- home
- Search
- Energy Research
- 7. Clean energy
- 1. No poverty
- 4. Education
- CH
- IN
- English
- Energy Research
- 7. Clean energy
- 1. No poverty
- 4. Education
- CH
- IN
- English
description Publicationkeyboard_double_arrow_right External research report 2014 IrelandPublisher:Dublin City University Authors: University, Dublin City; Smartbay;The SmartBay NIAP fund was made available in 2012 through Dublin City University over a two year period to enable researchers to access the SmartBay Ireland National Test and Demonstration Facility in Galway Bay. Research proposals were invited for funding under a number of activity types that are in line with the objectives of the SmartBay PRTLI Cycle 5 programme. This fund provided small awards (typically €2-25K) to research teams through a national competitive process, which was open to all higher education institutions on the island of Ireland. There were both open and biannual calls. The SmartBay NIAP fund was established to enable researchers in academia and industry to access the SmartBay Ireland national test and demonstration infrastructure. Proposals to access the infrastructure were brief and required information on the researcher(s), a description of the proposed research and its potential impact to the research team arising from the access to SmartBay Ireland. Marine Institute
Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::9e47932c70cc095360eb6a0b31bfc309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::9e47932c70cc095360eb6a0b31bfc309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right External research report 2014 IrelandPublisher:Dublin City University Authors: University, Dublin City; Smartbay;The SmartBay NIAP fund was made available in 2012 through Dublin City University over a two year period to enable researchers to access the SmartBay Ireland National Test and Demonstration Facility in Galway Bay. Research proposals were invited for funding under a number of activity types that are in line with the objectives of the SmartBay PRTLI Cycle 5 programme. This fund provided small awards (typically €2-25K) to research teams through a national competitive process, which was open to all higher education institutions on the island of Ireland. There were both open and biannual calls. The SmartBay NIAP fund was established to enable researchers in academia and industry to access the SmartBay Ireland national test and demonstration infrastructure. Proposals to access the infrastructure were brief and required information on the researcher(s), a description of the proposed research and its potential impact to the research team arising from the access to SmartBay Ireland. Marine Institute
Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::9e47932c70cc095360eb6a0b31bfc309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::9e47932c70cc095360eb6a0b31bfc309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2008Publisher:WIP-Munich Authors: Baumgartner, F.P.; Büchel, A.; Bartholet, R.;Solar tracking systems increase the electricity production by about 30% relative to fixed installations. A robust design of the mechanical system requiring less material than 100kg steel per kW nominal PV module power is essential to further improve the economics of PV tracker plants. The Solar Wings approach reaches this goal by using steel cables as a mounting system for the PV modules and benefits by the long-time experience of project partner BMF using steel cables in transportation systems such as ski-lift, funicular, aerial passenger lines. Tests with the first Solar Wings prototype in Switzerland passed successfully. The first 600 kW PV plant powered by the one axis Solar Wings tracking system will put into operation in December 2008 in Southern Germany. To maximize reliability and reduce maintenance costs only one electrical three-phase asynchronous motor is used to track 100kW PV modules. A two-axis tracking Solar Wings system will be available next year. Further development targets are low optical concentration by the use of planar mirrors mounted on a parallel axis to the PV module axis. PV modules and mirrors track individually and thus an increase of the electricity production of higher than 60% relative to fixed mounted installation is expected. First results of the measured increase of performance by individual tracking of the planar mirrors and the PV modules, performed on a small scale dish model, are reported. 23rd European Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain; 2790-2794
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/23rdeupvsec2008-4do.9.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/23rdeupvsec2008-4do.9.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2008Publisher:WIP-Munich Authors: Baumgartner, F.P.; Büchel, A.; Bartholet, R.;Solar tracking systems increase the electricity production by about 30% relative to fixed installations. A robust design of the mechanical system requiring less material than 100kg steel per kW nominal PV module power is essential to further improve the economics of PV tracker plants. The Solar Wings approach reaches this goal by using steel cables as a mounting system for the PV modules and benefits by the long-time experience of project partner BMF using steel cables in transportation systems such as ski-lift, funicular, aerial passenger lines. Tests with the first Solar Wings prototype in Switzerland passed successfully. The first 600 kW PV plant powered by the one axis Solar Wings tracking system will put into operation in December 2008 in Southern Germany. To maximize reliability and reduce maintenance costs only one electrical three-phase asynchronous motor is used to track 100kW PV modules. A two-axis tracking Solar Wings system will be available next year. Further development targets are low optical concentration by the use of planar mirrors mounted on a parallel axis to the PV module axis. PV modules and mirrors track individually and thus an increase of the electricity production of higher than 60% relative to fixed mounted installation is expected. First results of the measured increase of performance by individual tracking of the planar mirrors and the PV modules, performed on a small scale dish model, are reported. 23rd European Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain; 2790-2794
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/23rdeupvsec2008-4do.9.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/23rdeupvsec2008-4do.9.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2009 SpainPublisher:WIP-Munich Pozo Vázquez, David; Remund, Jan; Müller, Stefan C.; Traunmüller, Wolfgang; Steinmaurer, Gerald; Pozo Vázquez, D.; Ruiz Arias, Jose Antonio; Lara Fanego, Vicente; Ramírez, Lourdes; Gastón, Martín; Kurz, Christian; Martin Pomares, Luis; Geijo, Carlos;Power generation from photovoltaic systems is highly variable due to its dependence on meteorological conditions. An efficient use of this fluctuating energy source requires reliable forecast information for management and operation strategies. Due to the strong increase of solar power generation the prediction of solar yields becomes more and more important. As a consequence, in the last years various research organisations and companies have developed different methods to forecast irradiance as a basis for respective power forecasts. For the end-users of these forecasts it is important that standardized methodology is used when presenting results on the accuracy of a prediction model in order to get a clear idea on the advantages of a specific approach. In this paper we introduce a benchmarking procedure to asses the accuracy of irradiance forecasts and compare different approaches of forecasting. The evaluation shows a strong dependence of the forecast accuracy on the climatic conditions. For Central European stations the relative rmse ranges from 40 % to 60 %, for Spanish stations relative rmse values are in the range of 20 % to 35 %. 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany; 4199-4208
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 96 citations 96 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 42 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2009 SpainPublisher:WIP-Munich Pozo Vázquez, David; Remund, Jan; Müller, Stefan C.; Traunmüller, Wolfgang; Steinmaurer, Gerald; Pozo Vázquez, D.; Ruiz Arias, Jose Antonio; Lara Fanego, Vicente; Ramírez, Lourdes; Gastón, Martín; Kurz, Christian; Martin Pomares, Luis; Geijo, Carlos;Power generation from photovoltaic systems is highly variable due to its dependence on meteorological conditions. An efficient use of this fluctuating energy source requires reliable forecast information for management and operation strategies. Due to the strong increase of solar power generation the prediction of solar yields becomes more and more important. As a consequence, in the last years various research organisations and companies have developed different methods to forecast irradiance as a basis for respective power forecasts. For the end-users of these forecasts it is important that standardized methodology is used when presenting results on the accuracy of a prediction model in order to get a clear idea on the advantages of a specific approach. In this paper we introduce a benchmarking procedure to asses the accuracy of irradiance forecasts and compare different approaches of forecasting. The evaluation shows a strong dependence of the forecast accuracy on the climatic conditions. For Central European stations the relative rmse ranges from 40 % to 60 %, for Spanish stations relative rmse values are in the range of 20 % to 35 %. 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany; 4199-4208
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 96 citations 96 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 42 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2012Embargo end date: 05 Dec 2012 SwitzerlandPublisher:Lausanne, EPFL Authors: Dubuis, Matthias;The current context leads energy system design to very demanding objectives, due to their variety. Indeed, despite an increasing energy demand, environment indicators are becoming always more important. So that for a given service, emission (and then associated consumption as well) is desired to decrease. Improving systems efficiencies is then a important step. Such a problem is formulated as an optimization. It is based on numerical models. Every models differs by definition from reality. This difference can be translated into uncertainties. Usually, they are considered at their most probable value. However, their variation can lead to consequences between a performance decrease and plant inoperability. It is then critical to take into account the deviation due to uncertainties when optimizing an energy system. The optimization problem will be described. It will introduce the description of functions and variables involved in energy system design. The formulation of the optimization under uncertainty will be developed, as well as mathematical methods for uncertainty propagation. Finally, an innovative method taking advantage of the high number of iterations due to the chosen solver will be described. In this study, pinch analysis has been applied. Its limits related to uncertainties treatment will be presented. Methods described here will be applied to an hybrid system of a fuel cell coupled with gas turbines. Results will be compared to a conventional optimization solutions. It will demonstrate that, despite sub-optimal objectives, the sensitivity of the system to uncertainties has been improved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-5559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-5559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2012Embargo end date: 05 Dec 2012 SwitzerlandPublisher:Lausanne, EPFL Authors: Dubuis, Matthias;The current context leads energy system design to very demanding objectives, due to their variety. Indeed, despite an increasing energy demand, environment indicators are becoming always more important. So that for a given service, emission (and then associated consumption as well) is desired to decrease. Improving systems efficiencies is then a important step. Such a problem is formulated as an optimization. It is based on numerical models. Every models differs by definition from reality. This difference can be translated into uncertainties. Usually, they are considered at their most probable value. However, their variation can lead to consequences between a performance decrease and plant inoperability. It is then critical to take into account the deviation due to uncertainties when optimizing an energy system. The optimization problem will be described. It will introduce the description of functions and variables involved in energy system design. The formulation of the optimization under uncertainty will be developed, as well as mathematical methods for uncertainty propagation. Finally, an innovative method taking advantage of the high number of iterations due to the chosen solver will be described. In this study, pinch analysis has been applied. Its limits related to uncertainties treatment will be presented. Methods described here will be applied to an hybrid system of a fuel cell coupled with gas turbines. Results will be compared to a conventional optimization solutions. It will demonstrate that, despite sub-optimal objectives, the sensitivity of the system to uncertainties has been improved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-5559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-5559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:University of Oradea Authors: AMMAR MAHJOUBI;In this paper, we have studied the solar radiation data available at two meteorological stations located in the south of Tunisia. Measurements of global solar radiation on horizontal surface are compared to predictions made by different methods. The first method is based on Angström-Prescott formula which correlates relative global solar radiation H/H0 to corresponding relative duration of bright sunshine SS/SS0. The second method, a model due to Mechlouch et al., uses cloud cover N, the hours of the day t and the quantum of the year q. The third method, an empirical relation due to Sivkov, uses the monthly sunshine duration nm and the noon altitude of the sun h. The models are compared and tested on the basis of statistical error tests (MBE, RMSE, MPE and R2) and the results are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d8a13f60c1aa070a5f212740572db7ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d8a13f60c1aa070a5f212740572db7ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:University of Oradea Authors: AMMAR MAHJOUBI;In this paper, we have studied the solar radiation data available at two meteorological stations located in the south of Tunisia. Measurements of global solar radiation on horizontal surface are compared to predictions made by different methods. The first method is based on Angström-Prescott formula which correlates relative global solar radiation H/H0 to corresponding relative duration of bright sunshine SS/SS0. The second method, a model due to Mechlouch et al., uses cloud cover N, the hours of the day t and the quantum of the year q. The third method, an empirical relation due to Sivkov, uses the monthly sunshine duration nm and the noon altitude of the sun h. The models are compared and tested on the basis of statistical error tests (MBE, RMSE, MPE and R2) and the results are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d8a13f60c1aa070a5f212740572db7ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d8a13f60c1aa070a5f212740572db7ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2019Embargo end date: 01 Jan 2019 SwitzerlandPublisher:ETH Zurich Authors: Feurer, Thomas;Photovoltaic (PV) energy generation has become one of the key pillars of the shift to a renewable energy future. Current devices, under favorable conditions, can already undercut the price per kWh electricity of other technologies on the market. Further reduction in the cost of installed PV systems and increase in solar module conversion efficiency will improve the affordability even more and will substantially aid in wider market penetration and enhance the volume of PV installations. Currently the PV market is dominated by silicon wafer based solar cells, but alternative technologies offer some distinctive advantages, making them interesting for numerous applications. Thin film technologies, as for example based on Cu(In,Ga)Se2 (CIGS) compound semiconductors with high optical absorption coefficient, are becoming important due to lower material and energy requirements for processing of high conversion efficiency solar cells. Inherent advantages are large area depositions with low production costs, and the possibilities for construction of lightweight, flexible devices with roll-to-roll manufacturing processes. The highest efficiency of single-junction CIGS solar cells is approaching the thermodynamic limit, making the use of alternative concepts such as concentration or multijunction (tandem-) devices the next logical step for further increase in efficiency beyond the Shockley-Queisser limit (S-Q limit). Especially the multi-junction technology, in which the thermodynamic losses are reduced by stacking of solar cells with different band gaps, decreasing thermalization of charge carriers excited with energies above the band gap, is a promising approach for enhanced utilization of the solar spectrum, yielding improved efficiency. Such devices, based on epitaxial layers of III-V compounds have already demonstrated remarkably high efficiencies beyond the S-Q limit. However, these devices grown on rather expensive single crystal wafers and with small size are prohibitively pricey for low cost terrestrial solar electricity generation. On the other hand, multi-junction solar cell technology based on polycrystalline thin films is an attractive option for large area, low cost production, provided adequately high efficiencies are achieved. In this context, two-junction tandem devices, developed by stacking a semitransparent large band gap solar cell of 1.6-1.7 eV on top of a low band gap (~1.0 eV) bottom cell, is a viable option. Earlier attempts in this direction were not so successful, but with the rise of perovskite thin film solar cells as a compatible high efficiency wide band gap (>1.6 eV) top cell and CIGS with a tunable band gap as bottom cell, the prospect for all thin film tandem devices with efficiencies beyond the single-junction limitations has opened. Such all thin film devices hold the potential for the low cost production necessary for large scale terrestrial application. This thesis focuses on the development of high efficiency narrow bandgap (1.0 eV) CIGS solar cells for application in all thin film tandem devices. While for CIGS with band gap of around 1.15 eV efficiencies of over 23 % have been demonstrated, cells with a narrow band gap close to 1.0 eV only reach 15.0 %. The efficiency of these narrow band gap cells are limited by charge carrier recombination, leading to low open circuit voltage (VOC) and reduced fill factor. For solar cell efficiency enhancement it is necessary to investigate the underlying reasons contributing to the deficits in PV parameters and develop processes to overcome the limiting factors. An option to reduce recombination within the solar cell is the implementation of a band gap grading as discussed in Chapter 3. The increase of the band gap at the location of highest recombination leads to a reduction in diode current, and therefore an increase in VOC. To keep the band gap of 1.0 eV a substantial part of the absorber needs to be Ga free. As the primary source of recombination is not obvious, different gradings (realized by a change in the Ga to In ratio) are implemented and compared. A single grading with increased band gap (higher Ga/In ratio) towards the front of the absorber shows no significant improvement on photovoltaic parameters. Any gain in VOC is offset by losses in current due to reduced charge collection, mainly visible for long wavelength photons and probably a result of the upwards bending in the conduction band. A single backgrading (higher Ga/In ratio towards the back electric contact) on the other hand leads to substantial improvements in performance ( from 12.0 % to 16.1 %). It is shown that the collection of photo-generated charge carriers improves and recombination is reduced. Measurements of the effective lifetime by time resolved photo-luminescence are carried out, showing an increase from approximately 20 ns to 100 ns when comparing ungraded with back-graded absorbers. By selectively changing the recombination speed at the back contact, strong differences in the behavior of cells with and without a band gap widening towards the back are observed. The results support that considerable recombination at the back contact is present in pure CIS solar cells, and that the single Ga back-grading approach is effective at suppressing this loss channel. In Chapter 4 the alkali treatment of CIS based solar cells is investigated. Alkali elements are known to strongly influence doping and passivation in CIGS solar cells. It is shown that the amount of sodium necessary to reach sufficient doping levels for high performance CIS solar cells is not achieved using the processes developed for CIGS. This may be based on insufficient Na diffusion into the grain, as those cells generally show larger grains than their CIGS counter parts, and since alkali migration energies in CIS are reported to be higher compared to those in CGS. If CIS cells are grown on soda lime glass without any diffusion barrier and additionally receive post deposition treatment (PDT) with NaF they still show low apparent doping concentration and poor PV performance ( = 10.9 %). However, additional annealing at ~ 370 C substrate temperature after PDT is shown to solve this problem, leading to an increase in apparent doping levels close to 1016 cm−3 and cell efficiency of 15.0 %. The application of an additional heavy alkali PDT, specifically RbF, is shown to lead to further improvements in cell efficiency. Changes at the front interface due to the PDT allow a decrease of buffer layer thickness, leading to a higher photo current (approximately + 1.0 mAcm−2). In addition, reduced recombination and the resulting increase in lifetime leads to additional gains in VOC, resulting in considerably improved device performance, up to an efficiency of 18.0 %. Further efficiency improvement is achieved by investigating the effect of close to stoichiometric compositions of Cu to group III elements as described in Chapter 5. The sub-stoichiometric Cu composition of state-of-the-art CIGS absorbers leads to a high concentration of detrimental defects. The defect density within the absorbers is reduced by approaching a stoichiometric Cu composition. Improvements in the defect density are identified by the decrease of Urbach energy from 20 to 16 mV and an increase in doping is observed for cells with almost stoichiometric Cu content. Cells with high, and especially stoichiometric Cu composition tend to be limited by recombination at the front interface, leading to a decrease of VOC of about 20 mV. Using the modified absorber surface after heavy alkali PDT, these losses are suppressed. Based on these improvements, a narrow band gap cell with record breaking 19.2 % efficiency and an open circuit voltage of 609 mV is achieved. Throughout the whole thesis the suitability of these cells for tandem devices with semitransparent perovskite top cells is investigated by 4-terminal tandem measurements. The improvements achieved in this work led to CIS based solar cells that not only show outstanding single cell performance, but also enable highly efficient tandem devices up to 25.0 %. They outperform state-of-the-art single junction CIGS and perovskite cells while showing prospects for further efficiency improvement. Due to the low band gap of the CIS absorber the current density from the bottom cell is high enough to produce current matched tandem devices with high efficient perovskite top cells (19.2 to 18.6 mAcm−2 in 4-terminal configuration), and also monolithic two-terminal configurations are feasible in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000389221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000389221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2019Embargo end date: 01 Jan 2019 SwitzerlandPublisher:ETH Zurich Authors: Feurer, Thomas;Photovoltaic (PV) energy generation has become one of the key pillars of the shift to a renewable energy future. Current devices, under favorable conditions, can already undercut the price per kWh electricity of other technologies on the market. Further reduction in the cost of installed PV systems and increase in solar module conversion efficiency will improve the affordability even more and will substantially aid in wider market penetration and enhance the volume of PV installations. Currently the PV market is dominated by silicon wafer based solar cells, but alternative technologies offer some distinctive advantages, making them interesting for numerous applications. Thin film technologies, as for example based on Cu(In,Ga)Se2 (CIGS) compound semiconductors with high optical absorption coefficient, are becoming important due to lower material and energy requirements for processing of high conversion efficiency solar cells. Inherent advantages are large area depositions with low production costs, and the possibilities for construction of lightweight, flexible devices with roll-to-roll manufacturing processes. The highest efficiency of single-junction CIGS solar cells is approaching the thermodynamic limit, making the use of alternative concepts such as concentration or multijunction (tandem-) devices the next logical step for further increase in efficiency beyond the Shockley-Queisser limit (S-Q limit). Especially the multi-junction technology, in which the thermodynamic losses are reduced by stacking of solar cells with different band gaps, decreasing thermalization of charge carriers excited with energies above the band gap, is a promising approach for enhanced utilization of the solar spectrum, yielding improved efficiency. Such devices, based on epitaxial layers of III-V compounds have already demonstrated remarkably high efficiencies beyond the S-Q limit. However, these devices grown on rather expensive single crystal wafers and with small size are prohibitively pricey for low cost terrestrial solar electricity generation. On the other hand, multi-junction solar cell technology based on polycrystalline thin films is an attractive option for large area, low cost production, provided adequately high efficiencies are achieved. In this context, two-junction tandem devices, developed by stacking a semitransparent large band gap solar cell of 1.6-1.7 eV on top of a low band gap (~1.0 eV) bottom cell, is a viable option. Earlier attempts in this direction were not so successful, but with the rise of perovskite thin film solar cells as a compatible high efficiency wide band gap (>1.6 eV) top cell and CIGS with a tunable band gap as bottom cell, the prospect for all thin film tandem devices with efficiencies beyond the single-junction limitations has opened. Such all thin film devices hold the potential for the low cost production necessary for large scale terrestrial application. This thesis focuses on the development of high efficiency narrow bandgap (1.0 eV) CIGS solar cells for application in all thin film tandem devices. While for CIGS with band gap of around 1.15 eV efficiencies of over 23 % have been demonstrated, cells with a narrow band gap close to 1.0 eV only reach 15.0 %. The efficiency of these narrow band gap cells are limited by charge carrier recombination, leading to low open circuit voltage (VOC) and reduced fill factor. For solar cell efficiency enhancement it is necessary to investigate the underlying reasons contributing to the deficits in PV parameters and develop processes to overcome the limiting factors. An option to reduce recombination within the solar cell is the implementation of a band gap grading as discussed in Chapter 3. The increase of the band gap at the location of highest recombination leads to a reduction in diode current, and therefore an increase in VOC. To keep the band gap of 1.0 eV a substantial part of the absorber needs to be Ga free. As the primary source of recombination is not obvious, different gradings (realized by a change in the Ga to In ratio) are implemented and compared. A single grading with increased band gap (higher Ga/In ratio) towards the front of the absorber shows no significant improvement on photovoltaic parameters. Any gain in VOC is offset by losses in current due to reduced charge collection, mainly visible for long wavelength photons and probably a result of the upwards bending in the conduction band. A single backgrading (higher Ga/In ratio towards the back electric contact) on the other hand leads to substantial improvements in performance ( from 12.0 % to 16.1 %). It is shown that the collection of photo-generated charge carriers improves and recombination is reduced. Measurements of the effective lifetime by time resolved photo-luminescence are carried out, showing an increase from approximately 20 ns to 100 ns when comparing ungraded with back-graded absorbers. By selectively changing the recombination speed at the back contact, strong differences in the behavior of cells with and without a band gap widening towards the back are observed. The results support that considerable recombination at the back contact is present in pure CIS solar cells, and that the single Ga back-grading approach is effective at suppressing this loss channel. In Chapter 4 the alkali treatment of CIS based solar cells is investigated. Alkali elements are known to strongly influence doping and passivation in CIGS solar cells. It is shown that the amount of sodium necessary to reach sufficient doping levels for high performance CIS solar cells is not achieved using the processes developed for CIGS. This may be based on insufficient Na diffusion into the grain, as those cells generally show larger grains than their CIGS counter parts, and since alkali migration energies in CIS are reported to be higher compared to those in CGS. If CIS cells are grown on soda lime glass without any diffusion barrier and additionally receive post deposition treatment (PDT) with NaF they still show low apparent doping concentration and poor PV performance ( = 10.9 %). However, additional annealing at ~ 370 C substrate temperature after PDT is shown to solve this problem, leading to an increase in apparent doping levels close to 1016 cm−3 and cell efficiency of 15.0 %. The application of an additional heavy alkali PDT, specifically RbF, is shown to lead to further improvements in cell efficiency. Changes at the front interface due to the PDT allow a decrease of buffer layer thickness, leading to a higher photo current (approximately + 1.0 mAcm−2). In addition, reduced recombination and the resulting increase in lifetime leads to additional gains in VOC, resulting in considerably improved device performance, up to an efficiency of 18.0 %. Further efficiency improvement is achieved by investigating the effect of close to stoichiometric compositions of Cu to group III elements as described in Chapter 5. The sub-stoichiometric Cu composition of state-of-the-art CIGS absorbers leads to a high concentration of detrimental defects. The defect density within the absorbers is reduced by approaching a stoichiometric Cu composition. Improvements in the defect density are identified by the decrease of Urbach energy from 20 to 16 mV and an increase in doping is observed for cells with almost stoichiometric Cu content. Cells with high, and especially stoichiometric Cu composition tend to be limited by recombination at the front interface, leading to a decrease of VOC of about 20 mV. Using the modified absorber surface after heavy alkali PDT, these losses are suppressed. Based on these improvements, a narrow band gap cell with record breaking 19.2 % efficiency and an open circuit voltage of 609 mV is achieved. Throughout the whole thesis the suitability of these cells for tandem devices with semitransparent perovskite top cells is investigated by 4-terminal tandem measurements. The improvements achieved in this work led to CIS based solar cells that not only show outstanding single cell performance, but also enable highly efficient tandem devices up to 25.0 %. They outperform state-of-the-art single junction CIGS and perovskite cells while showing prospects for further efficiency improvement. Due to the low band gap of the CIS absorber the current density from the bottom cell is high enough to produce current matched tandem devices with high efficient perovskite top cells (19.2 to 18.6 mAcm−2 in 4-terminal configuration), and also monolithic two-terminal configurations are feasible in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000389221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000389221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Embargo end date: 01 Jan 2022 Switzerland, NetherlandsPublisher:ETH Zurich Authors: Trivella, Alessio; id_orcid0000-0002-2614-5051; Corman, Francesco; id_orcid0000-0002-6036-5832;Abstract Book: 10th Symposium of the European Association for Research in Transport (hEART 2022)
Research Collection arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000550818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Collection arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000550818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Embargo end date: 01 Jan 2022 Switzerland, NetherlandsPublisher:ETH Zurich Authors: Trivella, Alessio; id_orcid0000-0002-2614-5051; Corman, Francesco; id_orcid0000-0002-6036-5832;Abstract Book: 10th Symposium of the European Association for Research in Transport (hEART 2022)
Research Collection arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000550818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Collection arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000550818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2023Embargo end date: 24 Aug 2023 SwitzerlandPublisher:ETH Zurich Authors: Bataillard, Maxime;The rapid growth of clean technologies to address climate change has emphasized the increasing complexity of materials, some of which face criticality and potential supply disruptions. Inte- grated assessment models (IAMs) used for designing illustrative mitigation pathways (IMPs) lack comprehensive information on material annual demand projection. This study focuses on the demand for the rare earth element neodymium (Nd) until 2050 in wind power and transporta- tion sectors. The assessment is based on the three most ambitious IMPs, namely “Low Energy Demand” (LD), “Sustainability Pathways” (SP), and “Rapid Technology Change” (Ren), from the Intergovernmental Panel on Climate Change’s (IPCC) Assessment Report 6 (AR6). The results show that Nd demand steadily increases in all scenarios, but the magnitude and growth rates vary. The LD scenario exhibits the lowest material needs in passenger transport due to shared road transport and rail preferences, consequence of a focus on final energy use changes, while the SP scenario presents the highest growth in material demand. The Ren scenario, char- acterized by fast electrification and energy intensity improvements, represents a middle-ground scenario for material demand with good opportunities for recycling. This study underscores the significance of considering material demand in scenario design and highlights the importance of better assessing crucial external factors used for material stock determination in the future. The findings contribute to improving scenario design precision and the understanding of material use implications, providing valuable insights for climate policies and resource management strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000643232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000643232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2023Embargo end date: 24 Aug 2023 SwitzerlandPublisher:ETH Zurich Authors: Bataillard, Maxime;The rapid growth of clean technologies to address climate change has emphasized the increasing complexity of materials, some of which face criticality and potential supply disruptions. Inte- grated assessment models (IAMs) used for designing illustrative mitigation pathways (IMPs) lack comprehensive information on material annual demand projection. This study focuses on the demand for the rare earth element neodymium (Nd) until 2050 in wind power and transporta- tion sectors. The assessment is based on the three most ambitious IMPs, namely “Low Energy Demand” (LD), “Sustainability Pathways” (SP), and “Rapid Technology Change” (Ren), from the Intergovernmental Panel on Climate Change’s (IPCC) Assessment Report 6 (AR6). The results show that Nd demand steadily increases in all scenarios, but the magnitude and growth rates vary. The LD scenario exhibits the lowest material needs in passenger transport due to shared road transport and rail preferences, consequence of a focus on final energy use changes, while the SP scenario presents the highest growth in material demand. The Ren scenario, char- acterized by fast electrification and energy intensity improvements, represents a middle-ground scenario for material demand with good opportunities for recycling. This study underscores the significance of considering material demand in scenario design and highlights the importance of better assessing crucial external factors used for material stock determination in the future. The findings contribute to improving scenario design precision and the understanding of material use implications, providing valuable insights for climate policies and resource management strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000643232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000643232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2020Embargo end date: 20 Jan 2020 SwitzerlandPublisher:Lausanne, EPFL Authors: Van Cutsem; Olivier Valentin Henri;Today's electrical grid is undergoing deep changes, resulting from the large integration of distributed Renewable Energy Sources (RES) in an effort to decarbonize the generation of electrical energy. In addition to the emergence of this volatile electricity production, the worldwide demand for electricity increases due to a growing population and the intensified electrification of buildings. Smart-buildings represent promising assets for supporting the electrical grid in balancing demand with a supply based on non-dispatchable RES. A smart-building denotes a building equipped with sensor/actuator hardware connected to a federating Building Data Management System (BDMS) which enables high-level applications and services. Tapping into the flexibility inherent to its various entities (load, storage, and generation), a smart-building can provide Demand Response (DR) functionality through the optimization of its energy profile in response to varying electricity prices or commands from the grid.This PhD thesis provides a set of tools, algorithms, and frameworks, revolving around the notion of smart-buildings that foster an enhanced Building-to-Grid (BtG) integration. The tools developed here aim to fill the gap encountered in the literature created by the recent rollout of BDMSs and the ubiquitous Internet of Things (IoT). Furthermore, the mismatch between current DR and the future RES-based smart-grid opens the way to the development of innovative algorithms and frameworks to manage the flexibility offered by smart-buildings for grid-side agents. Built upon BDMSs, two open-source tools have been developed. Firstly, an integrated high-speed emulation and simulation software, dubbed Virtualization Engine (vEngine), allows the simulation of non-existing components of a building directly on-site. The multi-threaded, light architecture of vEngine permits efficient simulations, in a modular environment conceived for developers. Secondly, we describe Open Energy Management System (OpenEMS), a platform that seamlessly connects to any existing BDMS and provides its users with an environment to create their own energy management algorithms, with a focus on Model Predictive Control (MPC). Simulations using a realistic Swiss residential building model demonstrate the effectiveness and modularity of both tools. Additionally, we propose a multi-state load profile identification algorithm tailored to Non-Intrusive Load Monitoring (NILM). Applied to energy disaggregation, it shows promising results for enhanced energy feedbacks to the occupants. To attain daily energy balance within the smart-grid, we propose several algorithms and energy management frameworks, using smart-buildings. An incremental MPC formulation is derived to better balance monthly costs associated to energy and peak demand of large commercial buildings. Simulations data show substantial benefits, for both the building's owner and the grid. Furthermore, we present a decentralized framework for autonomously managing the energy in a community of smart-buildings, with RES. Based on blockchain technology and smart-contracts, the framework optimizes an objective common to the whole community without the need for a central agent. Finally, we suggest a unified BtG model that could benefit grid-side aggregators in both microgrids and electricity markets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-7380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-7380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2020Embargo end date: 20 Jan 2020 SwitzerlandPublisher:Lausanne, EPFL Authors: Van Cutsem; Olivier Valentin Henri;Today's electrical grid is undergoing deep changes, resulting from the large integration of distributed Renewable Energy Sources (RES) in an effort to decarbonize the generation of electrical energy. In addition to the emergence of this volatile electricity production, the worldwide demand for electricity increases due to a growing population and the intensified electrification of buildings. Smart-buildings represent promising assets for supporting the electrical grid in balancing demand with a supply based on non-dispatchable RES. A smart-building denotes a building equipped with sensor/actuator hardware connected to a federating Building Data Management System (BDMS) which enables high-level applications and services. Tapping into the flexibility inherent to its various entities (load, storage, and generation), a smart-building can provide Demand Response (DR) functionality through the optimization of its energy profile in response to varying electricity prices or commands from the grid.This PhD thesis provides a set of tools, algorithms, and frameworks, revolving around the notion of smart-buildings that foster an enhanced Building-to-Grid (BtG) integration. The tools developed here aim to fill the gap encountered in the literature created by the recent rollout of BDMSs and the ubiquitous Internet of Things (IoT). Furthermore, the mismatch between current DR and the future RES-based smart-grid opens the way to the development of innovative algorithms and frameworks to manage the flexibility offered by smart-buildings for grid-side agents. Built upon BDMSs, two open-source tools have been developed. Firstly, an integrated high-speed emulation and simulation software, dubbed Virtualization Engine (vEngine), allows the simulation of non-existing components of a building directly on-site. The multi-threaded, light architecture of vEngine permits efficient simulations, in a modular environment conceived for developers. Secondly, we describe Open Energy Management System (OpenEMS), a platform that seamlessly connects to any existing BDMS and provides its users with an environment to create their own energy management algorithms, with a focus on Model Predictive Control (MPC). Simulations using a realistic Swiss residential building model demonstrate the effectiveness and modularity of both tools. Additionally, we propose a multi-state load profile identification algorithm tailored to Non-Intrusive Load Monitoring (NILM). Applied to energy disaggregation, it shows promising results for enhanced energy feedbacks to the occupants. To attain daily energy balance within the smart-grid, we propose several algorithms and energy management frameworks, using smart-buildings. An incremental MPC formulation is derived to better balance monthly costs associated to energy and peak demand of large commercial buildings. Simulations data show substantial benefits, for both the building's owner and the grid. Furthermore, we present a decentralized framework for autonomously managing the energy in a community of smart-buildings, with RES. Based on blockchain technology and smart-contracts, the framework optimizes an objective common to the whole community without the need for a central agent. Finally, we suggest a unified BtG model that could benefit grid-side aggregators in both microgrids and electricity markets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-7380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-7380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right External research report 2014 IrelandPublisher:Dublin City University Authors: University, Dublin City; Smartbay;The SmartBay NIAP fund was made available in 2012 through Dublin City University over a two year period to enable researchers to access the SmartBay Ireland National Test and Demonstration Facility in Galway Bay. Research proposals were invited for funding under a number of activity types that are in line with the objectives of the SmartBay PRTLI Cycle 5 programme. This fund provided small awards (typically €2-25K) to research teams through a national competitive process, which was open to all higher education institutions on the island of Ireland. There were both open and biannual calls. The SmartBay NIAP fund was established to enable researchers in academia and industry to access the SmartBay Ireland national test and demonstration infrastructure. Proposals to access the infrastructure were brief and required information on the researcher(s), a description of the proposed research and its potential impact to the research team arising from the access to SmartBay Ireland. Marine Institute
Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::9e47932c70cc095360eb6a0b31bfc309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::9e47932c70cc095360eb6a0b31bfc309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right External research report 2014 IrelandPublisher:Dublin City University Authors: University, Dublin City; Smartbay;The SmartBay NIAP fund was made available in 2012 through Dublin City University over a two year period to enable researchers to access the SmartBay Ireland National Test and Demonstration Facility in Galway Bay. Research proposals were invited for funding under a number of activity types that are in line with the objectives of the SmartBay PRTLI Cycle 5 programme. This fund provided small awards (typically €2-25K) to research teams through a national competitive process, which was open to all higher education institutions on the island of Ireland. There were both open and biannual calls. The SmartBay NIAP fund was established to enable researchers in academia and industry to access the SmartBay Ireland national test and demonstration infrastructure. Proposals to access the infrastructure were brief and required information on the researcher(s), a description of the proposed research and its potential impact to the research team arising from the access to SmartBay Ireland. Marine Institute
Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::9e47932c70cc095360eb6a0b31bfc309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::9e47932c70cc095360eb6a0b31bfc309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2008Publisher:WIP-Munich Authors: Baumgartner, F.P.; Büchel, A.; Bartholet, R.;Solar tracking systems increase the electricity production by about 30% relative to fixed installations. A robust design of the mechanical system requiring less material than 100kg steel per kW nominal PV module power is essential to further improve the economics of PV tracker plants. The Solar Wings approach reaches this goal by using steel cables as a mounting system for the PV modules and benefits by the long-time experience of project partner BMF using steel cables in transportation systems such as ski-lift, funicular, aerial passenger lines. Tests with the first Solar Wings prototype in Switzerland passed successfully. The first 600 kW PV plant powered by the one axis Solar Wings tracking system will put into operation in December 2008 in Southern Germany. To maximize reliability and reduce maintenance costs only one electrical three-phase asynchronous motor is used to track 100kW PV modules. A two-axis tracking Solar Wings system will be available next year. Further development targets are low optical concentration by the use of planar mirrors mounted on a parallel axis to the PV module axis. PV modules and mirrors track individually and thus an increase of the electricity production of higher than 60% relative to fixed mounted installation is expected. First results of the measured increase of performance by individual tracking of the planar mirrors and the PV modules, performed on a small scale dish model, are reported. 23rd European Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain; 2790-2794
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/23rdeupvsec2008-4do.9.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/23rdeupvsec2008-4do.9.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2008Publisher:WIP-Munich Authors: Baumgartner, F.P.; Büchel, A.; Bartholet, R.;Solar tracking systems increase the electricity production by about 30% relative to fixed installations. A robust design of the mechanical system requiring less material than 100kg steel per kW nominal PV module power is essential to further improve the economics of PV tracker plants. The Solar Wings approach reaches this goal by using steel cables as a mounting system for the PV modules and benefits by the long-time experience of project partner BMF using steel cables in transportation systems such as ski-lift, funicular, aerial passenger lines. Tests with the first Solar Wings prototype in Switzerland passed successfully. The first 600 kW PV plant powered by the one axis Solar Wings tracking system will put into operation in December 2008 in Southern Germany. To maximize reliability and reduce maintenance costs only one electrical three-phase asynchronous motor is used to track 100kW PV modules. A two-axis tracking Solar Wings system will be available next year. Further development targets are low optical concentration by the use of planar mirrors mounted on a parallel axis to the PV module axis. PV modules and mirrors track individually and thus an increase of the electricity production of higher than 60% relative to fixed mounted installation is expected. First results of the measured increase of performance by individual tracking of the planar mirrors and the PV modules, performed on a small scale dish model, are reported. 23rd European Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain; 2790-2794
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/23rdeupvsec2008-4do.9.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/23rdeupvsec2008-4do.9.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2009 SpainPublisher:WIP-Munich Pozo Vázquez, David; Remund, Jan; Müller, Stefan C.; Traunmüller, Wolfgang; Steinmaurer, Gerald; Pozo Vázquez, D.; Ruiz Arias, Jose Antonio; Lara Fanego, Vicente; Ramírez, Lourdes; Gastón, Martín; Kurz, Christian; Martin Pomares, Luis; Geijo, Carlos;Power generation from photovoltaic systems is highly variable due to its dependence on meteorological conditions. An efficient use of this fluctuating energy source requires reliable forecast information for management and operation strategies. Due to the strong increase of solar power generation the prediction of solar yields becomes more and more important. As a consequence, in the last years various research organisations and companies have developed different methods to forecast irradiance as a basis for respective power forecasts. For the end-users of these forecasts it is important that standardized methodology is used when presenting results on the accuracy of a prediction model in order to get a clear idea on the advantages of a specific approach. In this paper we introduce a benchmarking procedure to asses the accuracy of irradiance forecasts and compare different approaches of forecasting. The evaluation shows a strong dependence of the forecast accuracy on the climatic conditions. For Central European stations the relative rmse ranges from 40 % to 60 %, for Spanish stations relative rmse values are in the range of 20 % to 35 %. 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany; 4199-4208
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 96 citations 96 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 42 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2009 SpainPublisher:WIP-Munich Pozo Vázquez, David; Remund, Jan; Müller, Stefan C.; Traunmüller, Wolfgang; Steinmaurer, Gerald; Pozo Vázquez, D.; Ruiz Arias, Jose Antonio; Lara Fanego, Vicente; Ramírez, Lourdes; Gastón, Martín; Kurz, Christian; Martin Pomares, Luis; Geijo, Carlos;Power generation from photovoltaic systems is highly variable due to its dependence on meteorological conditions. An efficient use of this fluctuating energy source requires reliable forecast information for management and operation strategies. Due to the strong increase of solar power generation the prediction of solar yields becomes more and more important. As a consequence, in the last years various research organisations and companies have developed different methods to forecast irradiance as a basis for respective power forecasts. For the end-users of these forecasts it is important that standardized methodology is used when presenting results on the accuracy of a prediction model in order to get a clear idea on the advantages of a specific approach. In this paper we introduce a benchmarking procedure to asses the accuracy of irradiance forecasts and compare different approaches of forecasting. The evaluation shows a strong dependence of the forecast accuracy on the climatic conditions. For Central European stations the relative rmse ranges from 40 % to 60 %, for Spanish stations relative rmse values are in the range of 20 % to 35 %. 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany; 4199-4208
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 96 citations 96 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 42 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2012Embargo end date: 05 Dec 2012 SwitzerlandPublisher:Lausanne, EPFL Authors: Dubuis, Matthias;The current context leads energy system design to very demanding objectives, due to their variety. Indeed, despite an increasing energy demand, environment indicators are becoming always more important. So that for a given service, emission (and then associated consumption as well) is desired to decrease. Improving systems efficiencies is then a important step. Such a problem is formulated as an optimization. It is based on numerical models. Every models differs by definition from reality. This difference can be translated into uncertainties. Usually, they are considered at their most probable value. However, their variation can lead to consequences between a performance decrease and plant inoperability. It is then critical to take into account the deviation due to uncertainties when optimizing an energy system. The optimization problem will be described. It will introduce the description of functions and variables involved in energy system design. The formulation of the optimization under uncertainty will be developed, as well as mathematical methods for uncertainty propagation. Finally, an innovative method taking advantage of the high number of iterations due to the chosen solver will be described. In this study, pinch analysis has been applied. Its limits related to uncertainties treatment will be presented. Methods described here will be applied to an hybrid system of a fuel cell coupled with gas turbines. Results will be compared to a conventional optimization solutions. It will demonstrate that, despite sub-optimal objectives, the sensitivity of the system to uncertainties has been improved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-5559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-5559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2012Embargo end date: 05 Dec 2012 SwitzerlandPublisher:Lausanne, EPFL Authors: Dubuis, Matthias;The current context leads energy system design to very demanding objectives, due to their variety. Indeed, despite an increasing energy demand, environment indicators are becoming always more important. So that for a given service, emission (and then associated consumption as well) is desired to decrease. Improving systems efficiencies is then a important step. Such a problem is formulated as an optimization. It is based on numerical models. Every models differs by definition from reality. This difference can be translated into uncertainties. Usually, they are considered at their most probable value. However, their variation can lead to consequences between a performance decrease and plant inoperability. It is then critical to take into account the deviation due to uncertainties when optimizing an energy system. The optimization problem will be described. It will introduce the description of functions and variables involved in energy system design. The formulation of the optimization under uncertainty will be developed, as well as mathematical methods for uncertainty propagation. Finally, an innovative method taking advantage of the high number of iterations due to the chosen solver will be described. In this study, pinch analysis has been applied. Its limits related to uncertainties treatment will be presented. Methods described here will be applied to an hybrid system of a fuel cell coupled with gas turbines. Results will be compared to a conventional optimization solutions. It will demonstrate that, despite sub-optimal objectives, the sensitivity of the system to uncertainties has been improved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-5559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-5559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:University of Oradea Authors: AMMAR MAHJOUBI;In this paper, we have studied the solar radiation data available at two meteorological stations located in the south of Tunisia. Measurements of global solar radiation on horizontal surface are compared to predictions made by different methods. The first method is based on Angström-Prescott formula which correlates relative global solar radiation H/H0 to corresponding relative duration of bright sunshine SS/SS0. The second method, a model due to Mechlouch et al., uses cloud cover N, the hours of the day t and the quantum of the year q. The third method, an empirical relation due to Sivkov, uses the monthly sunshine duration nm and the noon altitude of the sun h. The models are compared and tested on the basis of statistical error tests (MBE, RMSE, MPE and R2) and the results are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d8a13f60c1aa070a5f212740572db7ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d8a13f60c1aa070a5f212740572db7ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:University of Oradea Authors: AMMAR MAHJOUBI;In this paper, we have studied the solar radiation data available at two meteorological stations located in the south of Tunisia. Measurements of global solar radiation on horizontal surface are compared to predictions made by different methods. The first method is based on Angström-Prescott formula which correlates relative global solar radiation H/H0 to corresponding relative duration of bright sunshine SS/SS0. The second method, a model due to Mechlouch et al., uses cloud cover N, the hours of the day t and the quantum of the year q. The third method, an empirical relation due to Sivkov, uses the monthly sunshine duration nm and the noon altitude of the sun h. The models are compared and tested on the basis of statistical error tests (MBE, RMSE, MPE and R2) and the results are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d8a13f60c1aa070a5f212740572db7ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d8a13f60c1aa070a5f212740572db7ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2019Embargo end date: 01 Jan 2019 SwitzerlandPublisher:ETH Zurich Authors: Feurer, Thomas;Photovoltaic (PV) energy generation has become one of the key pillars of the shift to a renewable energy future. Current devices, under favorable conditions, can already undercut the price per kWh electricity of other technologies on the market. Further reduction in the cost of installed PV systems and increase in solar module conversion efficiency will improve the affordability even more and will substantially aid in wider market penetration and enhance the volume of PV installations. Currently the PV market is dominated by silicon wafer based solar cells, but alternative technologies offer some distinctive advantages, making them interesting for numerous applications. Thin film technologies, as for example based on Cu(In,Ga)Se2 (CIGS) compound semiconductors with high optical absorption coefficient, are becoming important due to lower material and energy requirements for processing of high conversion efficiency solar cells. Inherent advantages are large area depositions with low production costs, and the possibilities for construction of lightweight, flexible devices with roll-to-roll manufacturing processes. The highest efficiency of single-junction CIGS solar cells is approaching the thermodynamic limit, making the use of alternative concepts such as concentration or multijunction (tandem-) devices the next logical step for further increase in efficiency beyond the Shockley-Queisser limit (S-Q limit). Especially the multi-junction technology, in which the thermodynamic losses are reduced by stacking of solar cells with different band gaps, decreasing thermalization of charge carriers excited with energies above the band gap, is a promising approach for enhanced utilization of the solar spectrum, yielding improved efficiency. Such devices, based on epitaxial layers of III-V compounds have already demonstrated remarkably high efficiencies beyond the S-Q limit. However, these devices grown on rather expensive single crystal wafers and with small size are prohibitively pricey for low cost terrestrial solar electricity generation. On the other hand, multi-junction solar cell technology based on polycrystalline thin films is an attractive option for large area, low cost production, provided adequately high efficiencies are achieved. In this context, two-junction tandem devices, developed by stacking a semitransparent large band gap solar cell of 1.6-1.7 eV on top of a low band gap (~1.0 eV) bottom cell, is a viable option. Earlier attempts in this direction were not so successful, but with the rise of perovskite thin film solar cells as a compatible high efficiency wide band gap (>1.6 eV) top cell and CIGS with a tunable band gap as bottom cell, the prospect for all thin film tandem devices with efficiencies beyond the single-junction limitations has opened. Such all thin film devices hold the potential for the low cost production necessary for large scale terrestrial application. This thesis focuses on the development of high efficiency narrow bandgap (1.0 eV) CIGS solar cells for application in all thin film tandem devices. While for CIGS with band gap of around 1.15 eV efficiencies of over 23 % have been demonstrated, cells with a narrow band gap close to 1.0 eV only reach 15.0 %. The efficiency of these narrow band gap cells are limited by charge carrier recombination, leading to low open circuit voltage (VOC) and reduced fill factor. For solar cell efficiency enhancement it is necessary to investigate the underlying reasons contributing to the deficits in PV parameters and develop processes to overcome the limiting factors. An option to reduce recombination within the solar cell is the implementation of a band gap grading as discussed in Chapter 3. The increase of the band gap at the location of highest recombination leads to a reduction in diode current, and therefore an increase in VOC. To keep the band gap of 1.0 eV a substantial part of the absorber needs to be Ga free. As the primary source of recombination is not obvious, different gradings (realized by a change in the Ga to In ratio) are implemented and compared. A single grading with increased band gap (higher Ga/In ratio) towards the front of the absorber shows no significant improvement on photovoltaic parameters. Any gain in VOC is offset by losses in current due to reduced charge collection, mainly visible for long wavelength photons and probably a result of the upwards bending in the conduction band. A single backgrading (higher Ga/In ratio towards the back electric contact) on the other hand leads to substantial improvements in performance ( from 12.0 % to 16.1 %). It is shown that the collection of photo-generated charge carriers improves and recombination is reduced. Measurements of the effective lifetime by time resolved photo-luminescence are carried out, showing an increase from approximately 20 ns to 100 ns when comparing ungraded with back-graded absorbers. By selectively changing the recombination speed at the back contact, strong differences in the behavior of cells with and without a band gap widening towards the back are observed. The results support that considerable recombination at the back contact is present in pure CIS solar cells, and that the single Ga back-grading approach is effective at suppressing this loss channel. In Chapter 4 the alkali treatment of CIS based solar cells is investigated. Alkali elements are known to strongly influence doping and passivation in CIGS solar cells. It is shown that the amount of sodium necessary to reach sufficient doping levels for high performance CIS solar cells is not achieved using the processes developed for CIGS. This may be based on insufficient Na diffusion into the grain, as those cells generally show larger grains than their CIGS counter parts, and since alkali migration energies in CIS are reported to be higher compared to those in CGS. If CIS cells are grown on soda lime glass without any diffusion barrier and additionally receive post deposition treatment (PDT) with NaF they still show low apparent doping concentration and poor PV performance ( = 10.9 %). However, additional annealing at ~ 370 C substrate temperature after PDT is shown to solve this problem, leading to an increase in apparent doping levels close to 1016 cm−3 and cell efficiency of 15.0 %. The application of an additional heavy alkali PDT, specifically RbF, is shown to lead to further improvements in cell efficiency. Changes at the front interface due to the PDT allow a decrease of buffer layer thickness, leading to a higher photo current (approximately + 1.0 mAcm−2). In addition, reduced recombination and the resulting increase in lifetime leads to additional gains in VOC, resulting in considerably improved device performance, up to an efficiency of 18.0 %. Further efficiency improvement is achieved by investigating the effect of close to stoichiometric compositions of Cu to group III elements as described in Chapter 5. The sub-stoichiometric Cu composition of state-of-the-art CIGS absorbers leads to a high concentration of detrimental defects. The defect density within the absorbers is reduced by approaching a stoichiometric Cu composition. Improvements in the defect density are identified by the decrease of Urbach energy from 20 to 16 mV and an increase in doping is observed for cells with almost stoichiometric Cu content. Cells with high, and especially stoichiometric Cu composition tend to be limited by recombination at the front interface, leading to a decrease of VOC of about 20 mV. Using the modified absorber surface after heavy alkali PDT, these losses are suppressed. Based on these improvements, a narrow band gap cell with record breaking 19.2 % efficiency and an open circuit voltage of 609 mV is achieved. Throughout the whole thesis the suitability of these cells for tandem devices with semitransparent perovskite top cells is investigated by 4-terminal tandem measurements. The improvements achieved in this work led to CIS based solar cells that not only show outstanding single cell performance, but also enable highly efficient tandem devices up to 25.0 %. They outperform state-of-the-art single junction CIGS and perovskite cells while showing prospects for further efficiency improvement. Due to the low band gap of the CIS absorber the current density from the bottom cell is high enough to produce current matched tandem devices with high efficient perovskite top cells (19.2 to 18.6 mAcm−2 in 4-terminal configuration), and also monolithic two-terminal configurations are feasible in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000389221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000389221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2019Embargo end date: 01 Jan 2019 SwitzerlandPublisher:ETH Zurich Authors: Feurer, Thomas;Photovoltaic (PV) energy generation has become one of the key pillars of the shift to a renewable energy future. Current devices, under favorable conditions, can already undercut the price per kWh electricity of other technologies on the market. Further reduction in the cost of installed PV systems and increase in solar module conversion efficiency will improve the affordability even more and will substantially aid in wider market penetration and enhance the volume of PV installations. Currently the PV market is dominated by silicon wafer based solar cells, but alternative technologies offer some distinctive advantages, making them interesting for numerous applications. Thin film technologies, as for example based on Cu(In,Ga)Se2 (CIGS) compound semiconductors with high optical absorption coefficient, are becoming important due to lower material and energy requirements for processing of high conversion efficiency solar cells. Inherent advantages are large area depositions with low production costs, and the possibilities for construction of lightweight, flexible devices with roll-to-roll manufacturing processes. The highest efficiency of single-junction CIGS solar cells is approaching the thermodynamic limit, making the use of alternative concepts such as concentration or multijunction (tandem-) devices the next logical step for further increase in efficiency beyond the Shockley-Queisser limit (S-Q limit). Especially the multi-junction technology, in which the thermodynamic losses are reduced by stacking of solar cells with different band gaps, decreasing thermalization of charge carriers excited with energies above the band gap, is a promising approach for enhanced utilization of the solar spectrum, yielding improved efficiency. Such devices, based on epitaxial layers of III-V compounds have already demonstrated remarkably high efficiencies beyond the S-Q limit. However, these devices grown on rather expensive single crystal wafers and with small size are prohibitively pricey for low cost terrestrial solar electricity generation. On the other hand, multi-junction solar cell technology based on polycrystalline thin films is an attractive option for large area, low cost production, provided adequately high efficiencies are achieved. In this context, two-junction tandem devices, developed by stacking a semitransparent large band gap solar cell of 1.6-1.7 eV on top of a low band gap (~1.0 eV) bottom cell, is a viable option. Earlier attempts in this direction were not so successful, but with the rise of perovskite thin film solar cells as a compatible high efficiency wide band gap (>1.6 eV) top cell and CIGS with a tunable band gap as bottom cell, the prospect for all thin film tandem devices with efficiencies beyond the single-junction limitations has opened. Such all thin film devices hold the potential for the low cost production necessary for large scale terrestrial application. This thesis focuses on the development of high efficiency narrow bandgap (1.0 eV) CIGS solar cells for application in all thin film tandem devices. While for CIGS with band gap of around 1.15 eV efficiencies of over 23 % have been demonstrated, cells with a narrow band gap close to 1.0 eV only reach 15.0 %. The efficiency of these narrow band gap cells are limited by charge carrier recombination, leading to low open circuit voltage (VOC) and reduced fill factor. For solar cell efficiency enhancement it is necessary to investigate the underlying reasons contributing to the deficits in PV parameters and develop processes to overcome the limiting factors. An option to reduce recombination within the solar cell is the implementation of a band gap grading as discussed in Chapter 3. The increase of the band gap at the location of highest recombination leads to a reduction in diode current, and therefore an increase in VOC. To keep the band gap of 1.0 eV a substantial part of the absorber needs to be Ga free. As the primary source of recombination is not obvious, different gradings (realized by a change in the Ga to In ratio) are implemented and compared. A single grading with increased band gap (higher Ga/In ratio) towards the front of the absorber shows no significant improvement on photovoltaic parameters. Any gain in VOC is offset by losses in current due to reduced charge collection, mainly visible for long wavelength photons and probably a result of the upwards bending in the conduction band. A single backgrading (higher Ga/In ratio towards the back electric contact) on the other hand leads to substantial improvements in performance ( from 12.0 % to 16.1 %). It is shown that the collection of photo-generated charge carriers improves and recombination is reduced. Measurements of the effective lifetime by time resolved photo-luminescence are carried out, showing an increase from approximately 20 ns to 100 ns when comparing ungraded with back-graded absorbers. By selectively changing the recombination speed at the back contact, strong differences in the behavior of cells with and without a band gap widening towards the back are observed. The results support that considerable recombination at the back contact is present in pure CIS solar cells, and that the single Ga back-grading approach is effective at suppressing this loss channel. In Chapter 4 the alkali treatment of CIS based solar cells is investigated. Alkali elements are known to strongly influence doping and passivation in CIGS solar cells. It is shown that the amount of sodium necessary to reach sufficient doping levels for high performance CIS solar cells is not achieved using the processes developed for CIGS. This may be based on insufficient Na diffusion into the grain, as those cells generally show larger grains than their CIGS counter parts, and since alkali migration energies in CIS are reported to be higher compared to those in CGS. If CIS cells are grown on soda lime glass without any diffusion barrier and additionally receive post deposition treatment (PDT) with NaF they still show low apparent doping concentration and poor PV performance ( = 10.9 %). However, additional annealing at ~ 370 C substrate temperature after PDT is shown to solve this problem, leading to an increase in apparent doping levels close to 1016 cm−3 and cell efficiency of 15.0 %. The application of an additional heavy alkali PDT, specifically RbF, is shown to lead to further improvements in cell efficiency. Changes at the front interface due to the PDT allow a decrease of buffer layer thickness, leading to a higher photo current (approximately + 1.0 mAcm−2). In addition, reduced recombination and the resulting increase in lifetime leads to additional gains in VOC, resulting in considerably improved device performance, up to an efficiency of 18.0 %. Further efficiency improvement is achieved by investigating the effect of close to stoichiometric compositions of Cu to group III elements as described in Chapter 5. The sub-stoichiometric Cu composition of state-of-the-art CIGS absorbers leads to a high concentration of detrimental defects. The defect density within the absorbers is reduced by approaching a stoichiometric Cu composition. Improvements in the defect density are identified by the decrease of Urbach energy from 20 to 16 mV and an increase in doping is observed for cells with almost stoichiometric Cu content. Cells with high, and especially stoichiometric Cu composition tend to be limited by recombination at the front interface, leading to a decrease of VOC of about 20 mV. Using the modified absorber surface after heavy alkali PDT, these losses are suppressed. Based on these improvements, a narrow band gap cell with record breaking 19.2 % efficiency and an open circuit voltage of 609 mV is achieved. Throughout the whole thesis the suitability of these cells for tandem devices with semitransparent perovskite top cells is investigated by 4-terminal tandem measurements. The improvements achieved in this work led to CIS based solar cells that not only show outstanding single cell performance, but also enable highly efficient tandem devices up to 25.0 %. They outperform state-of-the-art single junction CIGS and perovskite cells while showing prospects for further efficiency improvement. Due to the low band gap of the CIS absorber the current density from the bottom cell is high enough to produce current matched tandem devices with high efficient perovskite top cells (19.2 to 18.6 mAcm−2 in 4-terminal configuration), and also monolithic two-terminal configurations are feasible in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000389221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000389221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Embargo end date: 01 Jan 2022 Switzerland, NetherlandsPublisher:ETH Zurich Authors: Trivella, Alessio; id_orcid0000-0002-2614-5051; Corman, Francesco; id_orcid0000-0002-6036-5832;Abstract Book: 10th Symposium of the European Association for Research in Transport (hEART 2022)
Research Collection arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000550818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Collection arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000550818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Embargo end date: 01 Jan 2022 Switzerland, NetherlandsPublisher:ETH Zurich Authors: Trivella, Alessio; id_orcid0000-0002-2614-5051; Corman, Francesco; id_orcid0000-0002-6036-5832;Abstract Book: 10th Symposium of the European Association for Research in Transport (hEART 2022)
Research Collection arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000550818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Collection arrow_drop_down University of Twente Research InformationConference object . 2022Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000550818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2023Embargo end date: 24 Aug 2023 SwitzerlandPublisher:ETH Zurich Authors: Bataillard, Maxime;The rapid growth of clean technologies to address climate change has emphasized the increasing complexity of materials, some of which face criticality and potential supply disruptions. Inte- grated assessment models (IAMs) used for designing illustrative mitigation pathways (IMPs) lack comprehensive information on material annual demand projection. This study focuses on the demand for the rare earth element neodymium (Nd) until 2050 in wind power and transporta- tion sectors. The assessment is based on the three most ambitious IMPs, namely “Low Energy Demand” (LD), “Sustainability Pathways” (SP), and “Rapid Technology Change” (Ren), from the Intergovernmental Panel on Climate Change’s (IPCC) Assessment Report 6 (AR6). The results show that Nd demand steadily increases in all scenarios, but the magnitude and growth rates vary. The LD scenario exhibits the lowest material needs in passenger transport due to shared road transport and rail preferences, consequence of a focus on final energy use changes, while the SP scenario presents the highest growth in material demand. The Ren scenario, char- acterized by fast electrification and energy intensity improvements, represents a middle-ground scenario for material demand with good opportunities for recycling. This study underscores the significance of considering material demand in scenario design and highlights the importance of better assessing crucial external factors used for material stock determination in the future. The findings contribute to improving scenario design precision and the understanding of material use implications, providing valuable insights for climate policies and resource management strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000643232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000643232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2023Embargo end date: 24 Aug 2023 SwitzerlandPublisher:ETH Zurich Authors: Bataillard, Maxime;The rapid growth of clean technologies to address climate change has emphasized the increasing complexity of materials, some of which face criticality and potential supply disruptions. Inte- grated assessment models (IAMs) used for designing illustrative mitigation pathways (IMPs) lack comprehensive information on material annual demand projection. This study focuses on the demand for the rare earth element neodymium (Nd) until 2050 in wind power and transporta- tion sectors. The assessment is based on the three most ambitious IMPs, namely “Low Energy Demand” (LD), “Sustainability Pathways” (SP), and “Rapid Technology Change” (Ren), from the Intergovernmental Panel on Climate Change’s (IPCC) Assessment Report 6 (AR6). The results show that Nd demand steadily increases in all scenarios, but the magnitude and growth rates vary. The LD scenario exhibits the lowest material needs in passenger transport due to shared road transport and rail preferences, consequence of a focus on final energy use changes, while the SP scenario presents the highest growth in material demand. The Ren scenario, char- acterized by fast electrification and energy intensity improvements, represents a middle-ground scenario for material demand with good opportunities for recycling. This study underscores the significance of considering material demand in scenario design and highlights the importance of better assessing crucial external factors used for material stock determination in the future. The findings contribute to improving scenario design precision and the understanding of material use implications, providing valuable insights for climate policies and resource management strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000643232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3929/ethz-b-000643232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2020Embargo end date: 20 Jan 2020 SwitzerlandPublisher:Lausanne, EPFL Authors: Van Cutsem; Olivier Valentin Henri;Today's electrical grid is undergoing deep changes, resulting from the large integration of distributed Renewable Energy Sources (RES) in an effort to decarbonize the generation of electrical energy. In addition to the emergence of this volatile electricity production, the worldwide demand for electricity increases due to a growing population and the intensified electrification of buildings. Smart-buildings represent promising assets for supporting the electrical grid in balancing demand with a supply based on non-dispatchable RES. A smart-building denotes a building equipped with sensor/actuator hardware connected to a federating Building Data Management System (BDMS) which enables high-level applications and services. Tapping into the flexibility inherent to its various entities (load, storage, and generation), a smart-building can provide Demand Response (DR) functionality through the optimization of its energy profile in response to varying electricity prices or commands from the grid.This PhD thesis provides a set of tools, algorithms, and frameworks, revolving around the notion of smart-buildings that foster an enhanced Building-to-Grid (BtG) integration. The tools developed here aim to fill the gap encountered in the literature created by the recent rollout of BDMSs and the ubiquitous Internet of Things (IoT). Furthermore, the mismatch between current DR and the future RES-based smart-grid opens the way to the development of innovative algorithms and frameworks to manage the flexibility offered by smart-buildings for grid-side agents. Built upon BDMSs, two open-source tools have been developed. Firstly, an integrated high-speed emulation and simulation software, dubbed Virtualization Engine (vEngine), allows the simulation of non-existing components of a building directly on-site. The multi-threaded, light architecture of vEngine permits efficient simulations, in a modular environment conceived for developers. Secondly, we describe Open Energy Management System (OpenEMS), a platform that seamlessly connects to any existing BDMS and provides its users with an environment to create their own energy management algorithms, with a focus on Model Predictive Control (MPC). Simulations using a realistic Swiss residential building model demonstrate the effectiveness and modularity of both tools. Additionally, we propose a multi-state load profile identification algorithm tailored to Non-Intrusive Load Monitoring (NILM). Applied to energy disaggregation, it shows promising results for enhanced energy feedbacks to the occupants. To attain daily energy balance within the smart-grid, we propose several algorithms and energy management frameworks, using smart-buildings. An incremental MPC formulation is derived to better balance monthly costs associated to energy and peak demand of large commercial buildings. Simulations data show substantial benefits, for both the building's owner and the grid. Furthermore, we present a decentralized framework for autonomously managing the energy in a community of smart-buildings, with RES. Based on blockchain technology and smart-contracts, the framework optimizes an objective common to the whole community without the need for a central agent. Finally, we suggest a unified BtG model that could benefit grid-side aggregators in both microgrids and electricity markets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-7380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-7380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2020Embargo end date: 20 Jan 2020 SwitzerlandPublisher:Lausanne, EPFL Authors: Van Cutsem; Olivier Valentin Henri;Today's electrical grid is undergoing deep changes, resulting from the large integration of distributed Renewable Energy Sources (RES) in an effort to decarbonize the generation of electrical energy. In addition to the emergence of this volatile electricity production, the worldwide demand for electricity increases due to a growing population and the intensified electrification of buildings. Smart-buildings represent promising assets for supporting the electrical grid in balancing demand with a supply based on non-dispatchable RES. A smart-building denotes a building equipped with sensor/actuator hardware connected to a federating Building Data Management System (BDMS) which enables high-level applications and services. Tapping into the flexibility inherent to its various entities (load, storage, and generation), a smart-building can provide Demand Response (DR) functionality through the optimization of its energy profile in response to varying electricity prices or commands from the grid.This PhD thesis provides a set of tools, algorithms, and frameworks, revolving around the notion of smart-buildings that foster an enhanced Building-to-Grid (BtG) integration. The tools developed here aim to fill the gap encountered in the literature created by the recent rollout of BDMSs and the ubiquitous Internet of Things (IoT). Furthermore, the mismatch between current DR and the future RES-based smart-grid opens the way to the development of innovative algorithms and frameworks to manage the flexibility offered by smart-buildings for grid-side agents. Built upon BDMSs, two open-source tools have been developed. Firstly, an integrated high-speed emulation and simulation software, dubbed Virtualization Engine (vEngine), allows the simulation of non-existing components of a building directly on-site. The multi-threaded, light architecture of vEngine permits efficient simulations, in a modular environment conceived for developers. Secondly, we describe Open Energy Management System (OpenEMS), a platform that seamlessly connects to any existing BDMS and provides its users with an environment to create their own energy management algorithms, with a focus on Model Predictive Control (MPC). Simulations using a realistic Swiss residential building model demonstrate the effectiveness and modularity of both tools. Additionally, we propose a multi-state load profile identification algorithm tailored to Non-Intrusive Load Monitoring (NILM). Applied to energy disaggregation, it shows promising results for enhanced energy feedbacks to the occupants. To attain daily energy balance within the smart-grid, we propose several algorithms and energy management frameworks, using smart-buildings. An incremental MPC formulation is derived to better balance monthly costs associated to energy and peak demand of large commercial buildings. Simulations data show substantial benefits, for both the building's owner and the grid. Furthermore, we present a decentralized framework for autonomously managing the energy in a community of smart-buildings, with RES. Based on blockchain technology and smart-contracts, the framework optimizes an objective common to the whole community without the need for a central agent. Finally, we suggest a unified BtG model that could benefit grid-side aggregators in both microgrids and electricity markets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-7380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5075/epfl-thesis-7380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu