabio Mostaccio; Erika D'Aleo; +1 Authors

    In the recent years, some experimental forms of housing (cohousing and social housing) have developed in Italy, which also take on the features of real energy communities. These initiatives have been planned and implemented thanks to the active participation and investments of the people involved in the project. Their primary aim is to implement new form of shared housing, but by adopting renewable generation systems and sharing both energy production and consumption, they are contributing to foster the energy transition process. In this research, we studied the management of the energy resource and the social interactions among the cohousers. Moreover, we analysed the social impacts on the surrounding territory in order to know as they can widespread the clean energy technologies and social innovation processes. To do this, we compared two experiences of collaborative housing: the first one, active since some years in Northern Italy, is a bottom-up initiative set up by the voluntary action of some families and individuals. Its goal is to share common spaces and activities, but also to produce and use renewable energy with a view to economic and environmental sustainability. The second one is a social cohousing, established in Messina (Southern Italy) and implemented by the Fondazione di Comunità di Messina. The project involves people who live in socio-economic difficulties. Through the ESCO Solidarity & Energy, the Fondazione has designed and applied energy systems to allow the tenants to become prosumers and prosumagers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2021
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2021
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hongguang Nie; Hongguang Nie; René Kemp; Jin-Hua Xu; +2 Authors

    Abstract In this study, we investigate the driving forces behind the changes in residential energy consumption (REC) in China’s urban and rural areas over the 2001–2012 period. Based on the logarithmic mean Divisia index method, the REC changes are decomposed into seven driving forces, which are climate change, energy price, energy expenditure mix, energy cost share (in total expenditure), expenditure share (in income), per capita income and population effects. According to the results, climate effect due to increasing days with abnormal temperature, energy cost share effect characterized by more expenditure to be paid for energy use, income effect describing constant income growth in the residential sector definitely increase REC in both urban and rural areas. In contrast, energy prices and energy expenditure mix effects negatively contribute to the REC increase, respectively because of the increase in energy prices and the transition from the low-priced energy to high-priced energy. Expenditure share and population effects play opposite roles in urban and rural areas, and the reasons and implications are analysed in depth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    70
    citations70
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Feng, Kuishuang; Hubacek, Klaus; Guan, Dabo; Contestabile, Monica; +2 Authors

    Current economic instruments aimed at climate change mitigation focus mainly on CO(2) emissions, but efficient climate mitigation needs to focus on other greenhouse gases as well as CO(2). This study investigates the distributional effects of climate change taxes on households belonging to different income and lifestyle groups; and it compares the effects of a CO(2) tax with a multiple GHG tax in the UK in terms of cost efficiency and distributional effects. Results show that a multi GHG tax is more efficient than a CO(2) tax due to lower marginal abatement costs, and that both taxes are regressive, with lower income households paying a relatively larger share of their income for the taxes than higher income households. A shift from a CO(2) tax to a GHG tax will reduce and shift the tax burden between consumption categories such as from energy-intensive products to food products. Consumers have different abilities to respond to the tax and change their behavior due to their own socio-economic attributes as well as the physical environment such as the age of the housing stock, location, and the availability of infrastructure. The housing-related carbon emissions are the largest component of the CO(2) tax payments for low income groups and arguments could be made for compensation of income losses and reduction of fuel poverty through further government intervention.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2010 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    93
    citations93
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    While park-people conflicts have received worldwide attention, the extent of illegal resource extraction and the relationship with communities' livelihoods has gained little attention in the literature. Thus this paper investigates the impact of socio-economic factors involved in illegal fuel wood and fodder extraction at Bardia National Park in Nepal. Household questionnaires, key-informant interviews and focus groups were conducted to identify different plant species used by households and explore the causes and mode of resource extraction in three buffer zone villages in the park. Altogether 50 different plants were identified by villagers that were used regularly for different livelihood purposes. Almost half of the respondents met their needs by illegally and regularly extracting resources from the park. Incentive schemes in the form of development projects were important but not sufficient in meeting the basic needs of households' especially for such daily items such as fuel wood and fodder. The results described in this paper showed that proximity and access to resources either in the national park, the buffer zone community forest or the government forest, and impact on the livelihoods significantly influenced the likelihood of illegal resource extraction activities. Villages that differed in terms of their location to the resource base, the provision of alternative resources and influence of these on their livelihoods showed significant differences in terms of their patterns of resource extraction and use of these resources. As resource use options, resource interest, and resource extraction patterns were different between villages and dependent on circumstances specific to villages, site-specific management strategies were necessary and more influential than the enforcement of 'one-size fits all' policies. It is suggested that park management plans should be flexible and adaptive enough to meet site-specific contexts and to endear wider support from local communities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Massimiliano Volpi; René Kemp;

    Abstract This article gives an overview of the literature on clean technology diffusion, followed by suggestions for future analysis. Findings from diffusion analysis are presented in the form of 10 stylised facts, helping the reader to see the forest for the trees. The overall conclusion is that the diffusion of clean technology (same as the diffusion of normal innovations) is governed by endogenous mechanism (epidemic learning and learning economies) and by exogenous mechanisms. Policy is important for clean technology diffusion but other factors are important too: the characteristics of the clean technology, absorptive capacities of potential adopters and the age structure of capital. It is often overlooked that companies have a choice: they can choose between an end-of-pipe solution, a process change (adaptation) and a change of process (substitution). This means that the diffusion and evolution of one clean technology will be at the expense of the diffusion of another clean technology, something overlooked in studies on clean technology diffusion. Further research is needed on the influence of public policy on clean technology choice, expectations (about learning economies and prices), adjustment costs, network externalities and complementary innovations on clean technology adoption choices.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    184
    citations184
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Felicita Di Giandomenico; Silvano Chiaradonna; Giulio Masetti;

    Smart grids provide services at the basis of a number of application sectors, several of which are critical from the perspective of human life, environment or financials. It is therefore paramount to be assisted by technologies able to analyze the smart grid behavior in critical scenarios, e.g. where cyber malfunctions or grid disruptions occur. In this paper, we present a stochastic modelling framework to quantitatively assess representative indicators of the resilience and quality of service of the distribution grid, in presence of accidental faults and malicious attacks. The results from the performed analysis can be exploited to understand the dynamics of failures and to identify potential system vulnerabilities, against which appropriate countermeasures should be developed. The features of the proposed analysis framework are discussed, pointing out the strong non-linearity of the involved physics, the developed solutions to deal with control actions and the definition of indicators under analysis. A case study based on a real-world network is also presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2016
    Data sources: CNR ExploRA
    https://doi.org/10.1109/sege.2...
    Conference object . 2016 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2016
      Data sources: CNR ExploRA
      https://doi.org/10.1109/sege.2...
      Conference object . 2016 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azar MahmoumGonbadi; Andrea Genovese; Antonino Sgalambro;

    Over the last decade, significant attention has been devoted to Closed-Loop Supply Chain (CLSC) design problems. As such, this review aims at assessing whether the current modelling approaches for CLSC problems can support the transition towards a Circular Economy at a supply chain level. The paper comprehensively assesses the extent to which existing modelling approaches evaluate the performance of supply chains across the complete spectrum of sustainability dimensions. Also, the capability of the current approaches of incorporating strategic, tactical, and operational decisions is considered, along with adopted solution methodologies. As a result, a comprehensive analysis was performed on 254 selected articles. This paper emphasises how most of the current literature in the field is affected by a disconnection between supply chain design and the founding principles of Circular Economy. Specifically, the CLSC literature exhibits a reductionist interpretation of the Circular Economy. CLSC studies focusing on all three dimensions of sustainability are relatively rare, and performance measurement approaches appear to be very much focused on monetary issues. While methodological contributions appear adequate to focus on the non-deterministic nature of CLSC design problems, there is paucity of empirically-grounded research. Coherently, a research agenda is proposed, in order to address the mentioned gaps and increase the relevance of this research field to practice.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2021
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    95
    citations95
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility41
    visibilityviews41
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2021
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David Anthoff; Richard S.J. Tol; Richard S.J. Tol; Richard S.J. Tol; +2 Authors

    Recently, in the economics literature, several papers have put forward arguments for using a declining discount rate in social-cost benefit analysis. This paper examines the impact of employing a declining discount rate on the social cost of carbon-the marginal social damage from a ton of emitted carbon. Six declining discounting schemes are implemented in the FUND 2.8 integrated assessment model, including the recent amendments to the Green Book of HM Treasury (Treasury, H.M., 2003. The Greenbook: Appraisal and Evaluation in Central Government. TSO, London). We find that using a declining schedule of discount rates increases the social cost of carbon estimate by as little as 10% or by as much as a factor of 40, depending upon the scenario selected. Although the range of plausible estimates is large, using declining discounting schemes in FUND 2.8 in most cases does not yield values at the £70/tC level suggested by UK DEFRA [Clarkson, R., Deyes, K., 2002. Estimating the social cost of carbon emissions. Government Economic Service Working Paper. HM Treasury, London]. Indeed, only at the higher end of the values of social cost of carbon found here would many climate change related policies - such as the Kyoto Protocol - pass a cost-benefit analysis. This conclusion, however, does not necessarily undermine the ethical and political economic reasons for supporting international collective action on climate change. © 2006 Elsevier Ltd. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Policy
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    92
    citations92
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Policy
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Grubler, Arnulf; Wilson, Charlie; Bento, Nuno; Boza-Kiss, Benigna; +17 Authors

    The database presents the scenario results of an exploratory research, carried out at the International Institute for Applied Systems Analysis (IIASA): the Low Energy Demand (LED) study (Grubler et al. 2018). The LED scenario explored how far transformative changes that combine technological changes, end-use efficiency, and new business models for energy service provision can lead for lowering energy demand, and how these changes could drive deep decarbonisation in the long-term. The scenario development methodology included a bottom-up analysis of how currently existing, though often embryonic, social, institutional, and technological trends could become mainstream with resulting step-changes in efficiency and resulting lowered energy demand. The bottom-up demand estimations were then further explored for their supply side and emissions and climate implications with a top-down modeling framework drawing on the Shared Socioeconomic Pathways (SSP) framework (Riahi et al. 2017). The results show that global final energy demands can be drastically reduced in 2050, to around 245 EJ/yr, or 40% lower than today, whilst significantly expanding human welfare and reducing global development inequalities. According to the knowledge of the authors, LED is the lowest long-term global energy demand scenario ever published. The LED scenario meets the 1.5°C climate target in 2100 without overshoot and keeps the global mean temperature increase below 1.5°C with a probability of more than 60%, without requiring controversial negative emission technologies, such as bioenergy with carbon capture and storage (BECCS), that figure prominently in the emission scenario literature (Rogelj et al. 2015, Anderson and Peters 2016, Creutzig et al. 2016, Smith et al. 2016). Furthermore, the beneficial impacts of the LED scenario on a range of other sustainable development goals are also shown, demonstrating that efficiency of energy services provision plays a critical role in reaching low-energy futures without compromising increased living standards in the Global South, while at the same time reducing adverse social and environmental impacts of climate mitigation strategies that focus predominantly on large-scale supply-side transformations. The research is published in a peer-reviewed article in Nature Energy (Grubler et al. 2018) with ample supplementary information. Water consumption and withdrawal data are published in Parkinson et al. (2018). The data is available for download from the LED Database. The content of the LED database and any derived analysis may only be used for non-commercial scientific publications, articles, educational purposes, figures and data tables provided that the source reference pursuant to section 'Required citation' is included and all relevant publications are correctly cited. Partial reproductions of the database content may be stored in online repositories, if this is necessary to comply with a journal's data archiving and access requirements. Such reproductions must be limited to the scope of the manuscript in question, and must include a hyperlink to the source database hosted at https://db1.ene.iiasa.ac.at/LEDDB and the download date from the source database. However, any wholesale duplication, translation, reworking, processing, arrangement, transformation, or reproduction through the internet or any other channels, of the https://db1.ene.iiasa.ac.at/LEDDEB for commercial or non-commercial purposes is not permitted without the explicit written approval of IIASA.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2018
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2018
    Data sources: Datacite
    ZENODO
    Dataset . 2018
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility27
    visibilityviews27
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2018
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2018
      Data sources: Datacite
      ZENODO
      Dataset . 2018
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Claudia Ringler; Richard S.J. Tol; Katrin Rehdanz; Katrin Rehdanz; +2 Authors

    South Africa is likely to experience higher temperatures and less rainfall as a result of climate change. Resulting changes in regional water endowments and soil moisture will affect the productivity of cropland, leading to changes in food production and international trade patterns. High population growth elsewhere in Africa and Asia will put further pressure on natural resources and food security in South Africa. Based on four climate change scenarios from two general circulation models (CSIRO and MIROC) and two IPCC SRES emission scenarios (A1B, B1), this study assesses the potential impacts of climate change on global agriculture and explores two alternative adaptation scenarios for South Africa. The analysis uses an updated GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. For South Africa to adapt to the adverse consequences of global climate change, it would require yield improvements of more than 20 percent over baseline investments in agricultural research and development. A doubling of irrigation development, on the other hand, will not be sufficient to reverse adverse impacts from climate change in the country.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Resources and ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Resources and Economics
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    93
    citations93
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Resources and ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Resources and Economics
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
51 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Agatino Nicita; Antonio P. F. Andaloro; Fabio Mostaccio; Erika D'Aleo; +1 Authors

    In the recent years, some experimental forms of housing (cohousing and social housing) have developed in Italy, which also take on the features of real energy communities. These initiatives have been planned and implemented thanks to the active participation and investments of the people involved in the project. Their primary aim is to implement new form of shared housing, but by adopting renewable generation systems and sharing both energy production and consumption, they are contributing to foster the energy transition process. In this research, we studied the management of the energy resource and the social interactions among the cohousers. Moreover, we analysed the social impacts on the surrounding territory in order to know as they can widespread the clean energy technologies and social innovation processes. To do this, we compared two experiences of collaborative housing: the first one, active since some years in Northern Italy, is a bottom-up initiative set up by the voluntary action of some families and individuals. Its goal is to share common spaces and activities, but also to produce and use renewable energy with a view to economic and environmental sustainability. The second one is a social cohousing, established in Messina (Southern Italy) and implemented by the Fondazione di Comunità di Messina. The project involves people who live in socio-economic difficulties. Through the ESCO Solidarity & Energy, the Fondazione has designed and applied energy systems to allow the tenants to become prosumers and prosumagers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2021
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2021
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hongguang Nie; Hongguang Nie; René Kemp; Jin-Hua Xu; +2 Authors

    Abstract In this study, we investigate the driving forces behind the changes in residential energy consumption (REC) in China’s urban and rural areas over the 2001–2012 period. Based on the logarithmic mean Divisia index method, the REC changes are decomposed into seven driving forces, which are climate change, energy price, energy expenditure mix, energy cost share (in total expenditure), expenditure share (in income), per capita income and population effects. According to the results, climate effect due to increasing days with abnormal temperature, energy cost share effect characterized by more expenditure to be paid for energy use, income effect describing constant income growth in the residential sector definitely increase REC in both urban and rural areas. In contrast, energy prices and energy expenditure mix effects negatively contribute to the REC increase, respectively because of the increase in energy prices and the transition from the low-priced energy to high-priced energy. Expenditure share and population effects play opposite roles in urban and rural areas, and the reasons and implications are analysed in depth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    70
    citations70
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Feng, Kuishuang; Hubacek, Klaus; Guan, Dabo; Contestabile, Monica; +2 Authors

    Current economic instruments aimed at climate change mitigation focus mainly on CO(2) emissions, but efficient climate mitigation needs to focus on other greenhouse gases as well as CO(2). This study investigates the distributional effects of climate change taxes on households belonging to different income and lifestyle groups; and it compares the effects of a CO(2) tax with a multiple GHG tax in the UK in terms of cost efficiency and distributional effects. Results show that a multi GHG tax is more efficient than a CO(2) tax due to lower marginal abatement costs, and that both taxes are regressive, with lower income households paying a relatively larger share of their income for the taxes than higher income households. A shift from a CO(2) tax to a GHG tax will reduce and shift the tax burden between consumption categories such as from energy-intensive products to food products. Consumers have different abilities to respond to the tax and change their behavior due to their own socio-economic attributes as well as the physical environment such as the age of the housing stock, location, and the availability of infrastructure. The housing-related carbon emissions are the largest component of the CO(2) tax payments for low income groups and arguments could be made for compensation of income losses and reduction of fuel poverty through further government intervention.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2010 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    93
    citations93
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    While park-people conflicts have received worldwide attention, the extent of illegal resource extraction and the relationship with communities' livelihoods has gained little attention in the literature. Thus this paper investigates the impact of socio-economic factors involved in illegal fuel wood and fodder extraction at Bardia National Park in Nepal. Household questionnaires, key-informant interviews and focus groups were conducted to identify different plant species used by households and explore the causes and mode of resource extraction in three buffer zone villages in the park. Altogether 50 different plants were identified by villagers that were used regularly for different livelihood purposes. Almost half of the respondents met their needs by illegally and regularly extracting resources from the park. Incentive schemes in the form of development projects were important but not sufficient in meeting the basic needs of households' especially for such daily items such as fuel wood and fodder. The results described in this paper showed that proximity and access to resources either in the national park, the buffer zone community forest or the government forest, and impact on the livelihoods significantly influenced the likelihood of illegal resource extraction activities. Villages that differed in terms of their location to the resource base, the provision of alternative resources and influence of these on their livelihoods showed significant differences in terms of their patterns of resource extraction and use of these resources. As resource use options, resource interest, and resource extraction patterns were different between villages and dependent on circumstances specific to villages, site-specific management strategies were necessary and more influential than the enforcement of 'one-size fits all' policies. It is suggested that park management plans should be flexible and adaptive enough to meet site-specific contexts and to endear wider support from local communities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Massimiliano Volpi; René Kemp;

    Abstract This article gives an overview of the literature on clean technology diffusion, followed by suggestions for future analysis. Findings from diffusion analysis are presented in the form of 10 stylised facts, helping the reader to see the forest for the trees. The overall conclusion is that the diffusion of clean technology (same as the diffusion of normal innovations) is governed by endogenous mechanism (epidemic learning and learning economies) and by exogenous mechanisms. Policy is important for clean technology diffusion but other factors are important too: the characteristics of the clean technology, absorptive capacities of potential adopters and the age structure of capital. It is often overlooked that companies have a choice: they can choose between an end-of-pipe solution, a process change (adaptation) and a change of process (substitution). This means that the diffusion and evolution of one clean technology will be at the expense of the diffusion of another clean technology, something overlooked in studies on clean technology diffusion. Further research is needed on the influence of public policy on clean technology choice, expectations (about learning economies and prices), adjustment costs, network externalities and complementary innovations on clean technology adoption choices.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    184
    citations184
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Felicita Di Giandomenico; Silvano Chiaradonna; Giulio Masetti;

    Smart grids provide services at the basis of a number of application sectors, several of which are critical from the perspective of human life, environment or financials. It is therefore paramount to be assisted by technologies able to analyze the smart grid behavior in critical scenarios, e.g. where cyber malfunctions or grid disruptions occur. In this paper, we present a stochastic modelling framework to quantitatively assess representative indicators of the resilience and quality of service of the distribution grid, in presence of accidental faults and malicious attacks. The results from the performed analysis can be exploited to understand the dynamics of failures and to identify potential system vulnerabilities, against which appropriate countermeasures should be developed. The features of the proposed analysis framework are discussed, pointing out the strong non-linearity of the involved physics, the developed solutions to deal with control actions and the definition of indicators under analysis. A case study based on a real-world network is also presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2016
    Data sources: CNR ExploRA
    https://doi.org/10.1109/sege.2...
    Conference object . 2016 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2016
      Data sources: CNR ExploRA
      https://doi.org/10.1109/sege.2...
      Conference object . 2016 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azar MahmoumGonbadi; Andrea Genovese; Antonino Sgalambro;

    Over the last decade, significant attention has been devoted to Closed-Loop Supply Chain (CLSC) design problems. As such, this review aims at assessing whether the current modelling approaches for CLSC problems can support the transition towards a Circular Economy at a supply chain level. The paper comprehensively assesses the extent to which existing modelling approaches evaluate the performance of supply chains across the complete spectrum of sustainability dimensions. Also, the capability of the current approaches of incorporating strategic, tactical, and operational decisions is considered, along with adopted solution methodologies. As a result, a comprehensive analysis was performed on 254 selected articles. This paper emphasises how most of the current literature in the field is affected by a disconnection between supply chain design and the founding principles of Circular Economy. Specifically, the CLSC literature exhibits a reductionist interpretation of the Circular Economy. CLSC studies focusing on all three dimensions of sustainability are relatively rare, and performance measurement approaches appear to be very much focused on monetary issues. While methodological contributions appear adequate to focus on the non-deterministic nature of CLSC design problems, there is paucity of empirically-grounded research. Coherently, a research agenda is proposed, in order to address the mentioned gaps and increase the relevance of this research field to practice.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2021
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    95
    citations95
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility41
    visibilityviews41
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2021
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David Anthoff; Richard S.J. Tol; Richard S.J. Tol; Richard S.J. Tol; +2 Authors

    Recently, in the economics literature, several papers have put forward arguments for using a declining discount rate in social-cost benefit analysis. This paper examines the impact of employing a declining discount rate on the social cost of carbon-the marginal social damage from a ton of emitted carbon. Six declining discounting schemes are implemented in the FUND 2.8 integrated assessment model, including the recent amendments to the Green Book of HM Treasury (Treasury, H.M., 2003. The Greenbook: Appraisal and Evaluation in Central Government. TSO, London). We find that using a declining schedule of discount rates increases the social cost of carbon estimate by as little as 10% or by as much as a factor of 40, depending upon the scenario selected. Although the range of plausible estimates is large, using declining discounting schemes in FUND 2.8 in most cases does not yield values at the £70/tC level suggested by UK DEFRA [Clarkson, R., Deyes, K., 2002. Estimating the social cost of carbon emissions. Government Economic Service Working Paper. HM Treasury, London]. Indeed, only at the higher end of the values of social cost of carbon found here would many climate change related policies - such as the Kyoto Protocol - pass a cost-benefit analysis. This conclusion, however, does not necessarily undermine the ethical and political economic reasons for supporting international collective action on climate change. © 2006 Elsevier Ltd. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Policy
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    92
    citations92
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science & Policy
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Grubler, Arnulf; Wilson, Charlie; Bento, Nuno; Boza-Kiss, Benigna; +17 Authors

    The database presents the scenario results of an exploratory research, carried out at the International Institute for Applied Systems Analysis (IIASA): the Low Energy Demand (LED) study (Grubler et al. 2018). The LED scenario explored how far transformative changes that combine technological changes, end-use efficiency, and new business models for energy service provision can lead for lowering energy demand, and how these changes could drive deep decarbonisation in the long-term. The scenario development methodology included a bottom-up analysis of how currently existing, though often embryonic, social, institutional, and technological trends could become mainstream with resulting step-changes in efficiency and resulting lowered energy demand. The bottom-up demand estimations were then further explored for their supply side and emissions and climate implications with a top-down modeling framework drawing on the Shared Socioeconomic Pathways (SSP) framework (Riahi et al. 2017). The results show that global final energy demands can be drastically reduced in 2050, to around 245 EJ/yr, or 40% lower than today, whilst significantly expanding human welfare and reducing global development inequalities. According to the knowledge of the authors, LED is the lowest long-term global energy demand scenario ever published. The LED scenario meets the 1.5°C climate target in 2100 without overshoot and keeps the global mean temperature increase below 1.5°C with a probability of more than 60%, without requiring controversial negative emission technologies, such as bioenergy with carbon capture and storage (BECCS), that figure prominently in the emission scenario literature (Rogelj et al. 2015, Anderson and Peters 2016, Creutzig et al. 2016, Smith et al. 2016). Furthermore, the beneficial impacts of the LED scenario on a range of other sustainable development goals are also shown, demonstrating that efficiency of energy services provision plays a critical role in reaching low-energy futures without compromising increased living standards in the Global South, while at the same time reducing adverse social and environmental impacts of climate mitigation strategies that focus predominantly on large-scale supply-side transformations. The research is published in a peer-reviewed article in Nature Energy (Grubler et al. 2018) with ample supplementary information. Water consumption and withdrawal data are published in Parkinson et al. (2018). The data is available for download from the LED Database. The content of the LED database and any derived analysis may only be used for non-commercial scientific publications, articles, educational purposes, figures and data tables provided that the source reference pursuant to section 'Required citation' is included and all relevant publications are correctly cited. Partial reproductions of the database content may be stored in online repositories, if this is necessary to comply with a journal's data archiving and access requirements. Such reproductions must be limited to the scope of the manuscript in question, and must include a hyperlink to the source database hosted at https://db1.ene.iiasa.ac.at/LEDDB and the download date from the source database. However, any wholesale duplication, translation, reworking, processing, arrangement, transformation, or reproduction through the internet or any other channels, of the https://db1.ene.iiasa.ac.at/LEDDEB for commercial or non-commercial purposes is not permitted without the explicit written approval of IIASA.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2018
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2018
    Data sources: Datacite
    ZENODO
    Dataset . 2018
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility27
    visibilityviews27
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2018
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2018
      Data sources: Datacite
      ZENODO
      Dataset . 2018
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Claudia Ringler; Richard S.J. Tol; Katrin Rehdanz; Katrin Rehdanz; +2 Authors

    South Africa is likely to experience higher temperatures and less rainfall as a result of climate change. Resulting changes in regional water endowments and soil moisture will affect the productivity of cropland, leading to changes in food production and international trade patterns. High population growth elsewhere in Africa and Asia will put further pressure on natural resources and food security in South Africa. Based on four climate change scenarios from two general circulation models (CSIRO and MIROC) and two IPCC SRES emission scenarios (A1B, B1), this study assesses the potential impacts of climate change on global agriculture and explores two alternative adaptation scenarios for South Africa. The analysis uses an updated GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. For South Africa to adapt to the adverse consequences of global climate change, it would require yield improvements of more than 20 percent over baseline investments in agricultural research and development. A doubling of irrigation development, on the other hand, will not be sufficient to reverse adverse impacts from climate change in the country.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Resources and ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Resources and Economics
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    93
    citations93
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Resources and ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Resources and Economics
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.