- home
- Search
- Energy Research
- 2016-2025
- DE
- IT
- Spanish National Research Council
- Energy Research
- 2016-2025
- DE
- IT
- Spanish National Research Council
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Spain, United Kingdom, United Kingdom, Netherlands, United Kingdom, United Kingdom, FrancePublisher:Copernicus GmbH Authors: Hermann Behling; John Carson;Bronwen S. Whitney;
Bronwen S. Whitney
Bronwen S. Whitney in OpenAIREWilliam D. Gosling;
+12 AuthorsWilliam D. Gosling
William D. Gosling in OpenAIREHermann Behling; John Carson;Bronwen S. Whitney;
Bronwen S. Whitney
Bronwen S. Whitney in OpenAIREWilliam D. Gosling;
William D. Gosling;William D. Gosling
William D. Gosling in OpenAIREMathias Vuille;
Mathias Vuille
Mathias Vuille in OpenAIREM. S. Tonello;
Francis E. Mayle;M. S. Tonello
M. S. Tonello in OpenAIREIsabel Hoyos;
Isabel Hoyos
Isabel Hoyos in OpenAIRECatalina González-Arango;
Henry Hooghiemstra;Catalina González-Arango
Catalina González-Arango in OpenAIREValentí Rull;
Valentí Rull
Valentí Rull in OpenAIRES.G.A. Flantua;
S.G.A. Flantua
S.G.A. Flantua in OpenAIREM.-P. Ledru;
M.-P. Ledru
M.-P. Ledru in OpenAIREEncarni Montoya;
Encarni Montoya
Encarni Montoya in OpenAIREAntonio Maldonado;
Antonio Maldonado
Antonio Maldonado in OpenAIREhandle: 11245/1.521194 , 10261/130090
Abstract. An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation–climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America – 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)CIRAD: HAL (Agricultural Research for Development)Article . 2016Full-Text: https://hal.umontpellier.fr/hal-03043388Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-483-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 567 Powered bymore_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)CIRAD: HAL (Agricultural Research for Development)Article . 2016Full-Text: https://hal.umontpellier.fr/hal-03043388Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-483-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 21 Sep 2021 SpainPublisher:Dryad Funded by:EC | Gradual_ChangeEC| Gradual_ChangeAuthors:Smith, Linnea C;
Orgiazzi, Alberto; Eisenhauer, Nico; Cesarz, Simone; +10 AuthorsSmith, Linnea C
Smith, Linnea C in OpenAIRESmith, Linnea C;
Orgiazzi, Alberto; Eisenhauer, Nico; Cesarz, Simone; Lochner, Alfred; Jones, Arwyn; Bastida, Felipe; Patoine, Guillaume; Reitz, Thomas; Buscot, François; Rillig, Matthias; Heintz-Buschart, Anna; Lehmann, Anika; Guerra, Carlos;Smith, Linnea C
Smith, Linnea C in OpenAIREhandle: 10261/286145
The aim of this study was to quantify direct and indirect relationships between soil microbial community properties (potential basal respiration, microbial biomass) and abiotic factors (soil, climate) in three major land-cover types. Location: Europe Time period: 2018 Major taxa studied: Microbial community (fungi and bacteria) We collected 881 soil samples from across Europe in the framework of the Land Use/Land Cover Area Frame Survey (LUCAS). We measured potential soil basal respiration at 20ºC and microbial biomass (substrate-induced respiration) using an O2-microcompensation apparatus. Climate and soil data were obtained from previous LUCAS surveys and online databases. Structural equation modeling (SEM) was used to quantify relationships between variables, and equations extracted from SEMs were used to create predictive maps. Fatty acid methyl esters were measured in a subset of samples to distinguish fungal from bacterial biomass. Soil microbial properties in croplands were more heavily affected by climate variables than those in forests. Potential soil basal respiration and microbial biomass were correlated in forests but decoupled in grasslands and croplands, where microbial biomass depended on soil carbon. Forests had a higher ratio of fungi to bacteria than grasslands or croplands. Soil microbial communities in grasslands and croplands are likely carbon-limited in comparison with those in forests, and forests have a higher dominance of fungi indicating differences in microbial community composition. Notably, the often already-degraded soils of croplands could be more vulnerable to climate change than more natural soils. The provided maps show potentially vulnerable areas that should be explicitly accounted for in coming management plans to protect soil carbon and slow the increasing vulnerability of European soils to climate change. [Methods] Soil samples were collected during the 2018 LUCAS soil sampling campaign. Soil chemical and physical properties were measured at the Joint Research Centre in Ispra, Italy (Orgiazzi et al., 2018). Soil microbial respiration and biomass, as well as water content and water holding capacity, were measured in the Eisenhauer lab of the German Centre for Integrative Biodiversity Research. Fungi/Bacteria was measured by fatty acid analysis by Felipe Bastida at CEBAS CSIC. Climate and geographical data were harvested from various databases, which are listed in Appendix 1 (data sources) of the associated paper. For more details on the soil sampling and physical and chemical properties, see: Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140-153. https://doi.org/10.1111/ejss.12499 For more details on the measurements of soil microbial respiration and biomass, fatty acids, and water holding capacity, see the supplementary methods of the associated paper (Appendix 2). [Usage Notes] Fatty acid analysis was performed for a subset of 267 samples. Water holding capacity and associated measurements of basal respiration was analyzed in a subset of 100 samples. The samples that were not in these subsets have NA values for the columns associated with these measurements. In order to protect the precise locations of the LUCAS sampling sites, latitude and longitude values could not be given. The approximate location of each sampling site is instead described by the NUTS3 region. If you wish to replicate the structural equation modeling described in the paper, for which latitude is required, please get in touch. A description of each column is available in the associated metadata file. Deutsche Forschungsgemeinschaft, Award: FZT 118-202548816. European Research Council, Award: 694368. European Commission. Directorate-General for the Environment. Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement du Service Public de Wallonie. Eurostat. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 76visibility views 76 download downloads 19 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.g4f4qrfqn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Netherlands, Spain, AustraliaPublisher:Copernicus GmbH Funded by:EC | SIP-VOL+, ARC | ARC Centres of Excellence..., RSF | Scientific basis of the n... +2 projectsEC| SIP-VOL+ ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,RSF| Scientific basis of the national biobank - depository of the living systems ,UKRI| Process-Based Emergent Constraints on Global Physical and Biogeochemical Feedbacks ,EC| IMBALANCE-PAuthors:Anna B. Harper;
Anna B. Harper
Anna B. Harper in OpenAIREPeter M. Cox;
Peter M. Cox
Peter M. Cox in OpenAIREPierre Friedlingstein;
Andy J. Wiltshire; +17 AuthorsPierre Friedlingstein
Pierre Friedlingstein in OpenAIREAnna B. Harper;
Anna B. Harper
Anna B. Harper in OpenAIREPeter M. Cox;
Peter M. Cox
Peter M. Cox in OpenAIREPierre Friedlingstein;
Andy J. Wiltshire;Pierre Friedlingstein
Pierre Friedlingstein in OpenAIREChris D. Jones;
Chris D. Jones
Chris D. Jones in OpenAIREStephen Sitch;
Stephen Sitch
Stephen Sitch in OpenAIRELina M. Mercado;
Margriet Groenendijk; Eddy Robertson;Lina M. Mercado
Lina M. Mercado in OpenAIREJens Kattge;
Gerhard Bönisch;Jens Kattge
Jens Kattge in OpenAIREOwen K. Atkin;
Owen K. Atkin
Owen K. Atkin in OpenAIREMichael Bahn;
Johannes Cornelissen;Michael Bahn
Michael Bahn in OpenAIREÜlo Niinemets;
Vladimir Onipchenko;Ülo Niinemets
Ülo Niinemets in OpenAIREJosep Peñuelas;
Josep Peñuelas
Josep Peñuelas in OpenAIRELourens Poorter;
Lourens Poorter
Lourens Poorter in OpenAIREPeter B. Reich;
Nadjeda A. Soudzilovskaia;Peter B. Reich
Peter B. Reich in OpenAIREPeter van Bodegom;
Peter van Bodegom
Peter van Bodegom in OpenAIREAbstract. Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 26 Powered bymore_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Chemical Society (ACS) Authors: Antonio J. Molina-Serrano; José M. Luque-Centeno;David Sebastián;
David Sebastián
David Sebastián in OpenAIRELuis F. Arenas;
+5 AuthorsLuis F. Arenas
Luis F. Arenas in OpenAIREAntonio J. Molina-Serrano; José M. Luque-Centeno;David Sebastián;
David Sebastián
David Sebastián in OpenAIRELuis F. Arenas;
Luis F. Arenas
Luis F. Arenas in OpenAIREThomas Turek;
Irene Vela;Thomas Turek
Thomas Turek in OpenAIREFrancisco Carrasco-Marín;
María J. Lázaro;Francisco Carrasco-Marín
Francisco Carrasco-Marín in OpenAIRECinthia Alegre;
Cinthia Alegre
Cinthia Alegre in OpenAIREAn increasing number of studies focus on organic flow batteries (OFBs) as possible substitutes for the vanadium flow battery (VFB), featuring anthraquinone derivatives, such as anthraquinone-2,7-disulfonic acid (2,7-AQDS). VFBs have been postulated as a promising energy storage technology. However, the fluctuating cost of vanadium minerals and risky supply chains have hampered their implementation, while OFBs could be prepared from renewable raw materials. A critical component of flow batteries is the electrode material, which can determine the power density and energy efficiency. Yet, and in contrast to VFBs, studies on electrodes tailored for OFBs are scarce. Hence, in this work, we propose the modification of commercial carbon felts with reduced graphene oxide (rGO) and poly(ethylene glycol) for the 2,7-AQDS redox couple and to preliminarily assess its effects on the efficiency of a 2,7-AQDS/ferrocyanide flow battery. Results are compared to those of a VFB to evaluate if the benefits of the modification are transferable to OFBs. The modification of carbon felts with surface oxygen groups introduced by the presence of rGO enhanced both its hydrophilicity and surface area, favoring the catalytic activity toward VFB and OFB reactions. The results are promising, given the improved behavior of the modified electrodes. Parallels are established between the electrodes of both FB technologies.
ACS Applied Energy M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.3c03223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert ACS Applied Energy M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.3c03223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsAuthors: Signe Normand; Maite Gartzia;Philip A. Wookey;
Maja K. Sundqvist; +61 AuthorsPhilip A. Wookey
Philip A. Wookey in OpenAIRESigne Normand; Maite Gartzia;Philip A. Wookey;
Maja K. Sundqvist; Maja K. Sundqvist;Philip A. Wookey
Philip A. Wookey in OpenAIREMartin Wilmking;
Martin Wilmking
Martin Wilmking in OpenAIREJuha M. Alatalo;
Alexander Sokolov; James D. M. Speed; Anna Skoracka;Juha M. Alatalo
Juha M. Alatalo in OpenAIREDagmar Egelkraut;
Lee Ann Fishback; Ashley L. Asmus;Dagmar Egelkraut
Dagmar Egelkraut in OpenAIREC. Guillermo Bueno;
Timo Kumpula; Dorothee Ehrich;C. Guillermo Bueno
C. Guillermo Bueno in OpenAIREAgata Buchwal;
Agata Buchwal;Agata Buchwal
Agata Buchwal in OpenAIREElina Kaarlejärvi;
Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren;Elina Kaarlejärvi
Elina Kaarlejärvi in OpenAIREMariska te Beest;
Mariska te Beest
Mariska te Beest in OpenAIREEeva M. Soininen;
Eeva M. Soininen
Eeva M. Soininen in OpenAIREJean-Pierre Tremblay;
Jean-Pierre Tremblay
Jean-Pierre Tremblay in OpenAIREKari Anne Bråthen;
Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters;Kari Anne Bråthen
Kari Anne Bråthen in OpenAIREIsla H. Myers-Smith;
Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange;Isla H. Myers-Smith
Isla H. Myers-Smith in OpenAIREEsther Lévesque;
Esther Lévesque
Esther Lévesque in OpenAIREIngibjörg S. Jónsdóttir;
Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova;Ingibjörg S. Jónsdóttir
Ingibjörg S. Jónsdóttir in OpenAIRETommi Andersson;
Marc Macias-Fauria;Tommi Andersson
Tommi Andersson in OpenAIREDavid A. Watts;
David A. Watts
David A. Watts in OpenAIREHeike Zimmermann;
Adrian V. Rocha;Heike Zimmermann
Heike Zimmermann in OpenAIREDiane C. Huebner;
Diane C. Huebner
Diane C. Huebner in OpenAIREJulia Boike;
Julia Boike
Julia Boike in OpenAIREDavid S. Hik;
Otso Suominen; Christine Urbanowicz;David S. Hik
David S. Hik in OpenAIREIsabel C. Barrio;
Isabel C. Barrio
Isabel C. Barrio in OpenAIRENikita Tananaev;
Annika Hofgaard;Nikita Tananaev
Nikita Tananaev in OpenAIREJelena Lange;
Jelena Lange
Jelena Lange in OpenAIREBruce C. Forbes;
John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov;Bruce C. Forbes
Bruce C. Forbes in OpenAIREErik J. van Nieukerken;
Erik J. van Nieukerken
Erik J. van Nieukerken in OpenAIRENiels Martin Schmidt;
Niels Martin Schmidt
Niels Martin Schmidt in OpenAIREChronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Francesco Colloca;Fabio Bulleri;
Fabio Bulleri
Fabio Bulleri in OpenAIREAntonio Di Franco;
Cristiana Guerranti; +28 AuthorsAntonio Di Franco
Antonio Di Franco in OpenAIREFrancesco Colloca;Fabio Bulleri;
Fabio Bulleri
Fabio Bulleri in OpenAIREAntonio Di Franco;
Cristiana Guerranti; Monia Renzi; Enric Ballesteros; Maria Cristina Mangano; Carlo Cerrano; Antonio Pusceddu; Gianluca Sarà; Ferdinando Boero; Ferdinando Boero;Antonio Di Franco
Antonio Di Franco in OpenAIREGil Rilov;
Gil Rilov
Gil Rilov in OpenAIREStanislao Bevilacqua;
Joaquim Garrabou; Joaquim Garrabou; Marco Milazzo;Stanislao Bevilacqua
Stanislao Bevilacqua in OpenAIRELaura Airoldi;
Laura Airoldi;Laura Airoldi
Laura Airoldi in OpenAIREFiorenza Micheli;
Benjamin S. Halpern; Paolo Guidetti; Paolo Guidetti;Fiorenza Micheli
Fiorenza Micheli in OpenAIREJoachim Claudet;
Joachim Claudet
Joachim Claudet in OpenAIRELisandro Benedetti-Cecchi;
Lisandro Benedetti-Cecchi
Lisandro Benedetti-Cecchi in OpenAIREGiuseppe Guarnieri;
Martina Coppari; Antonio Terlizzi; Antonio Terlizzi;Giuseppe Guarnieri
Giuseppe Guarnieri in OpenAIREEmma Cebrian;
Simonetta Fraschetti;Emma Cebrian
Emma Cebrian in OpenAIREStelios Katsanevakis;
Stelios Katsanevakis
Stelios Katsanevakis in OpenAIREGlobal change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.
https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESAuthors:David A. Carozza;
Steve Mackinson;David A. Carozza
David A. Carozza in OpenAIREJeroen Steenbeek;
Jeroen Steenbeek
Jeroen Steenbeek in OpenAIREVilly Christensen;
+37 AuthorsVilly Christensen
Villy Christensen in OpenAIREDavid A. Carozza;
Steve Mackinson;David A. Carozza
David A. Carozza in OpenAIREJeroen Steenbeek;
Jeroen Steenbeek
Jeroen Steenbeek in OpenAIREVilly Christensen;
Philippe Verley;Villy Christensen
Villy Christensen in OpenAIRESusa Niiranen;
Susa Niiranen
Susa Niiranen in OpenAIREAndrea Bryndum-Buchholz;
Andrea Bryndum-Buchholz
Andrea Bryndum-Buchholz in OpenAIREMatthias Büchner;
Matthias Büchner
Matthias Büchner in OpenAIREDerek P. Tittensor;
Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton;Derek P. Tittensor
Derek P. Tittensor in OpenAIREJulia L. Blanchard;
Julia L. Blanchard
Julia L. Blanchard in OpenAIRERicardo Oliveros-Ramos;
Ricardo Oliveros-Ramos
Ricardo Oliveros-Ramos in OpenAIREJacob Schewe;
Jacob Schewe
Jacob Schewe in OpenAIRESimon Jennings;
Simon Jennings; Manuel Barange;Simon Jennings
Simon Jennings in OpenAIRECharles A. Stock;
Charles A. Stock
Charles A. Stock in OpenAIREBoris Worm;
Miranda C. Jones;Boris Worm
Boris Worm in OpenAIRENicola D. Walker;
Nicola D. Walker
Nicola D. Walker in OpenAIRELaurent Bopp;
Olivier Maury; Olivier Maury; William W. L. Cheung;Laurent Bopp
Laurent Bopp in OpenAIRETiago H. Silva;
Tiago H. Silva
Tiago H. Silva in OpenAIREDaniele Bianchi;
Daniele Bianchi
Daniele Bianchi in OpenAIREHeike K. Lotze;
Tilla Roy;Heike K. Lotze
Heike K. Lotze in OpenAIRECatherine M. Bulman;
Tyler D. Eddy; Tyler D. Eddy;Catherine M. Bulman
Catherine M. Bulman in OpenAIRENicolas Barrier;
Nicolas Barrier
Nicolas Barrier in OpenAIREMarta Coll;
Eric D. Galbraith; Eric D. Galbraith;Marta Coll
Marta Coll in OpenAIREJose A. Fernandes;
Jose A. Fernandes
Jose A. Fernandes in OpenAIREYunne-Jai Shin;
Yunne-Jai Shin;Yunne-Jai Shin
Yunne-Jai Shin in OpenAIREWhile the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Funded by:MIURMIURAuthors:Pazzaglia, J.;
Pazzaglia, J.
Pazzaglia, J. in OpenAIREBadalamenti, F.;
Badalamenti, F.
Badalamenti, F. in OpenAIREBernardeau-Esteller, J. (Jaime);
Ruiz-Fernández, J.M. (Juan Manuel); +3 AuthorsBernardeau-Esteller, J. (Jaime)
Bernardeau-Esteller, J. (Jaime) in OpenAIREPazzaglia, J.;
Pazzaglia, J.
Pazzaglia, J. in OpenAIREBadalamenti, F.;
Badalamenti, F.
Badalamenti, F. in OpenAIREBernardeau-Esteller, J. (Jaime);
Ruiz-Fernández, J.M. (Juan Manuel); Giacalone, V.M.;Bernardeau-Esteller, J. (Jaime)
Bernardeau-Esteller, J. (Jaime) in OpenAIREProcaccini, G.;
Procaccini, G.
Procaccini, G. in OpenAIREMarín-Guirao, L. (Lázaro);
Marín-Guirao, L. (Lázaro)
Marín-Guirao, L. (Lázaro) in OpenAIRESeawater warming and increased incidence of marine heatwaves (MHW) are threatening the integrity of coastal marine habitats including seagrasses, which are particularly vulnerable to climate changes. Novel stress tolerance-enhancing strategies, including thermo-priming, have been extensively applied in terrestrial plants for enhancing resilience capacity under the re-occurrence of a stress event. We applied, for the first time in seedlings of the Mediterranean seagrass Posidonia oceanica, a thermo-priming treatment through the exposure to a simulated warming event. We analyzed the photo-physiological and growth performance of primed and non-primed seedlings, and the gene expression responses of selected genes (i.e. stress-, photosynthesis- and epigenetic-related genes). Results revealed that during the re-occurring stress event, primed seedlings performed better than unprimed showing unaltered photo-physiology supported by high expression levels of genes related to stress response, photosynthesis, and epigenetic modifications. These findings offer new opportunities to improve conservation and restoration efforts in a future scenario of environmental changes.
Marine Pollution Bul... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOMarine Pollution BulletinArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2021.113164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 35 Powered bymore_vert Marine Pollution Bul... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOMarine Pollution BulletinArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2021.113164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Publicly fundedAuthors:Pedro Beca-Carretero;
Freddy Guihéneuf; Lázaro Marín-Guirao;Pedro Beca-Carretero
Pedro Beca-Carretero in OpenAIREJaime Bernardeau-Esteller;
+3 AuthorsJaime Bernardeau-Esteller
Jaime Bernardeau-Esteller in OpenAIREPedro Beca-Carretero;
Freddy Guihéneuf; Lázaro Marín-Guirao;Pedro Beca-Carretero
Pedro Beca-Carretero in OpenAIREJaime Bernardeau-Esteller;
Rocío García-Muñoz;Jaime Bernardeau-Esteller
Jaime Bernardeau-Esteller in OpenAIREDagmar B. Stengel;
Dagmar B. Stengel
Dagmar B. Stengel in OpenAIREJuan M. Ruiz;
Juan M. Ruiz
Juan M. Ruiz in OpenAIREGlobal warming is emerging as one of the most critical threats to terrestrial and marine species worldwide. This study assessed the effects of simulated warming events in culture on two seagrass species, Posidonia oceanica and Cymodocea nodosa, which play a key role in coastal ecosystems of the Mediterranean Sea. Changes in fatty acids as key metabolic indicators were assessed in specimens from two geographical populations of each species adapted to different in situ temperature regimes. Total fatty acid (TFA) content and composition were compared in C. nodosa and P. oceanica from natural populations and following exposure to heat stress in culture. After heat exposure, individuals of C. nodosa and P. oceanica adapted to colder temperatures in situ accumulated significantly more TFA than controls. For both species, the proportion of polyunsaturated fatty acids (PUFA) decreased, and the percentage of saturated fatty acids (SFA) increased significantly after the heat treatment. These results highlight that populations of both species living at warmest temperatures in situ were more thermo-tolerant and exhibited a greater capacity to cope with heat stress by readjusting their lipid composition faster. Finally, exposure of seagrasses to warmer conditions may induce a decrease in PUFA/SFA ratio which could negatively affect their nutritional value and generate important consequences in the healthy state of next trophic levels.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2017Data sources: Repositorio Institucional Digital del IEOMarine Pollution BulletinArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2017.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 27 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2017Data sources: Repositorio Institucional Digital del IEOMarine Pollution BulletinArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2017.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, United Kingdom, Australia, Portugal, United Kingdom, United Kingdom, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E..., ARC | Testing climatic, physiol..., ARC | Woodland response to elev... +3 projectsNSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the Atmosphere ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,NSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone ServicesAuthors:Jordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIRETimothy J. Brodribb;
Simon M. Landhäusser;Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREMelanie J. B. Zeppel;
+62 AuthorsMelanie J. B. Zeppel
Melanie J. B. Zeppel in OpenAIREJordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIRETimothy J. Brodribb;
Simon M. Landhäusser;Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREMelanie J. B. Zeppel;
Melanie J. B. Zeppel;Melanie J. B. Zeppel
Melanie J. B. Zeppel in OpenAIREWilliam T. Pockman;
Thomas Kolb;William T. Pockman
William T. Pockman in OpenAIREHenrik Hartmann;
Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law;Henrik Hartmann
Henrik Hartmann in OpenAIREL. Turin Dickman;
Matthew J. Germino;L. Turin Dickman
L. Turin Dickman in OpenAIREDanielle A. Way;
Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry;Danielle A. Way
Danielle A. Way in OpenAIREDavid T. Tissue;
Nate G. McDowell; J. D. Muss;David T. Tissue
David T. Tissue in OpenAIREBrent E. Ewers;
Honglang Duan; Patrick J. Hudson;Brent E. Ewers
Brent E. Ewers in OpenAIREPatrick J. Mitchell;
Patrick J. Mitchell
Patrick J. Mitchell in OpenAIREFrida I. Piper;
Elizabeth A. Pinkard; Lucía Galiano;Frida I. Piper
Frida I. Piper in OpenAIRETrenton E. Franz;
Trenton E. Franz
Trenton E. Franz in OpenAIREUwe G. Hacke;
Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins; Arthur Gessler; David M. Love; Jeffrey M. Kane; Sanna Sevanto;Uwe G. Hacke
Uwe G. Hacke in OpenAIREHarald Bugmann;
Harald Bugmann
Harald Bugmann in OpenAIREMaurizio Mencuccini;
David D. Breshears; Henry D. Adams;Maurizio Mencuccini
Maurizio Mencuccini in OpenAIRENúria Garcia-Forner;
David A. Galvez;Núria Garcia-Forner
Núria Garcia-Forner in OpenAIREJames D. Lewis;
James D. Lewis
James D. Lewis in OpenAIREDavid J. Beerling;
David J. Beerling
David J. Beerling in OpenAIREMichael O'Brien;
Michael O'Brien
Michael O'Brien in OpenAIREChonggang Xu;
Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord;Chonggang Xu
Chonggang Xu in OpenAIREEnrico A. Yepez;
Enrico A. Yepez
Enrico A. Yepez in OpenAIREMichel Vennetier;
Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb;Michel Vennetier
Michel Vennetier in OpenAIREFrancesco Ripullone;
William R. L. Anderegg;Francesco Ripullone
Francesco Ripullone in OpenAIRERodrigo Vargas;
Rodrigo Vargas
Rodrigo Vargas in OpenAIRERodrigo Hakamada;
Rodrigo Hakamada
Rodrigo Hakamada in OpenAIREMichael G. Ryan;
Michael G. Ryan;Michael G. Ryan
Michael G. Ryan in OpenAIREWidespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 790 citations 790 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 74visibility views 74 download downloads 2,340 Powered bymore_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu