- home
- Search
- Energy Research
- 7. Clean energy
- IN
- AU
- BE
- Renewable Energy
- Energy Research
- 7. Clean energy
- IN
- AU
- BE
- Renewable Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Sanjay Kumar; Vipin Sharma; Nikhil Chander; Manas R. Samantaray;Abstract Gold nanoparticles (Au-NPs) seeded plasmonic nanofluids (PNFs) have shown promising results in overall performance enhancement of direct absorption solar collector (DASC) due to localized surface plasmon resonance (LSPR) effect. For the work presented here, Au-NPs were synthesized by the wet chemical method and were utilized to prepare plasmonic nanofluid. The surface plasmon resonance peak of Au-NPs was observed at 531 nm using UV–Visible spectrophotometer study. The testing for performance enhancement of gold plasmonic nanofluid (GPNF) laden DASC so far is limited to laboratory scale setups or simulation studies. Considering the dearth of outdoor experimental studies, an attempt has been made in the present study to evaluate the thermal performance of Au-NPs (∼40 nm) based nanofluid (∼0.0002 wt%) in full scale DASC. The experiments have been performed at different flow rates under clear sky outdoor conditions in winter season at Jalandhar, India. The maximum collector outlet temperature was measured to be 55 °C with GPNF which is about 7 °C higher than the maximum outlet temperature obtained with de-ionized water as working fluid. Thermal efficiency with GPNF is about 33% higher than de-ionized water at the optimal flow rate of 0.030 kg/s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Arunjyoti Sarkar; Parikshit Kundu; Vishwanath Nagarajan;Abstract Designing a high-performance hydrofoil is a fundamental challenge for the current turbine blade designers. In this paper, the performance of S1210 hydrofoil, commonly used in the tidal current turbine blades, in presence of (i) Vortex Generators (VGs), and (ii) modified trailing edge is numerically studied. The results show that attaching counter-rotating VGs near the trailing edge of the foil can increase the lift coefficient by 17% and delay the stall angle from 10° to 12°. Constructing a rounded and thicker trailing edge can help to improve the hydrodynamic performance by increasing the lift coefficient by 13.5%. The combination of VGs (located near the trailing edge) and rounded trailing edge can increase the glide ratio significantly. These observations have been explained by plotting the pressure coefficients and velocity profiles at different locations on the foil surface. The findings will be useful to manufacture a stronger blade profile and extract more power from the current turbines that operate at wide current speed variation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.04.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.04.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: S. Venkata Mohan; S. Venkata Mohan; P. Chiranjeevi; P. Chiranjeevi;Abstract Enhancing microalgae biomass productivity through different abiotic and environmental factors optimization is crucial. Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was studied to evaluate the specific influence of eight important factors (light, pH, temperature, carbon concentration, nitrates, phosphates, magnesium ion concentration and carbon source) on the biomass production using three levels of factor (2 1 × 3 7 ) variation with experimental matrix [L 18 -18 experimental trails]. All the factors were assigned with three levels except light illumination (2 1 ). Substantial influence on biomass productivity is observed with carbon concentration contributing 16.8%, followed by nitrates 12.8% and light 9.3%. Experimental setup eight (Light, pH-8.5, Temperature 25°C, Carbon concentration 10 g/l, nitrates 1.5 g/l, phosphates 0 g/l, magnesium 150 mg/l, Carbon source (glucose)) showed maximum biomass growth (5.26 g/l) and good substrate degradation (63%, COD removal efficiency) contributing to carbohydrate production (257 mg/g biomass) which is further converted to lipids (20% Total lipid and 10% Neutral lipids). Chlorophyll ( a , b ), carbohydrates composition, FAME analysis for lipid percentage were monitored during process operation. Elemental analysis reveals that the carbon to hydrogen and oxygen ratio present in dried algal biomass can be hydrothermally liquefied (HTL) to produce biocrude.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.03.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.03.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Lalta Prasad; P.M.V. Subbarao; J.P. Subrahmanyam;Abstract Pongamia residue (shells) is the byproduct from the biodiesel processing industry, which is a lignocellulosic biomass material. It is not suitable as feedstock in downdraft wood gasifier due to low bulk density (146 kg/m3) of shells as compared to wood (more than 350 kg/m3). Pelletization and gasification of pelletized shells was carried out in the present work. The heat transfer analysis in pellets of 17 mm and 11.5 mm was also carried out to evaluate thermal properties of this biomass. Shell pellets of 17 mm and 11.5 mm diameter and length in the range of 10–60 mm were gasified in a 20 kWe downdraft wood gasifier. The complete gasification of pellets with 17 mm diameter could not be achieved because of less porosity and presence of larger thermal gradient within the pellets. The gasification efficiency was 73% for 17 mm diameter pellets which is lower than that of 11.5 mm diameter pellets which was 95%. The calorific value of producer gas generated from smaller diameter pellets was higher (4.66 MJ/N m3) as compared to larger diameter pellets (3.98 MJ/N m3). Tar formation during gasification of smaller diameter pellets was low as compared to larger diameter pellets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Authors: Choudhry, A.; Arjomandi, M.; Kelso, R.;handle: 2440/96663
Dynamic stall (DS) on a wind turbine is encountered when the sectional angles of attack of the blade rapidly exceeds the steady-state stall angle of attack due to in-flow turbulence, gusts and yaw-misalignment. The process is considered as a primary source of unsteady loads on wind turbine blades and negatively influences the performance and fatigue life of a turbine. In the present article, the control requirements for DS have been outlined for wind turbines based on an in-depth analysis of the process. Three passive control methodologies have been investigated for dynamic stall control: (1) streamwise vortices generated using vortex generators (VGs), (2) spanwise vortices generated using a novel concept of an elevated wire (EW), and (3) a cavity to act as a reservoir for the reverse flow accumulation. The methods were observed to delay the onset of DS by several degrees as well as reduce the increased lift and drag forces that are associated with the DSV. However, only the VG and the EW were observed to improve the post-stall characteristics of the airfoil.
Renewable Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: G.N. Tiwari; Neha Dimri; Arvind Kumar Tiwari;Abstract In this research, photovoltaic thermal integrated thermoelectric cooler (PVT-TEC) collector has been analyzed, considering three different types of PV modules, namely opaque, semitransparent and Aluminium base. The analysis is based on two models namely, thermal model and artificial neural network (ANN) model. The advantage of ANN model is that it does not require several parameters and complex calculations, unlike thermal model. The performance of opaque PVT-TEC collector [Case 1] has been studied by considering air [Case 1a] and water [Case 1b] as working fluids. The overall electrical efficiency and thermal efficiency of [Case 1b] is greater than [Case 1a] by 1.9–2.8% and 20.8–21.8%, respectively. Also, the impact of base cover material of PV module has been discussed by evaluating and comparing the performances of [Case 1b] opaque PVT-TEC water collector, [Case 2] semitransparent PVT-TEC water collector and [Case 3] Aluminium base PVT-TEC water collector. The results demonstrate that the daily overall electrical energy gain, daily rate of thermal energy gain and daily overall exergy gain is the highest for [Case 3] Aluminium base PVT-TEC water collector. Further, the results calculated from thermal model have been compared with ANN model and a fair agreement has been achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.10.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.10.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Authors: Wenke Fan; Georgios Kokogiannakis; Zhenjun Ma;Abstract A double pass photovoltaic thermal-solar air heater (PVT-SAH) system integrated with heat pipes was developed with the aim of using it for applications that require high-temperature air. A dynamic model was first developed and validated to predict the electrical and thermal performance of the PVT-SAH system with heat pipes and inform an analysis of economic benefits. A life-cycle saving method was employed, and an uncertainty analysis was included to investigate the economic performance of the proposed system in comparison with the performance of a benchmark design. The optimal designs for maximising electrical and thermal efficiencies of the new PVT-SAH system were obtained for several system lengths through a multi-objective design optimisation strategy. The PVT-SAH systems with heat pipes had higher capital construction costs than the benchmark designs but can still offer an annualised life cycle saving that ranged from A$925 to A$4606 and a payback time between 5.7 and 16.8 years. The PVT-SAH system with heat pipes was also found to deliver more efficient cooling effect to the PV panel and improve the temperature uniformity of the PV panel. The temperature variation along the length of the PV panel for the proposed system and for the benchmark design was 9.4 °C and 21 °C respectively. In addition, the maximum thermal efficiency of the PVT-SAH with heat pipes was 69.2% compared to 61.7% for benchmark design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Authors: Wang, Longyan; Tan, Andy; Gu, YuanTong; Yuan, Jianping;For wind farm optimizations with lands belonging to different owners, the traditional penalty method is highly dependent on the type of wind farm land division. The application of the traditional method can be cumbersome if the divisions are complex. To overcome this disadvantage, a new method is proposed in this paper for the first time. Unlike the penalty method which requires the addition of penalizing term when evaluating the fitness function, it is achieved through repairing the infeasible solutions before fitness evaluation. To assess the effectiveness of the proposed method on the optimization of wind farm, the optimizing results of different methods are compared for three different types of wind farm division. Different wind scenarios are also incorporated during optimization which includes (i) constant wind speed and wind direction; (ii) various wind speed and wind direction, and; (iii) the more realisticWeibull distribution. Results show that the performance of the new method varies for different land plots in the tested cases. Nevertheless, it is found that optimum or at least close to optimum results can be obtained with sequential land plot study using the new method for all cases. It is concluded that satisfactory results can be achieved using the proposed method. In addition, it has the advantage of flexibility in managing the wind farm design, which not only frees users to define the penalty parameter but without limitations on the wind farm division.
Renewable Energy arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Elsevier BV Authors: Zhao, Z.; Zuo, J.; Zillante, G.; Wang, X.;handle: 1959.8/75731 , 2440/87676
Abstract Chinese electric power industry has adopted Build–Operate–Transfer (BOT) approach in a number of projects to alleviate the pressure of sole state-owned investment. The Chinese government has taken enormous efforts to create an environment to facilitate the application of BOT approach in electric power projects. Moreover, the growing attention on the sustainability issues puts the traditional major source of electricity – thermal power project under more strict scrutiny. As a result, various renewable energy projects, particularly the wind power projects have involved private sector funds. Both thermal power and wind power projects via BOT approach have met with a varying degree of success. Therefore, it is imperative to understand the factors contributing towards the success of both types of BOT power projects. Using an extensive literature survey, this paper identifies 31 success factors under 5 categories for Chinese BOT electric power projects. This is followed by a questionnaire survey to exam relative significance of these factors. The results reveal the different levels of significance of success factors for BOT thermal power projects versus wind power projects. Finally, survey results were analyzed to explore the underlying construction and distributions among the identified success factors. This study provides a valuable reference for all involved parties that are interested in developing BOT electric power projects in China.
Renewable Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2010 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2010 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Robert A. Taylor; Yashar Shoraka; Gonzalo Diarce; S. Saeed Mostafavi Tehrani;Abstract To avoid full — expensive — computational fluid dynamic (CFD) simulations, latent heat thermal energy storage (LHTES) systems are often modelled by incorporating natural convection Nusselt correlations. This enables fast, coarse optimizations for phase change materials (PCMs) selection and geometrical design. While this approach is very convenient and often works well, it is frequently invoked in an ad-hoc manner — outside of known limits. To broaden the limits of applicability for this approach, this study develops natural convection Nusselt correlations for high temperature shell-and-tube LHTES systems, which are under development for concentrated solar power (CSP) plants. In these systems there is a large gap between PCM melting point and heat transfer fluid, up to 280 °C, which drives melting process. To date, many correlations that have been developed (for low temperature PCMs) in the literature are only suitable for a specific geometry and/or PCM. Therefore, this study also expands on the literature by providing correlations that are appropriate for a wide range of realistic geometric parameters and high temperature PCMs. These new natural convection Nusselt correlations were obtained by comparing the heat transfer rates in conduction only and combined conduction/convection CFD models for several PCMs and geometries in the melting process. In order to correlate the results, various sets of non-dimensional groups were subjected to a multi-variant regression analyses. The results reveal that the best fitting general Nusselt correlation can be characterized by the Rayleigh number, the Biot number, the Stefan number and the ratio of tube radius to length. The final proposed correlation has a similar shape to literature, N u N C = C R a n – however, instead of relying on empirical experimental curve fitting for C and n, this study quantifies C and n for a range of geometries/PCM properties to facilitate early design stage optimizations in the absence of experimental results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.08.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.08.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Sanjay Kumar; Vipin Sharma; Nikhil Chander; Manas R. Samantaray;Abstract Gold nanoparticles (Au-NPs) seeded plasmonic nanofluids (PNFs) have shown promising results in overall performance enhancement of direct absorption solar collector (DASC) due to localized surface plasmon resonance (LSPR) effect. For the work presented here, Au-NPs were synthesized by the wet chemical method and were utilized to prepare plasmonic nanofluid. The surface plasmon resonance peak of Au-NPs was observed at 531 nm using UV–Visible spectrophotometer study. The testing for performance enhancement of gold plasmonic nanofluid (GPNF) laden DASC so far is limited to laboratory scale setups or simulation studies. Considering the dearth of outdoor experimental studies, an attempt has been made in the present study to evaluate the thermal performance of Au-NPs (∼40 nm) based nanofluid (∼0.0002 wt%) in full scale DASC. The experiments have been performed at different flow rates under clear sky outdoor conditions in winter season at Jalandhar, India. The maximum collector outlet temperature was measured to be 55 °C with GPNF which is about 7 °C higher than the maximum outlet temperature obtained with de-ionized water as working fluid. Thermal efficiency with GPNF is about 33% higher than de-ionized water at the optimal flow rate of 0.030 kg/s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Arunjyoti Sarkar; Parikshit Kundu; Vishwanath Nagarajan;Abstract Designing a high-performance hydrofoil is a fundamental challenge for the current turbine blade designers. In this paper, the performance of S1210 hydrofoil, commonly used in the tidal current turbine blades, in presence of (i) Vortex Generators (VGs), and (ii) modified trailing edge is numerically studied. The results show that attaching counter-rotating VGs near the trailing edge of the foil can increase the lift coefficient by 17% and delay the stall angle from 10° to 12°. Constructing a rounded and thicker trailing edge can help to improve the hydrodynamic performance by increasing the lift coefficient by 13.5%. The combination of VGs (located near the trailing edge) and rounded trailing edge can increase the glide ratio significantly. These observations have been explained by plotting the pressure coefficients and velocity profiles at different locations on the foil surface. The findings will be useful to manufacture a stronger blade profile and extract more power from the current turbines that operate at wide current speed variation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.04.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.04.148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: S. Venkata Mohan; S. Venkata Mohan; P. Chiranjeevi; P. Chiranjeevi;Abstract Enhancing microalgae biomass productivity through different abiotic and environmental factors optimization is crucial. Design of experimental (DOE) methodology using Taguchi orthogonal array (OA) was studied to evaluate the specific influence of eight important factors (light, pH, temperature, carbon concentration, nitrates, phosphates, magnesium ion concentration and carbon source) on the biomass production using three levels of factor (2 1 × 3 7 ) variation with experimental matrix [L 18 -18 experimental trails]. All the factors were assigned with three levels except light illumination (2 1 ). Substantial influence on biomass productivity is observed with carbon concentration contributing 16.8%, followed by nitrates 12.8% and light 9.3%. Experimental setup eight (Light, pH-8.5, Temperature 25°C, Carbon concentration 10 g/l, nitrates 1.5 g/l, phosphates 0 g/l, magnesium 150 mg/l, Carbon source (glucose)) showed maximum biomass growth (5.26 g/l) and good substrate degradation (63%, COD removal efficiency) contributing to carbohydrate production (257 mg/g biomass) which is further converted to lipids (20% Total lipid and 10% Neutral lipids). Chlorophyll ( a , b ), carbohydrates composition, FAME analysis for lipid percentage were monitored during process operation. Elemental analysis reveals that the carbon to hydrogen and oxygen ratio present in dried algal biomass can be hydrothermally liquefied (HTL) to produce biocrude.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.03.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.03.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Lalta Prasad; P.M.V. Subbarao; J.P. Subrahmanyam;Abstract Pongamia residue (shells) is the byproduct from the biodiesel processing industry, which is a lignocellulosic biomass material. It is not suitable as feedstock in downdraft wood gasifier due to low bulk density (146 kg/m3) of shells as compared to wood (more than 350 kg/m3). Pelletization and gasification of pelletized shells was carried out in the present work. The heat transfer analysis in pellets of 17 mm and 11.5 mm was also carried out to evaluate thermal properties of this biomass. Shell pellets of 17 mm and 11.5 mm diameter and length in the range of 10–60 mm were gasified in a 20 kWe downdraft wood gasifier. The complete gasification of pellets with 17 mm diameter could not be achieved because of less porosity and presence of larger thermal gradient within the pellets. The gasification efficiency was 73% for 17 mm diameter pellets which is lower than that of 11.5 mm diameter pellets which was 95%. The calorific value of producer gas generated from smaller diameter pellets was higher (4.66 MJ/N m3) as compared to larger diameter pellets (3.98 MJ/N m3). Tar formation during gasification of smaller diameter pellets was low as compared to larger diameter pellets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Authors: Choudhry, A.; Arjomandi, M.; Kelso, R.;handle: 2440/96663
Dynamic stall (DS) on a wind turbine is encountered when the sectional angles of attack of the blade rapidly exceeds the steady-state stall angle of attack due to in-flow turbulence, gusts and yaw-misalignment. The process is considered as a primary source of unsteady loads on wind turbine blades and negatively influences the performance and fatigue life of a turbine. In the present article, the control requirements for DS have been outlined for wind turbines based on an in-depth analysis of the process. Three passive control methodologies have been investigated for dynamic stall control: (1) streamwise vortices generated using vortex generators (VGs), (2) spanwise vortices generated using a novel concept of an elevated wire (EW), and (3) a cavity to act as a reservoir for the reverse flow accumulation. The methods were observed to delay the onset of DS by several degrees as well as reduce the increased lift and drag forces that are associated with the DSV. However, only the VG and the EW were observed to improve the post-stall characteristics of the airfoil.
Renewable Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: G.N. Tiwari; Neha Dimri; Arvind Kumar Tiwari;Abstract In this research, photovoltaic thermal integrated thermoelectric cooler (PVT-TEC) collector has been analyzed, considering three different types of PV modules, namely opaque, semitransparent and Aluminium base. The analysis is based on two models namely, thermal model and artificial neural network (ANN) model. The advantage of ANN model is that it does not require several parameters and complex calculations, unlike thermal model. The performance of opaque PVT-TEC collector [Case 1] has been studied by considering air [Case 1a] and water [Case 1b] as working fluids. The overall electrical efficiency and thermal efficiency of [Case 1b] is greater than [Case 1a] by 1.9–2.8% and 20.8–21.8%, respectively. Also, the impact of base cover material of PV module has been discussed by evaluating and comparing the performances of [Case 1b] opaque PVT-TEC water collector, [Case 2] semitransparent PVT-TEC water collector and [Case 3] Aluminium base PVT-TEC water collector. The results demonstrate that the daily overall electrical energy gain, daily rate of thermal energy gain and daily overall exergy gain is the highest for [Case 3] Aluminium base PVT-TEC water collector. Further, the results calculated from thermal model have been compared with ANN model and a fair agreement has been achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.10.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.10.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Authors: Wenke Fan; Georgios Kokogiannakis; Zhenjun Ma;Abstract A double pass photovoltaic thermal-solar air heater (PVT-SAH) system integrated with heat pipes was developed with the aim of using it for applications that require high-temperature air. A dynamic model was first developed and validated to predict the electrical and thermal performance of the PVT-SAH system with heat pipes and inform an analysis of economic benefits. A life-cycle saving method was employed, and an uncertainty analysis was included to investigate the economic performance of the proposed system in comparison with the performance of a benchmark design. The optimal designs for maximising electrical and thermal efficiencies of the new PVT-SAH system were obtained for several system lengths through a multi-objective design optimisation strategy. The PVT-SAH systems with heat pipes had higher capital construction costs than the benchmark designs but can still offer an annualised life cycle saving that ranged from A$925 to A$4606 and a payback time between 5.7 and 16.8 years. The PVT-SAH system with heat pipes was also found to deliver more efficient cooling effect to the PV panel and improve the temperature uniformity of the PV panel. The temperature variation along the length of the PV panel for the proposed system and for the benchmark design was 9.4 °C and 21 °C respectively. In addition, the maximum thermal efficiency of the PVT-SAH with heat pipes was 69.2% compared to 61.7% for benchmark design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.01.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Authors: Wang, Longyan; Tan, Andy; Gu, YuanTong; Yuan, Jianping;For wind farm optimizations with lands belonging to different owners, the traditional penalty method is highly dependent on the type of wind farm land division. The application of the traditional method can be cumbersome if the divisions are complex. To overcome this disadvantage, a new method is proposed in this paper for the first time. Unlike the penalty method which requires the addition of penalizing term when evaluating the fitness function, it is achieved through repairing the infeasible solutions before fitness evaluation. To assess the effectiveness of the proposed method on the optimization of wind farm, the optimizing results of different methods are compared for three different types of wind farm division. Different wind scenarios are also incorporated during optimization which includes (i) constant wind speed and wind direction; (ii) various wind speed and wind direction, and; (iii) the more realisticWeibull distribution. Results show that the performance of the new method varies for different land plots in the tested cases. Nevertheless, it is found that optimum or at least close to optimum results can be obtained with sequential land plot study using the new method for all cases. It is concluded that satisfactory results can be achieved using the proposed method. In addition, it has the advantage of flexibility in managing the wind farm design, which not only frees users to define the penalty parameter but without limitations on the wind farm division.
Renewable Energy arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 AustraliaPublisher:Elsevier BV Authors: Zhao, Z.; Zuo, J.; Zillante, G.; Wang, X.;handle: 1959.8/75731 , 2440/87676
Abstract Chinese electric power industry has adopted Build–Operate–Transfer (BOT) approach in a number of projects to alleviate the pressure of sole state-owned investment. The Chinese government has taken enormous efforts to create an environment to facilitate the application of BOT approach in electric power projects. Moreover, the growing attention on the sustainability issues puts the traditional major source of electricity – thermal power project under more strict scrutiny. As a result, various renewable energy projects, particularly the wind power projects have involved private sector funds. Both thermal power and wind power projects via BOT approach have met with a varying degree of success. Therefore, it is imperative to understand the factors contributing towards the success of both types of BOT power projects. Using an extensive literature survey, this paper identifies 31 success factors under 5 categories for Chinese BOT electric power projects. This is followed by a questionnaire survey to exam relative significance of these factors. The results reveal the different levels of significance of success factors for BOT thermal power projects versus wind power projects. Finally, survey results were analyzed to explore the underlying construction and distributions among the identified success factors. This study provides a valuable reference for all involved parties that are interested in developing BOT electric power projects in China.
Renewable Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2010 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down UniSA Research Outputs RepositoryArticle . 2010 . Peer-reviewedData sources: UniSA Research Outputs RepositoryThe University of Adelaide: Digital LibraryArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Robert A. Taylor; Yashar Shoraka; Gonzalo Diarce; S. Saeed Mostafavi Tehrani;Abstract To avoid full — expensive — computational fluid dynamic (CFD) simulations, latent heat thermal energy storage (LHTES) systems are often modelled by incorporating natural convection Nusselt correlations. This enables fast, coarse optimizations for phase change materials (PCMs) selection and geometrical design. While this approach is very convenient and often works well, it is frequently invoked in an ad-hoc manner — outside of known limits. To broaden the limits of applicability for this approach, this study develops natural convection Nusselt correlations for high temperature shell-and-tube LHTES systems, which are under development for concentrated solar power (CSP) plants. In these systems there is a large gap between PCM melting point and heat transfer fluid, up to 280 °C, which drives melting process. To date, many correlations that have been developed (for low temperature PCMs) in the literature are only suitable for a specific geometry and/or PCM. Therefore, this study also expands on the literature by providing correlations that are appropriate for a wide range of realistic geometric parameters and high temperature PCMs. These new natural convection Nusselt correlations were obtained by comparing the heat transfer rates in conduction only and combined conduction/convection CFD models for several PCMs and geometries in the melting process. In order to correlate the results, various sets of non-dimensional groups were subjected to a multi-variant regression analyses. The results reveal that the best fitting general Nusselt correlation can be characterized by the Rayleigh number, the Biot number, the Stefan number and the ratio of tube radius to length. The final proposed correlation has a similar shape to literature, N u N C = C R a n – however, instead of relying on empirical experimental curve fitting for C and n, this study quantifies C and n for a range of geometries/PCM properties to facilitate early design stage optimizations in the absence of experimental results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.08.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.08.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu