- home
- Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- 1. No poverty
- IT
- EU
- Energies
- Energy Research
- 7. Clean energy
- 13. Climate action
- 1. No poverty
- IT
- EU
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors:
Davide Della Giustina; Davide Della Giustina
Davide Della Giustina in OpenAIRE
Stefano Rinaldi; Stefano Robustelli; Andrea Angioni;Stefano Rinaldi
Stefano Rinaldi in OpenAIREdoi: 10.3390/en14051277
handle: 11379/546803
The management of the distribution network is becoming increasingly important as the penetration of distributed energy resources is increasing. Reliable knowledge of the real-time status of the network is essential if algorithms are to be used to help distribution system operators define network configurations. State Estimation (SE) algorithms are capable of producing such an accurate snapshot of the network state but, in turn, require a wide range of information, e.g., network topology, real-time measurement and power profiles from customers/productions. Those profiles which may, in principle, be provided by smart meters are not always available due to technical limitations of existing Advanced Metering Infrastructure (AMI) in terms of communication, storage and computing power. That means that power profiles are only available for a subset of customers. The paper proposes an approach that can overcome these limitations: the remaining profiles, required by SE algorithms, are generated on the basis of customer-related information, identifying clusters of customers with similar features, such as the same contract and pattern of energy consumption. For each cluster, a power profile estimator is generated using long-term power profiles of a limited sub-set of customers, randomly selected from the cluster itself. The synthesized full power profile, representing each customer of the distribution network, is then obtained by scaling the power profile estimator of the cluster to which the customer belongs, by the monthly energy exchanged by that customer, data that are easily available. The feasibility of the proposed approach was validated considering the distribution grid of Unareti SpA, an Italian Distribution System Operator (DSO), operating in northern Italy and serving approximately one million customers. The application of the proposed approach to the actual infrastructure shows some limitations in terms of the accuracy of the estimation of the power profile of the customer. In particular, the proposed methodology is not fully able to properly represent clusters composed of customers with a large variability in terms of power exchange with the distribution network. In any case, the root mean square error of the synthesized full power profile with the respect to validation power profiles belonging to the same cluster is, in the worst case, on the order of 6.3%, while in the rest of cases is well below 5%. Thus, the proposed approach represents a good compromise between accuracy in representing the behavior of customers on the network and resources (in terms of computational power, data storage and communication resources) to achieve that results.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/5/1277/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14051277&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/5/1277/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14051277&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United Kingdom, China (People's Republic of), China (People's Republic of), China (People's Republic of), SpainPublisher:MDPI AG Funded by:EC | DATASOUNDEC| DATASOUNDAuthors:
R. Rueda; R. Rueda
R. Rueda in OpenAIRE
M. P. Cuéllar; M. P. Cuéllar
M. P. Cuéllar in OpenAIRE
M. Molina-Solana; M. Molina-Solana
M. Molina-Solana in OpenAIRE
Y. Guo; +1 Authors
R. Rueda; R. Rueda
R. Rueda in OpenAIRE
M. P. Cuéllar; M. P. Cuéllar
M. P. Cuéllar in OpenAIRE
M. Molina-Solana; M. Molina-Solana
M. Molina-Solana in OpenAIRE
Y. Guo;
M. C. Pegalajar; M. C. Pegalajar
M. C. Pegalajar in OpenAIREdoi: 10.3390/en12061069
handle: 10481/61857 , 10044/1/67867
This work addresses the problem of energy consumption time series forecasting. In our approach, a set of time series containing energy consumption data is used to train a single, parameterised prediction model that can be used to predict future values for all the input time series. As a result, the proposed method is able to learn the common behaviour of all time series in the set (i.e., a fingerprint) and use this knowledge to perform the prediction task, and to explain this common behaviour as an algebraic formula. To that end, we use symbolic regression methods trained with both single- and multi-objective algorithms. Experimental results validate this approach to learn and model shared properties of different time series, which can then be used to obtain a generalised regression model encapsulating the global behaviour of different energy consumption time series.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1069/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/12/6/1069/pdfData sources: SygmaImperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/67867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061069&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1069/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/12/6/1069/pdfData sources: SygmaImperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/67867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061069&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:EC | 20-20 3D MEDIA, EC | HeLLoEC| 20-20 3D MEDIA ,EC| HeLLoAuthors: Mirco Andreotti;
Dario Bottino-Leone; Dario Bottino-Leone
Dario Bottino-Leone in OpenAIRE
Marta Calzolari; Marta Calzolari
Marta Calzolari in OpenAIRE
Pietromaria Davoli; +3 AuthorsPietromaria Davoli
Pietromaria Davoli in OpenAIREMirco Andreotti;
Dario Bottino-Leone; Dario Bottino-Leone
Dario Bottino-Leone in OpenAIRE
Marta Calzolari; Marta Calzolari
Marta Calzolari in OpenAIRE
Pietromaria Davoli; Pietromaria Davoli
Pietromaria Davoli in OpenAIRE
Luisa Dias Pereira; Luisa Dias Pereira
Luisa Dias Pereira in OpenAIRE
Elena Lucchi; Elena Lucchi
Elena Lucchi in OpenAIRE
Alexandra Troi; Alexandra Troi
Alexandra Troi in OpenAIREdoi: 10.3390/en13133362
handle: 11392/2421146 , 11381/2883000 , 11571/1508821
The hygrothermal behaviour of an internally insulated historic wall is still hard to predict, mainly because the physical characteristics of the materials composing the historic wall are unknown. In this study, the hygrothermal assessment of an internally thermal insulated masonry wall of an historic palace located in Ferrara, in Italy, is shown. In situ non-destructive monitoring method is combined with a hygrothermal simulation tool, aiming to better analyse and discuss future refurbishment scenarios. In this context, the original U-value of the wall (not refurbished) is decreased from 1.44 W/m2K to 0.26 W/m2K (10 cm stone wool). Under the site specific conditions of this wall, not reached by the sun or rain, it was verified that even in the absence of vapour barrier, no frost damage is likely to occur and the condensation risk is very limited. Authors proposed further discussion based on simulation. The results showed that the introduction of a second gypsum board to the studied technology compensated such absence, while the reduction of the insulation material thickness provides a reduction of RH peaks in the interstitial area by 1%; this second solution proved to be more efficient, providing a 3% RH reduction and the avoidance of further thermal losses.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3362/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: http://hdl.handle.net/11381/2883000Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3362/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: http://hdl.handle.net/11381/2883000Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | BIOMASS-CCUEC| BIOMASS-CCUAuthors:
Małgorzata Sieradzka; Cezary Kirczuk;Małgorzata Sieradzka
Małgorzata Sieradzka in OpenAIRE
Izabela Kalemba-Rec; Izabela Kalemba-Rec
Izabela Kalemba-Rec in OpenAIRE
Agata Mlonka-Mędrala; +1 AuthorsAgata Mlonka-Mędrala
Agata Mlonka-Mędrala in OpenAIRE
Małgorzata Sieradzka; Cezary Kirczuk;Małgorzata Sieradzka
Małgorzata Sieradzka in OpenAIRE
Izabela Kalemba-Rec; Izabela Kalemba-Rec
Izabela Kalemba-Rec in OpenAIRE
Agata Mlonka-Mędrala; Agata Mlonka-Mędrala
Agata Mlonka-Mędrala in OpenAIRE
Aneta Magdziarz; Aneta Magdziarz
Aneta Magdziarz in OpenAIREdoi: 10.3390/en15051941
This study presents the results of the biomass pyrolysis process focusing on biochar production and its potential energetic (as solid fuel) and material (as adsorbent) applications. Three kinds of biomass waste were investigated: wheat straw, spent coffee grounds, and brewery grains. The pyrolysis process was carried out under nitrogen atmosphere at 400 and 500 °C (residence time of 20 min). A significant increase in the carbon content was observed in the biochars, e.g., from 45% to 73% (at 400 °C) and 77% (at 500 °C) for spent coffee grounds. In addition, the structure and morphology were investigated using scanning electron microscopy. Thermal properties were studied using a simultaneous thermal analysis under an oxidising atmosphere. The chemical activation was completed using KOH. The sorption properties of the obtained biochars were tested using chromium ion (Cr3+) adsorption from liquid solution. The specific surface area and average pore diameter of each sample were determined using the BET method. Finally, it was found that selected biochars can be applied as adsorbent or a fuel. In detail, brewery grains-activated carbon had the highest surface area, wheat straw-activated carbon adsorbed the highest amount of Cr3+, and wheat straw chars presented the best combustion properties.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1941/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/5/1941/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051941&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1941/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/5/1941/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051941&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:EC | Nutri2CycleEC| Nutri2CycleAuthors:
Anna Jasińska; Anna Jasińska
Anna Jasińska in OpenAIRE
Anna Grosser; Anna Grosser
Anna Grosser in OpenAIRE
Erik Meers; Dagmara Piłyp;Erik Meers
Erik Meers in OpenAIREdoi: 10.3390/en17112679
The European Union’s energy policy favors increasing the share of renewable energy in total energy production. In this context, the co-digestion of various waste streams seems an interesting option. This study aimed to determine the effect of selected pretreatment methods on the efficiency and kinetics of the co-digestion process of poultry manure with sewage sludge and organic waste. This research was carried out in four stages: (1) the selection of the third component of the co-digestion mixture; (2) the determination of the most favorable inoculum-to-substrate ratio for the co-digestion mixture; (3) the selection of the most favorable pretreatment parameters based on changes in volatile fatty acids, ammonium nitrogen, extracellular polymers substances (EPS) and non-purgeable organic carbon (NPOC); and (4) the evaluation of anaerobic co-digestion based on the result of the BMP tests and kinetic studies. All the pretreatment methods increased the degree of organic matter liquefaction as measured by the NPOC changes. Waste with a high fat content showed the highest methane potential. The addition of grease trap sludge to feedstock increased methane yield from 320 mL/g VSadd to 340 mL/g VSadd. An optimal inoculum-to-substrate ratio was 2. The pretreatment methods, especially the thermochemical one with NaOH, increased the liquefaction of organic matter and the methane yield, which increased from 340 mL/g VSadd to 501 mL/g VSadd (trial with 4.5 g/L NaoH).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17112679&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17112679&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Funded by:EC | EUROfusion, EC | EUROfusionEC| EUROfusion ,EC| EUROfusionAuthors:
Breidokaite, Simona; Breidokaite, Simona
Breidokaite, Simona in OpenAIRE
Stankunas, Gediminas; Stankunas, Gediminas
Stankunas, Gediminas in OpenAIREdoi: 10.3390/en14248305
In fusion devices, such as European Demonstration Fusion Power Reactor (EU DEMO), primary neutrons can cause material activation due to the interaction between the source particles and the targeting material. Subsequently, the reactor’s inner components become activated. For safety and safe performance purposes, it is necessary to evaluate neutron-induced activities. Activities results from divertor reflector and liner plates are presented in this work. The purpose of liner shielding plates is to protect the vacuum vessel and magnet coils from neutrons. As for reflector plates, the function is to shield the cooling components under plasma-facing components from alpha particles, thermal effects, and impurities. Plates are made of Eurofer with a 3 mm layer of tungsten, while the water is used for cooling purposes. The calculations were performed using two EU DEMO MCNP (Monte Carlo N-Particles) models with different breeding blanket configurations: helium-cooled pebble bed (HCPB) and water-cooled lithium lead (WCLL). The TENDL–2017 nuclear data library has been used for activation reactions cross-sections and nuclear reactions. Activation calculations were performed using the FISPACT-II code at the end of irradiation for cooling times of 0 s–1000 years. Radionuclide analysis of divertor liner and reflector plates is also presented in this paper. The main radionuclides, with at least 1% contribution to the total value of activation characteristics, were identified for the previously mentioned cooling times.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8305/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248305&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8305/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248305&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 SwitzerlandPublisher:MDPI AG Funded by:EC | EPOSEC| EPOSAuthors: Hür Bütün;
Ivan Kantor; Ivan Kantor
Ivan Kantor in OpenAIRE
François Maréchal; François Maréchal
François Maréchal in OpenAIREdoi: 10.3390/en12173338
The large potential for waste resource and heat recovery in industry has been motivating research toward increasing efficiency. Process integration methods have proven to be effective tools in improving industrial sites while decreasing their resource and energy consumption; however, location aspects and their impact are generally overlooked. This paper presents a method based on process integration, which considers the location of plants. The impact of the locations is included within the mixed integer linear programming framework in the form of heat losses, temperature and pressure drop, and piping cost. The objective function is selected as minimisation of the total cost of the system excluding piping cost and ϵ -constraints are applied on the piping cost to systematically generate multiple solutions. The method is applied to a case study with industrial plants from different sectors. First, the interaction between two plants and their utility integration are illustrated, depending on the piping cost limit which results in the heat pump and boiler on one site being gradually replaced by excess heat recovered from the other plant. Then, the optimisation of the whole system is carried out, as a large-scale application. At low piping cost allowances, heat is shared through high pressure steam in above-ground pipes, while at higher piping cost limits the system switches toward lower pressure steam sharing in underground pipes. Compared to the business-as-usual operation of the sites, the optimal solution obtained with the proposed method leads to 20% reduction in the overall cost of the system, including the piping cost. Further reduction in the cost is possible using a state of the art method but the technical and economic feasibility is not guaranteed. Thus, the present work provides a tool to find optimal industrial symbiosis solutions under different investment limits on the infrastructure between plants.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173338&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/17/3338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12173338&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 DenmarkPublisher:MDPI AG Funded by:EC | TotalControlEC| TotalControlAuthors:
Jens Nørkær Sørensen; Jens Nørkær Sørensen
Jens Nørkær Sørensen in OpenAIRE
Gunner Christian Larsen; Gunner Christian Larsen
Gunner Christian Larsen in OpenAIREdoi: 10.3390/en14020448
A numerical framework for determining the available wind power and associated costs related to the development of large-scale offshore wind farms is presented. The idea is to develop a fast and robust minimal prediction model, which with a limited number of easy accessible input variables can determine the annual energy output and associated costs for a specified offshore wind farm. The utilized approach combines an energy production model for offshore-located wind farms with an associated cost model that only demands global input parameters, such as wind turbine rotor diameter, nameplate capacity, area of the wind farm, number of turbines, water depth, and mean wind speed Weibull parameters for the site. The cost model includes expressions for the most essential wind farm cost elements—such as costs of wind turbines, support structures, cables and electrical substations, as well as costs of operation and maintenance—as function of rotor size, interspatial distance between the wind turbines, and water depth. The numbers used in the cost model are based on previous but updatable experiences from offshore wind farms, and are therefore, in general, moderately conservative. The model is validated against data from existing wind farms, and shows generally a very good agreement with actual performance and cost results for a series of well-documented wind farms.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/448/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/2/448/pdfData sources: SygmaOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020448&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/2/448/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/2/448/pdfData sources: SygmaOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020448&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | NARSISEC| NARSISAuthors:
Piotr Darnowski; Piotr Mazgaj; Mateusz Włostowski;Piotr Darnowski
Piotr Darnowski in OpenAIREdoi: 10.3390/en14164884
In this study, uncertainty and sensitivity analyses were performed with MELCOR 2.2.18 to study the hydrogen generation (figure-of-merit (FoM)) during the in-vessel phase of a severe accident in a light water reactor. The focus of this work was laid on a large generation-III pressurized water reactor (PWR) and a double-ended hot leg (HL) large break loss of coolant accident (LB-LOCA) without a safety injection (SI). The FPT-1 Phebus integral experiment emulating LOCA was studied, where the experiment outcomes were applied for the plant scale modelling. The best estimate calculations were supplemented with an uncertainty analysis (UA) based on 400 input-decks and Latin hypercube sampling (LHS). Additionally, the sensitivity analysis (SA) utilizing the linear regression and linear and rank correlation coefficients was performed. The study was prepared with a new open-source MELCOR sensitivity and uncertainty tool (MelSUA), which was supplemented with this work. The FPT-1 best-estimate model results were within the 10% experimental uncertainty band for the final FoM. It was shown that the hydrogen generation uncertainties in PWR were similar to the FPT-1, with the 95% percentile being covered inside a ~50% band and the 50% percentile inside a ~25% band around the FoM median. Two different power profiles for PWR were compared, indicating its impact on the uncertainty but also on the sensitivity results. Despite a similar setup, different uncertainty parameters impacted FoM, showing the difference between scales but also a significant impact of boundary conditions on the sensitivity analysis.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4884/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164884&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/16/4884/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164884&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | THyGAEC| THyGAAuthors:
Leicher, Jörg; Leicher, Jörg
Leicher, Jörg in OpenAIRE
Schaffert, Johannes; Cigarida, Hristina; Tali, Eren; +7 AuthorsSchaffert, Johannes
Schaffert, Johannes in OpenAIRE
Leicher, Jörg; Leicher, Jörg
Leicher, Jörg in OpenAIRE
Schaffert, Johannes; Cigarida, Hristina; Tali, Eren; Burmeister, Frank; Giese, Anne; Albus, Rolf; Görner, Klaus; Carpentier, Stéphane; Milin, Patrick; Schweitzer, Jean;Schaffert, Johannes
Schaffert, Johannes in OpenAIREdoi: 10.3390/en15030777
Hydrogen as a carbon-free fuel is commonly expected to play a major role in future energy supply, e.g., as an admixture gas in natural gas grids. Which impacts on residential and commercial gas appliances can be expected due to the significantly different physical and chemical properties of hydrogen-enriched natural gas? This paper analyses and discusses blends of hydrogen and natural gas from the perspective of combustion science. The admixture of hydrogen into natural gas changes the properties of the fuel gas. Depending on the combustion system, burner design and other boundary conditions, these changes may cause higher combustion temperatures and laminar combustion velocities, while changing flame positions and shapes are also to be expected. For appliances that are designed for natural gas, these effects may cause risk of flashback, reduced operational safety, material deterioration, higher nitrogen oxides emissions (NOx), and efficiency losses. Theoretical considerations and first measurements indicate that the effects of hydrogen admixture on combustion temperatures and the laminar combustion velocities are often largely mitigated by a shift towards higher air excess ratios in the absence of combustion control systems, but also that common combustion control technologies may be unable to react properly to the presence of hydrogen in the fuel.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/777/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/3/777/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15030777&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/777/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/3/777/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15030777&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
