search
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Subcommunity
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
7,498 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • other engineering and technologies
  • IN

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ignjatović, Jelena; Fiipović, Sanja; Radovanović, Mirjana;

    Abstract Background The aim of this paper is to reconsider the necessity for the green transition and the key preconditions for the implementation of a circular economy in Western Balkan countries. With the objective of the research in mind, the method of analysis and synthesis was applied to determine (1) regulatory and institutional prerequisites for the green transition; (2) the need for the Western Balkan countries to redefine the model of sustainable economic growth towards the green transition; (3) the development opportunities for recovery defined in the Green Agenda for the Western Balkans; and (4) the possibility of implementing the circular economy in the Western Balkans. Main text The main findings of the research indicate that: (1) the countries of the Western Balkan region, following the example of the EU, should define a national strategic approach to the green transition with an accompanying action plan and regulatory framework; (2) the biggest challenge of the green transition is the reform of the energy sector and the restructuring of the energy-intensive economy; (3) the countries have untapped potential in renewable energy sources and report the improvement of energy efficiency; (4) the circular economy can boost the green transition, because the countries of the region have a five-time lower value of resource productivity than the average of the EU, while the generation of waste (excluding major mineral wastes) per GDP unit is lower compared to the EU; (5) cross-sectoral governance should be more coordinated. Conclusions The green transition might be a development opportunity for the Western Balkans, which should enable sustainable economic growth as well as energy security and environmental protection. However, the implementation of the Green Agenda is not easy, because the region faces the problem of underdeveloped regulatory and institutional capacities that might provide not only the base for long-term planning but also financial resources for the efficient implementation of projects. In addition, it is essential to understand the principles of the Green Agenda and the interaction of all activities that should enable the achievement of defined goals.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy, Sustainabili...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy, Sustainability and Society
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    Published in a Diamond OA journal
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy, Sustainabili...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy, Sustainability and Society
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Mazzeo D.;
    Mazzeo D.
    ORCID
    Harvested from ORCID Public Data File

    Mazzeo D. in OpenAIRE
    orcid bw Leva S.;
    Leva S.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Leva S. in OpenAIRE
    Matera N.; Kontoleon K. J.; +3 Authors

    While traditional methods for modelling the thermal and electrical behaviour of photovoltaic (PV) modules rely on analytical and empirical techniques, machine learning is gaining interest as a way to reduce the time, expertise, and tools required by designers or experts while maintaining high accuracy and reliability. This research presents a data-driven machine learning tool based on artificial neural networks (ANNs) that can forecast yearly PV electricity directly at the optimal PV inclination angle without geographic restrictions and is valid for a wide range of electrical characteristics of PV modules. Additionally, empirical correlations were developed to easily determine the optimal PV inclination angle worldwide. The ANN algorithm, developed in Matlab, systematically and quantitatively summarizes the behaviour of eight PV modules in 48 worldwide climatic conditions. The algorithm’s applicability and robustness were proven by considering two different PV modules in the same 48 locations. Yearly climatic variables and electrical/thermal PV module parameters serve as input training data. The yearly PV electricity is derived using dynamic simulations in the TRNSYS environment, which is a simulation program primarily and extensively used in the fields of renewable energy engineering and building simulation for passive as well as active solar design. Multiple performance metrics validate that the ANN-based machine learning tool demonstrates high reliability and accuracy in the PV energy production forecasting for all weather conditions and PV module characteristics. In particular, by using 20 neurons, the highest value of R-square of 0.9797 and the lowest values of the root mean square error and coefficient of variance of 14.67 kWh and 3.8%, respectively, were obtained in the training phase. This high accuracy was confirmed in the ANN validation phase considering other PV modules. An R-square of 0.9218 and values of the root mean square error and coefficient of variance of 31.95 kWh and 7.8%, respectively, were obtained.The results demonstrate the algorithm’s vast potential to enhance the worldwide diffusion and economic growth of solar energy, aligned with the seventh sustainable development goal.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Reports
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Reports
    Article . 2023
    Data sources: DOAJ
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    Access Routes
    Green
    gold
    14
    citations14
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Reports
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Reports
      Article . 2023
      Data sources: DOAJ
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: S. Venkata Mohan; S. Venkata Mohan; orcid Sulogna Chatterjee;
    Sulogna Chatterjee
    ORCID
    Harvested from ORCID Public Data File

    Sulogna Chatterjee in OpenAIRE
    Sulogna Chatterjee;

    The study evaluates the potential of different vegetable wastes namely, composite vegetable waste (CVW), potato waste (PW), sweet potato waste (SPW) and yam waste (YW) as an alternative feedstock for the production of renewable sugars. Thermal assisted chemical pretreatment followed by enzymatic saccharification yielded maximum sugars (0.515 g/g CVW, 0.56 g/g PW, 0.57 g/g SPW and 0.56 g/g YW) with total carbohydrate depolymerization of 95.01%, 88.30%, 90.32% and 88.59% respectively. Obtained sugars were valorized into bioethanol through fermentation using S. cerevisiae by optimizing the pH and temperature. The highest ethanol yield of 251.85 mg/g was obtained from SPW at 35°C followed by YW (240.98 mg/g), PW (235.4 mg/g) and CVW (125.6 mg/g) at pH 5.0. Utilizing the abundantly available vegetable wastes as a renewable feedstock for reducing sugars and subsequent bioethanol production will influence the economics and sustainability of the process positively in circular biorefinery format.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    28
    citations28
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pradeep G. Kini; Naresh Kumar Garg; Kiran Kamath;

    Over the years, the commercial buildings sector has emerged as one of India’s fastest-growing sector and the commercial space is expected to grow four fold between 2015 and 2030. Due to the absence of thermal comfort regulations in India, designers frequently overdesign cooling systems in accordance with international norms, leading to unsustainable practises and energy wastage. The conventional building construction in India’s warm and humid climate make people uncomfortable due to heat gains, forcing the use of cooling equipment that require a lot of energy. Use of passive design options in the building envelope is thought to be a viable strategy for lowering energy usage. The different effects of building exterior components and passive design solutions on the indoor thermal environment can be effectively integrated using the criterion of thermal comfort. A new thermal discomfort index based on adaptive comfort using the numerical method and trapezoidal rule is established and used as a basis of comparison to assess the relative performance of building envelopes. In comparison to the reference building envelope in warm, humid climate, the research shows that careful attention to building envelope design with consideration of various passive options can improve the indoor thermal environment by 5.82 °C, reduce thermal discomfort by 80.75 percent and save energy up to 77 percent.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Reports
    Article . 2022 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Reports
    Article . 2022
    Data sources: DOAJ
    addClaim
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Reports
      Article . 2022 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Reports
      Article . 2022
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Olufolahan Osunmuyiwa;
    Olufolahan Osunmuyiwa
    ORCID
    Harvested from ORCID Public Data File

    Olufolahan Osunmuyiwa in OpenAIRE
    Andrew Peacock; orcid Sarah R. Payne;
    Sarah R. Payne
    ORCID
    Harvested from ORCID Public Data File

    Sarah R. Payne in OpenAIRE
    orcid bw P. Vigneswara Ilavarasan;
    P. Vigneswara Ilavarasan
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    P. Vigneswara Ilavarasan in OpenAIRE
    +1 Authors

    Con el aumento de la demanda de refrigeración y la penetración de recursos de energía renovable descentralizados en las redes eléctricas, la gestión de la demanda de electricidad (DSM) se ha convertido en una herramienta importante para la planificación de la electricidad y la descarbonización en el Sur Global. En la India, la aplicación comercial del DSM no es nueva, pero la respuesta a la demanda (DR) a escala residencial impulsada por los servicios públicos sigue siendo un área inexplorada. Este documento contribuye en dos frentes: para explicar las percepciones de los hogares y los profesionales de la RD: disyunciones entre estas percepciones y sus implicaciones para la aceptación de la RD residencial. Utilizando un enfoque de coproducción, este documento extrae información de dos grupos de partes interesadas en la India: 25 expertos en políticas y servicios públicos de RD y 24 consumidores domésticos. Nuestros resultados muestran que el salvavidas tecnológico subraya de manera generalizada la comprensión de los profesionales de la RD y la agencia de los hogares, un factor crucial en la adopción de la RD a escala residencial sigue siendo una pieza que falta. El documento concluye que, sin considerar la agencia del cabeza de familia, ofrecer un futuro descarbonizado basado en la respuesta a la demanda será un desafío y los consumidores pueden permanecer encerrados en las prácticas socioculturales existentes que niegan la adopción de la DRA. Avec l'augmentation de la demande de refroidissement et la pénétration des ressources énergétiques renouvelables décentralisées dans les réseaux d'électricité, la gestion de la demande d'électricité (DSM) est devenue un outil majeur de planification et de décarbonisation de l'électricité dans les pays du Sud. En Inde, l'application commerciale du DSM n'est pas nouvelle, mais la réponse à la demande à l'échelle résidentielle (DR) axée sur les services publics reste un domaine inexploré. Cet article contribue sur deux fronts – pour expliquer les perceptions des ménages et des praticiens de la RD : les disjonctions entre ces perceptions et ses implications pour l'acceptation de la DR résidentielle En utilisant une approche de coproduction, cet article tire des enseignements de deux ensembles de parties prenantes en Inde - 25 experts en politique et services publics de la RD et 24 consommateurs domestiques. Nos résultats montrent que le sauveurisme technologique souligne de manière omniprésente la compréhension des praticiens de la RD et de l'agence domestique, un facteur crucial dans l'adoption de la RD à l'échelle résidentielle qui reste une pièce manquante. Le document conclut que, sans tenir compte du pouvoir d'action des ménages, il sera difficile d'offrir un avenir décarboné basé sur la réponse à la demande et que les consommateurs peuvent rester enfermés dans des pratiques socioculturelles existantes qui annulent l'adoption de la DR. With the rise in cooling demand and the permeation of decentralised renewable energy resources in electricity networks, electricity demand-side management (DSM) has become a major tool for electricity planning and decarbonisation in the Global South. In India, the commercial application of DSM is not new, yet utility-driven residential-scale demand response (DR) remains an unexplored area. This paper contributes on two fronts – to explicate householders and practitioner's perceptions of DR: disjunctions between these perceptions and its implications for the acceptance of residential DR. Using a co-production approach, this paper draws insights from two sets of stakeholders in India - 25 DR policy and utility experts and 24 household consumers. Our results show that technological saviourism pervasively underscores practitioners understanding of DR and householder agency, a crucial factor in the adoption of DR at the residential scale remains a missing piece. The paper concludes that without considering householder agency, delivering a decarbonised future based on demand response will be challenging and consumers may remain locked into-existing socio-cultural practices that negate the adoption of DR. مع ارتفاع الطلب على التبريد وتغلغل موارد الطاقة المتجددة اللامركزية في شبكات الكهرباء، أصبحت إدارة جانب الطلب على الكهرباء (DSM) أداة رئيسية لتخطيط الكهرباء وإزالة الكربون في الجنوب العالمي. في الهند، لا يعد التطبيق التجاري للوسائط الرقمية والإلكترونية جديدًا، ومع ذلك تظل الاستجابة للطلب على نطاق سكني مدفوعة بالمرافق منطقة غير مستكشفة. تساهم هذه الورقة على جبهتين – لتوضيح تصورات أصحاب المنازل والممارسين حول الحد من مخاطر الكوارث: الانفصال بين هذه التصورات وآثارها على قبول الدكتور المقيم باستخدام نهج الإنتاج المشترك، تستمد هذه الورقة رؤى من مجموعتين من أصحاب المصلحة في الهند - 25 خبيرًا في سياسة الحد من مخاطر الكوارث والمرافق و 24 مستهلكًا منزليًا. تظهر نتائجنا أن الإنقاذ التكنولوجي يؤكد بشكل واسع على فهم الممارسين لوكالة الطبيب المقيم وصاحب المنزل، وهو عامل حاسم في اعتماد الطبيب المقيم على المستوى السكني لا يزال جزءًا مفقودًا. وتخلص الورقة إلى أنه دون النظر في وكالة الأسر المعيشية، فإن تحقيق مستقبل خالٍ من الكربون بناءً على استجابة الطلب سيكون أمرًا صعبًا وقد يظل المستهلكون محاصرين في الممارسات الاجتماعية والثقافية القائمة التي تلغي تبني الدكتور.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Policyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Policy
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Policy
    Article
    License: CC BY
    Data sources: UnpayWall
    https://dx.doi.org/10.60692/tv...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/qz...
    Other literature type . 2021
    Data sources: Datacite
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Policyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Policy
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Policy
      Article
      License: CC BY
      Data sources: UnpayWall
      https://dx.doi.org/10.60692/tv...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/qz...
      Other literature type . 2021
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Dirk Van den Poel;
    Dirk Van den Poel
    ORCID
    Harvested from ORCID Public Data File

    Dirk Van den Poel in OpenAIRE
    Sanjay Banerji; orcid Gyanendra Singh Sisodia;
    Gyanendra Singh Sisodia
    ORCID
    Harvested from ORCID Public Data File

    Gyanendra Singh Sisodia in OpenAIRE
    orcid Isabel Soares;
    Isabel Soares
    ORCID
    Harvested from ORCID Public Data File

    Isabel Soares in OpenAIRE

    AbstractInvestment cost associated to the generation of renewable energy such as wind and solar is generally estimated to be higher. As the wind and solar energy generation do not require any fuel, the marginal cost of electricity generation through renewable energy technologies is very low. Therefore, in the long run, the prices are expected to get reduced, once investment cost is recovered; whereas, in the short run, the expected energy price of electricity increases.However, the final electricity price depends on several factors such as distribution cost, operating cost, storage cost (if any), load factor, and cost associated to switching of technology for electricity generation through total energy mix. In case of solar and wind energy generation, the technologies have grid priorities, but solar and wind are highly sensitive to weather conditions. Therefore, to make the system efficient, an energy system also depends on coal fired plant, gas fired plants, nuclear plants, biomass, hydro, etc. for meeting the energy supply needs. Based on overall capacities, investment costs, energy imports and fuel prices, the final electricity prices are decided. With the current trends in advancement of technologies, and priority for one technology over the other, the prices can still fluctuate in the future.In the current energy literature, methods available for price forecasting followed the modelling approaches that use range of variables for forecasting the possible scenarios. These scenarios and forecasting might affect an investment decisions of investors. However, the challenging future scenario in European energy mix addresses the issue of falling electricity price while the renewable energy technologies getting cheaper; which tends to freeze further investments, unless sufficient government support is available.The current study aims to explore the various economic forecasting methods presented in the literature for the purpose of energy price modelling, in different contexts, such as geographies, demand, supply, marketing, strategy, etc. The results suggest a large variation in the methodologies being used by scientists to address the issues in different countries. A wide range of variable selection approach has been observed. Our study suggests that the current market has not researched well on long run forecasting methods. This study also aims to present some thoughts on energy marketing in the context of emerging economies, such as India for the energy policy framing.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article . 2015 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article . 2015
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article . 2015 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article . 2015
      License: CC BY NC ND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: B. Nérot; orcid N. Lamaison;
    N. Lamaison
    ORCID
    Harvested from ORCID Public Data File

    N. Lamaison in OpenAIRE
    R. Bavière; orcid B. Lacarrière;
    B. Lacarrière
    ORCID
    Harvested from ORCID Public Data File

    B. Lacarrière in OpenAIRE
    +1 Authors

    This article studies the economical, technical and environmental aspects of a third generation district heating (DH) network with absorption chillers installed at substation level in order to satisfy the cooling demands. This network solution hence takes advantage of the distribution facilities of existing DH systems. The study aims at evaluating the technical and environmental performances of this new district heating architecture, when sized and operated according to an economic objective using the Mixed Integer Linear Programming (MILP) optimization formalism. It is compared to the case where cooling demands are met using individual chillers.The paper first presents the production, distribution, demand and storage models. Regarding the demand side, different heating and cooling scenarios are studied by varying the proportions of residential and tertiary buildings. The model is fed in a second part with data from the French context. In particular, we rely on typical French weather conditions, thermal loads and energy costs.The analysis of the results focuses on the cooling part. It appears that the thermal network solution achieves on average a 3.6% reduction in the levelized cost of space cooling energy. In the worst case space cooling exergy efficiency goes through a 82% decrease. GHG emissions decrease on average by 7.7% thanks to the absence of leakage of refrigerant with high global warming potential. Overall, these emissions are low due to the low carbon content of French electricity.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Reports
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Reports
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Reports
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    HAL-CEA
    Article . 2021
    Data sources: HAL-CEA
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    gold
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Reports
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Reports
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Reports
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      HAL-CEA
      Article . 2021
      Data sources: HAL-CEA
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Debadyuti Das;
    Debadyuti Das
    ORCID
    Harvested from ORCID Public Data File

    Debadyuti Das in OpenAIRE
    Virander Kumar; orcid Amit Kumar Bardhan;
    Amit Kumar Bardhan
    ORCID
    Harvested from ORCID Public Data File

    Amit Kumar Bardhan in OpenAIRE
    Rajesh Kumar;

    Purpose The study aims to find out an appropriate volume of power to be procured through long-term power purchase agreements (PPAs), the volume to be sourced from the power exchange through day-ahead and term-ahead options and also a suitable volume to be sold at different points of time within a day, which would finally lead to the optimum cost of power procurement. Design/methodology/approach The study has considered a Delhi-based power distribution utility and has collected all relevant data from its archival sources. A stochastic optimization model has been developed to capture the problem of power procurement faced by the distribution utility, which is modelled as a mixed integer linear programming problem. Sensitivity analyses were carried out on the important parameters including hourly demand of power, unit variable cost of power available through PPAs, maximum back-down percentage allowed under PPAs, etc., to investigate their impact on daily cost of power under PPAs, daily cost of power under day-ahead and term-ahead options, daily sales revenue and also the net total daily cost of power procurement. Findings The findings include the appropriate volume of power procured from different suppliers through PPAs and from the power exchange under day-ahead and term-ahead options and also the surplus volume of power sold under the day-ahead arrangement. It has also computed the total cost of power purchased under PPAs, the cost of power purchased from the power exchange under day-ahead and term-ahead options and also the revenue generated out of the sale of surplus power under the day-ahead arrangement. In addition, it has also presented the results of sensitivity analyses, which provide rich managerial insights. Originality/value The paper makes two significant contributions to the existing body of power procurement literature. First, the stochastic mixed-integer linear programming model helps decision makers in determining the right volume of power to be purchased from different sources. Second, based on the findings of the procurement model, a power procurement framework is developed considering the dimensions of uncertainty in power supply and the cost of power procurement. This power procurement framework would aid managers in making procurement decisions under different scenarios.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Energy Sector Management
    Article . 2019 . Peer-reviewed
    License: Emerald Insight Site Policies
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Energy Sector Management
      Article . 2019 . Peer-reviewed
      License: Emerald Insight Site Policies
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Animesh Pal;
    Animesh Pal
    ORCID
    Harvested from ORCID Public Data File

    Animesh Pal in OpenAIRE
    Animesh Pal; orcid bw Seong Ho Yoon;
    Seong Ho Yoon
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Seong Ho Yoon in OpenAIRE
    Bidyut Baran Saha; +7 Authors

    Abstract To properly address the threat of global warming, there is an urgent need to reduce CO2 from the atmosphere through the development of environment-friendly technologies. Therefore, capturing/storage and utilization of CO2 as a refrigerant for adsorption cooling/heating technologies have been gaining momentum in the last decades. This study focuses on the development of novel activated carbons (ACs) with extremely large pore volume and high surface area from environment-friendly and abundantly available biomass precursor seeking higher CO2 adsorption capacity. Four AC samples are synthesized from the two biomass precursor’s namely waste palm trunk (WPT) and mangrove (M) employing potassium hydroxide as an activating agent. The porous properties of the synthesized ACs are investigated from the N2 adsorption/desorption data. It is praiseworthy to elucidate that the highest surface area and pore volume for biomass-derived ACs (BACs) are obtained 2927 m2 g−1 and 2.87 cm3 g−1, respectively. CO2 adsorption characteristics are investigated using a high precision magnetic suspension balance unit at five different temperatures ranging from 25 to 70 °C with various pressures. The WPT-AC (C500)/CO2 pair shows the highest adsorption uptake as high as 1.791 g g−1 (excess adsorption) and 2.172 g g−1 (absolute adsorption) at 25 °C and 5.04 MPa, which is superior to any other ACs reported to date. To the best of our knowledge, porous properties and adsorption uptake of CO2 reported in this study are the up-to-date benchmarks. The results show that novel BACs/CO2 pairs possess remarkably high adsorption performance, which will contribute towards the advancement of various adsorption-based technologies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    65
    citations65
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid G. Kumaravel Dinesh;
    G. Kumaravel Dinesh
    ORCID
    Harvested from ORCID Public Data File

    G. Kumaravel Dinesh in OpenAIRE
    Sunil Geddam; Thirugnanasambandam Sivasankar;

    Abstract There has been a considerable recent interest in the design, development and testing of various types of solar cookers like box type, concentrator type and oven type around the globe. Out of these, box type solar cookers have so far been disseminated at the mass level which is the simplest in terms of operation and fabrication and the temperature of around 100 °C is achieved. This range of temperature is suitable for cooking by boiling, which is prevalent in the most parts of India. However, in spite of having these desired features, such cooker may either fail to cook or take a longer time to cook full load of food. The design parameters of solar cooker are among the several other important parameters that influence its thermal performance. In order to analyze the thermal performance of a box-type solar cooker in a better qualitative manner, it is therefore necessary to have the knowledge of design parameters, optical efficiency and heat capacity of the cooker to provide a basis for the selection of proper materials for its construction. This study deals with a test procedure to determine these parameters using the experimentally obtained F2 data for different load of water and to apply the proposed procedure to predict the heating characteristic curves and to validate the proposed methodology by comparing the predicted values with those obtained experimentally.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    68
    citations68
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
We use cookies
This website uses essential cookies to ensure its proper operation and tracking cookies to understand how you interact with it. The latter will be set only upon approval.

Read more about our Cookies policy.