- home
- Search
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 1. No poverty
- GB
- IT
- EU
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 1. No poverty
- GB
- IT
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Garwood, Tom Lloyd; Hughes, Ben Richard; O'Connor, Dominic; Calautit, John K; Oates, Michael R; Hodgson, Thomas;The industrial sector accounts for 17% of end-use energy in the UK, and 54% globally. Therefore, there is substantial scope for simulating and assessing potential energy retrofit options for industrial buildings. Building Energy Modelling (BEM) applied to industrial buildings poses a complex but important opportunity for reducing global energy demand, due to years of renovation and expansion. Large and complex industrial buildings make modelling existing geometry for BEM difficult and time consuming. This paper presents a potential solution for quickly capturing and processing as-built geometry of a factory to be utilized in BEM. Laser scans were captured from the interior of an industrial facility to produce a Point Cloud. The existing capabilities of a Point Cloud processing software were assessed to identify the potential development opportunities to automate the conversion of Point Clouds to building geometry for BEM applications. In conclusion, scope exists for increasing the speed of 3D geometry creation of an existing industrial building for application in BEM and subsequent thermal simulation.
CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Sally Shahzad; John Brennan; Dimitris Theodossopoulos; Ben Hughes; John Kaiser Calautit;Abstract Two office layouts with high and low levels of thermal control were compared, respectively traditional cellular and contemporary open plan offices. The traditional Norwegian practice provided every user with control over a window, blinds, door, and the ability to adjust heating and cooling. Occupants were expected to control their thermal environment to find their own comfort, while air conditioning was operating in the background to ensure the indoor air quality. In contrast, in the British open plan office, limited thermal control was provided through openable windows and blinds only for occupants seated around the perimeter of the building. Centrally operated displacement ventilation was the main thermal control system. Users’ perception of thermal environment was recorded through survey questionnaires, empirical building performance through environmental measurements and thermal control through semi-structured interviews. The Norwegian office had 35% higher user satisfaction and 20% higher user comfort compared to the British open plan office. However, the energy consumption in the British practice was within the benchmark and much lower than the Norwegian office. Overall, a balance between thermal comfort and energy efficiency is required, as either extreme poses difficulties for the other.
Applied Energy arrow_drop_down Research at Derby (University of Derby)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Research at Derby (University of Derby)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Project deliverable 2017Publisher:Zenodo Funded by:EC | EoCoEEC| EoCoEAuthors: Deutsch, T.;Optimization of all numerical codes ported in the infrastructure and used for supercapacitors, PV and batteries. The scope of deliverable D3.2 is to report the new advances in the field of materials for energy that comes from the search of new methodologies and models that could be more efficient on the new generation of computer hardware for exascale. In this respect, deliverable D3.2 is a transversal deliverable that report the new advances related to activities described in task T3.2, T3.3 and T3.4. H2020
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Bao H; Ma Z; Roskilly AP;Abstract Ammonia-based chemisorption cycle driven by low grade heat exhibits vast potential for power generation because there exists huge pressure difference between the two salt-adsorbent-filled reactors. However, the intrinsic feature of ammonia as a wet fluid and the difficult match between chemisorption cycle and expansion device impede the development of such a power generation system and also increase the difficulty of practical implementation. To explore maximum benefits of this technology, the present work has proposed and studied a new resorption power generation cycle that applies multiple expansion. The application of multiple expansion integrated with reheating processes aims to overcome the limitation of the ammonia being wet fluid and fully harness the huge pressure difference that chemisorption can offer for power generation, leading to the improvement of energy efficiency. The performance of the proposed multiple expansion resorption power generation cycle using three typical resorption salt pairs, including sodium bromide – manganese chloride, strontium chloride – manganese chloride and sodium bromide – strontium chloride, have been investigated not just based on theoretical thermodynamics but also with the consideration of practical factors to obtain better understanding and more insights for a real system design. The multiple expansion resorption power generation using sodium bromide – manganese chloride and sodium bromide – strontium chloride pairs can achieve 100–600 kJ/kg (ammonia) work output when heat source temperature is from 30 °C to 150 °C; the multiple expansion using strontium chloride – manganese chloride pair has higher average work output per one expansion stage than that using the other two pairs. The cyclic energy efficiency can be achieved as 0.06–0.15 when implementing 2–4 expansions in a more practical scenario where the equilibrium pressure drop is set to 2 bar and the heat source temperature is in the range of 80–150 °C. Such efficiencies are circa 27–62% of Carnot efficiency under the same thermal conditions.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticle . 2017License: CC BYFull-Text: https://eprints.ncl.ac.uk/240312Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticle . 2017License: CC BYFull-Text: https://eprints.ncl.ac.uk/240312Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 ItalyPublisher:MDPI AG Authors: Calise, Francesco; Figaj, Rafal; Vanoli, Laura;doi: 10.3390/en10040491
handle: 11588/692875 , 11367/82269 , 11580/66989
This paper presents a one-dimensional finite-volume model of an unglazed photovoltaic/thermal (PVT) solar collector. The unit consists of a conventional solar photovoltaic (PV) collector coupled with a suitable heat exchanger. In particular, the collector includes a roll bond heat exchanger and it is not equipped with back and frame insulation. The system is discretized along the flow direction (longitudinal) of the cogenerative collector. For each finite-volume element of the discretized computational domain, mass and energy balances are implemented. The collector geometry and materials parameters are taken from a commercially available device. An on-field experimental investigation is performed in order to validate the proposed model. The model is used to evaluate both electrical and thermodynamic parameters for each element of the domain and for fixed operating conditions. Finally, a sensitivity analysis is also performed in order to investigate the energetic performance of the cogenerative collector as a function of the main design/environmental parameters.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/4/491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/4/491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Funded by:NIH | CONFORMATIONAL CHANGES IN..., NSF | Photobiology of Vision & ..., NSF | PFC: Center for the Physi...NIH| CONFORMATIONAL CHANGES INVOLVED IN ELECTRON TRANSFER IN CYTOCHROME BC1 COMPLEXES ,NSF| Photobiology of Vision & Photosynthesis ,NSF| PFC: Center for the Physics of Living CellsArvi Freiberg; Melih Sener; Johan Strümpfer; Klaus Schulten; C. Neil Hunter; John A. Timney;Photosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.
Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Italy, NetherlandsPublisher:MDPI AG Authors: Mohsen H. Farhangi; Margherita E. Turvani; Arnold van der Valk; Gerrit J. Carsjens;doi: 10.3390/su12103955
handle: 11578/282976
The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social–technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:American Chemical Society (ACS) Authors: Ferlin F.; Valentini F.; Marrocchi A.; Vaccaro L.;handle: 11391/1504920
ispartof: ACS SUSTAINABLE CHEMISTRY & ENGINEERING vol:9 issue:29 pages:9604-9624 status: published
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c03247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c03247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECASolomon Assefa Wassie; Michele Colozzi; Fausto Gallucci; Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;A membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2013Publisher:American Society of Mechanical Engineers Authors: Felice Arena; Giovanni Malara;This paper deals with the analytical modelling of an U-Oscillating Water Column (U-OWC). It is shown that this device can be adequately described by a nonlinear equation of motion including hydrodynamic memory effects. The excitation of the system, the added mass and the retardation function are derived by approximating the solution of a pertinent initial boundary value problem via eigen-function expansions of the (linear) velocity potential. Next, the performance of the system is investigated in random waves by relying on Monte Carlo simulations. The excitation of the system is synthesized from a given power spectral density. Then, the nonlinear equation of motion is numerically integrated. Pertinent statistical measures are estimated for assessing the efficiency of the U-OWC in exploiting sea wave energy. In this regard, the parameters show that the device can absorb most part of the incident wave energy. Further, the device can work in safe conditions even in quite rough sea states.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/omae2013-10923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/omae2013-10923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Garwood, Tom Lloyd; Hughes, Ben Richard; O'Connor, Dominic; Calautit, John K; Oates, Michael R; Hodgson, Thomas;The industrial sector accounts for 17% of end-use energy in the UK, and 54% globally. Therefore, there is substantial scope for simulating and assessing potential energy retrofit options for industrial buildings. Building Energy Modelling (BEM) applied to industrial buildings poses a complex but important opportunity for reducing global energy demand, due to years of renovation and expansion. Large and complex industrial buildings make modelling existing geometry for BEM difficult and time consuming. This paper presents a potential solution for quickly capturing and processing as-built geometry of a factory to be utilized in BEM. Laser scans were captured from the interior of an industrial facility to produce a Point Cloud. The existing capabilities of a Point Cloud processing software were assessed to identify the potential development opportunities to automate the conversion of Point Clouds to building geometry for BEM applications. In conclusion, scope exists for increasing the speed of 3D geometry creation of an existing industrial building for application in BEM and subsequent thermal simulation.
CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down StrathprintsArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Sally Shahzad; John Brennan; Dimitris Theodossopoulos; Ben Hughes; John Kaiser Calautit;Abstract Two office layouts with high and low levels of thermal control were compared, respectively traditional cellular and contemporary open plan offices. The traditional Norwegian practice provided every user with control over a window, blinds, door, and the ability to adjust heating and cooling. Occupants were expected to control their thermal environment to find their own comfort, while air conditioning was operating in the background to ensure the indoor air quality. In contrast, in the British open plan office, limited thermal control was provided through openable windows and blinds only for occupants seated around the perimeter of the building. Centrally operated displacement ventilation was the main thermal control system. Users’ perception of thermal environment was recorded through survey questionnaires, empirical building performance through environmental measurements and thermal control through semi-structured interviews. The Norwegian office had 35% higher user satisfaction and 20% higher user comfort compared to the British open plan office. However, the energy consumption in the British practice was within the benchmark and much lower than the Norwegian office. Overall, a balance between thermal comfort and energy efficiency is required, as either extreme poses difficulties for the other.
Applied Energy arrow_drop_down Research at Derby (University of Derby)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Research at Derby (University of Derby)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Project deliverable 2017Publisher:Zenodo Funded by:EC | EoCoEEC| EoCoEAuthors: Deutsch, T.;Optimization of all numerical codes ported in the infrastructure and used for supercapacitors, PV and batteries. The scope of deliverable D3.2 is to report the new advances in the field of materials for energy that comes from the search of new methodologies and models that could be more efficient on the new generation of computer hardware for exascale. In this respect, deliverable D3.2 is a transversal deliverable that report the new advances related to activities described in task T3.2, T3.3 and T3.4. H2020
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Bao H; Ma Z; Roskilly AP;Abstract Ammonia-based chemisorption cycle driven by low grade heat exhibits vast potential for power generation because there exists huge pressure difference between the two salt-adsorbent-filled reactors. However, the intrinsic feature of ammonia as a wet fluid and the difficult match between chemisorption cycle and expansion device impede the development of such a power generation system and also increase the difficulty of practical implementation. To explore maximum benefits of this technology, the present work has proposed and studied a new resorption power generation cycle that applies multiple expansion. The application of multiple expansion integrated with reheating processes aims to overcome the limitation of the ammonia being wet fluid and fully harness the huge pressure difference that chemisorption can offer for power generation, leading to the improvement of energy efficiency. The performance of the proposed multiple expansion resorption power generation cycle using three typical resorption salt pairs, including sodium bromide – manganese chloride, strontium chloride – manganese chloride and sodium bromide – strontium chloride, have been investigated not just based on theoretical thermodynamics but also with the consideration of practical factors to obtain better understanding and more insights for a real system design. The multiple expansion resorption power generation using sodium bromide – manganese chloride and sodium bromide – strontium chloride pairs can achieve 100–600 kJ/kg (ammonia) work output when heat source temperature is from 30 °C to 150 °C; the multiple expansion using strontium chloride – manganese chloride pair has higher average work output per one expansion stage than that using the other two pairs. The cyclic energy efficiency can be achieved as 0.06–0.15 when implementing 2–4 expansions in a more practical scenario where the equilibrium pressure drop is set to 2 bar and the heat source temperature is in the range of 80–150 °C. Such efficiencies are circa 27–62% of Carnot efficiency under the same thermal conditions.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticle . 2017License: CC BYFull-Text: https://eprints.ncl.ac.uk/240312Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticle . 2017License: CC BYFull-Text: https://eprints.ncl.ac.uk/240312Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 ItalyPublisher:MDPI AG Authors: Calise, Francesco; Figaj, Rafal; Vanoli, Laura;doi: 10.3390/en10040491
handle: 11588/692875 , 11367/82269 , 11580/66989
This paper presents a one-dimensional finite-volume model of an unglazed photovoltaic/thermal (PVT) solar collector. The unit consists of a conventional solar photovoltaic (PV) collector coupled with a suitable heat exchanger. In particular, the collector includes a roll bond heat exchanger and it is not equipped with back and frame insulation. The system is discretized along the flow direction (longitudinal) of the cogenerative collector. For each finite-volume element of the discretized computational domain, mass and energy balances are implemented. The collector geometry and materials parameters are taken from a commercially available device. An on-field experimental investigation is performed in order to validate the proposed model. The model is used to evaluate both electrical and thermodynamic parameters for each element of the domain and for fixed operating conditions. Finally, a sensitivity analysis is also performed in order to investigate the energetic performance of the cogenerative collector as a function of the main design/environmental parameters.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/4/491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/4/491/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Funded by:NIH | CONFORMATIONAL CHANGES IN..., NSF | Photobiology of Vision & ..., NSF | PFC: Center for the Physi...NIH| CONFORMATIONAL CHANGES INVOLVED IN ELECTRON TRANSFER IN CYTOCHROME BC1 COMPLEXES ,NSF| Photobiology of Vision & Photosynthesis ,NSF| PFC: Center for the Physics of Living CellsArvi Freiberg; Melih Sener; Johan Strümpfer; Klaus Schulten; C. Neil Hunter; John A. Timney;Photosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.
Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Italy, NetherlandsPublisher:MDPI AG Authors: Mohsen H. Farhangi; Margherita E. Turvani; Arnold van der Valk; Gerrit J. Carsjens;doi: 10.3390/su12103955
handle: 11578/282976
The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social–technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:American Chemical Society (ACS) Authors: Ferlin F.; Valentini F.; Marrocchi A.; Vaccaro L.;handle: 11391/1504920
ispartof: ACS SUSTAINABLE CHEMISTRY & ENGINEERING vol:9 issue:29 pages:9604-9624 status: published
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c03247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c03247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECASolomon Assefa Wassie; Michele Colozzi; Fausto Gallucci; Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;A membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2013Publisher:American Society of Mechanical Engineers Authors: Felice Arena; Giovanni Malara;This paper deals with the analytical modelling of an U-Oscillating Water Column (U-OWC). It is shown that this device can be adequately described by a nonlinear equation of motion including hydrodynamic memory effects. The excitation of the system, the added mass and the retardation function are derived by approximating the solution of a pertinent initial boundary value problem via eigen-function expansions of the (linear) velocity potential. Next, the performance of the system is investigated in random waves by relying on Monte Carlo simulations. The excitation of the system is synthesized from a given power spectral density. Then, the nonlinear equation of motion is numerically integrated. Pertinent statistical measures are estimated for assessing the efficiency of the U-OWC in exploiting sea wave energy. In this regard, the parameters show that the device can absorb most part of the incident wave energy. Further, the device can work in safe conditions even in quite rough sea states.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/omae2013-10923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/omae2013-10923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu