- home
- Search
- Energy Research
- GB
- IT
- English
- ZENODO
- Energy Research
- GB
- IT
- English
- ZENODO
Research data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Funded by:EC | REINVENTEC| REINVENTHansen, Teis; Keaney, Monica; Bulkeley, Harriet A.; Cooper, Mark; Mölter, Helena; Nielsen, Hjalti; Pietzner, Katja; Sonesson, Ludwig B.; Stripple, Johannes; S.I. Aan Den Toorn; Tziva, Maria; Tönjes, Annika; Vallentin, Daniel; Van-Veelen, Bregje;This database includes more than 100 decarbonisation innovations in Paper, Plastic, Steel and Meat & Dairy sectors, across their value chains, as well as in Finance. For each innovation there is a description, information about its contribution to decarbonisation, actors and collaborators involved, sources of funding, drivers, (co)benefits and disadvantages. More information on the method for selecting innovations for the database is available here. The database was created as part of REINVENT – a Horizon 2020 research project funded by the European Commission (grant agreement 730053). REINVENT involves five research institutions from four countries: Lund University (Sweden), Durham University (United Kingdom), Wuppertal Institute (Germany), PBL Netherlands Environmental Assessment Agency (the Netherlands) and Utrecht University (the Netherlands). More information can be found on our website: www.reinvent-project.eu.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3529696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3529696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 16 Jan 2024Publisher:Dryad Authors: Pérez-Navarro, María Ángeles;This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Embargo end date: 01 Apr 2017Publisher:Dryad Russell, Debbie J. F.; Hastie, Gordon D.; Thompson, David; Janik, Vincent M.; Hammond, Philip S.; Scott-Hayward, Lindesay A. S.; Matthiopoulos, Jason; Jones, Esther L.; McConnell, Bernie J.; Russell, Debbie J.F.;doi: 10.5061/dryad.9r0gv
As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts. Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another. Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause. There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 μPa(p-p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement. Wash_diagWash_diag.xlsx is the historic location data (pre windfarm construction) for the 19 individuals used in the analysis described in Russell et al.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Matteo, Nigro; Michele, Barsanti; Roberto, Giannecchini;The version 1.0 contains the supporting data for the work (still under submission) "Last century changes in annual precipitation in a Mediterranean area and their spatial variability. Insights from northern Tuscany (Italy)". The following files are here available (all file are georeferenced in EPSG: 3003): - AVG_Rainfall_1990-2019.tif -> Raster map of the mean annual precipitation for the northern Tuscany, Italy. It encompasses the portion of the Tuscany region northern of the cities of Livorno - Florence. The interpolation was validated via a leave one out cross-validation procedure. - D3-1_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1921 to 1950 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - D3-2_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1951 to 1980 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - DeltaSHP_Points_AVG_Annual_Rainfall.zip -> Shape file of the raingauges locations with the mean annual precipitation values of the period 1990 to 2019. - RaingaugesSHP_Points_AVG_Annual_Rainfall_1990-2019.zip -> Shape file of the raingauges locations with the following information: differences in the mean annual precipitation values between the two 3-decades periods 1951 to 1980 and 1990 to 2019 (named D3-2); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1951 to 1980 and 1990 to 2019; difference in the mean annual precipitation values between the two 3-decades periods 1921 to 1950 and 1990 to 2019 (named D3-1); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1921 to 1950 and 1990 to 2019.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 11 Oct 2023Publisher:Dryad Ding, Fangyu; Ge, Honghan; Ma, Tian; Wang, Qian; Hao, Mengmeng; Li, Hao; Zhang, Xiao-Ai; Maude, Richard James; Wang, Liping; Jiang, Dong; Fang, Li-Qun; Liu, Wei;# Data on: Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China [https://doi.org/10.5061/dryad.vdncjsz1z](https://doi.org/10.5061/dryad.vdncjsz1z) This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. ## Description of the data and file structure The predicted annual incidence of national SFTS cases with or without human population reduction under four RCPs under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The value represents the annual incidence, and the unit is 105/year. The Dataset-1 file includes the predicted annual incidence of national SFTS cases with a fixed future human population under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The Dataset-2 file includes the predicted annual incidence of national SFTS cases in the 2030s, 2050s, and 2080s with human population reduction (SSP2) under four RCPs. ## Sharing/Access information Data was derived from the following sources: * https://doi.org/10.1111/gcb.16969 This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. The SFTS incidence in three time periods (2030-2039, 2050-2059, 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. The projected spatiotemporal dynamics of SFTS will be heterogeneous across provinces. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas. See the Materials and methods section in the original paper. The code used in the statistical analyses are present in the paper and/or the Supplementary Materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 11 Oct 2021Publisher:Dryad Authors: Lempidakis, Emmanouil; Ross, Andrew; Börger, Luca; Shepard, Emily;Variable list for files: SW wind - Section table on Skomer (Standardised).csv / NW wind - Section table on Skomer (Standardised).csv / SE wind - Section table on Skomer (Standardised).csv /NE wind - Section table on Skomer (Standardised).csv and SW wind - Sections on Skokholm (Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanUMedian; MeanUIQR, MeanUSkewness, MeanUCV: Median, interquartile range,skewness and coefficient of variation of mean wind speed per section HorizontalMedian;HorizontalIQR,HorizontalSkewness,HorizontalCV: Median, interquartile range,skewness and coefficient of variation of horizontal wind speed per section PMedian;PIQR,PSkewness,PCV: Median, interquartile range,skewness and coefficient of variation of preessure per section TKEMedian;TKEIQR,TKESkewness,TKECV: Median, interquartile range,skewness and coefficient of variation of turbulent kinetic energy per section TIMedian;TIIQR,TISkewness,TICV: Median, interquartile range,skewness and coefficient of variation of turbulence intensity per section U_2Median;lU_2IQR;U_2Skewness;U_2CV: Median, interquartile range,skewness and coefficient of variation of vertical wind speed per section EpsilonMedian;EpsilonIQR,EpsilonSkewness,EpsilonCV: Median, interquartile range,skewness and coefficient of variation of turbulent dissipation rate per section NutMedian;NutIQR,NutSkewness,NutCV: Median, interquartile range,skewness and coefficient of variation of kinematic viscosity per section GustsMedian;GustsIQR,GustsSkewness,GustsCV: Median, interquartile range,skewness and coefficient of variation of instataneous gusts per section MeanSectorSlope: Mean slope per section ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: Section table on Skomer - with Mean cliff orientation and Slope (NOT-Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section ApsectClass: Factor indicating whether the mean cliff orientation is lee- or windward to the SW wind ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: SW wind - Sections on Skokholm to predict colonies using cliff orientation and slope model from Skomer (NON - Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section Wind is fundamentally related to shelter and flight performance: two factors that are critical for birds at their nest sites. Despite this, airflows have never been fully integrated into models of breeding habitat selection, even for well-studied seabirds. Here we use computational fluid dynamics to provide the first assessment of whether flow characteristics (including wind speed and turbulence) predict the distribution of seabird colonies, taking common guillemots (Uria aalge) breeding on Skomer island as our study system. This demonstrates that occupancy is driven by the need to shelter from both wind and rain/ wave action, rather than airflow characteristics alone. Models of airflows and cliff orientation both performed well in predicting high quality habitat in our study site, identifying 80% of colonies and 93% of avoided sites, as well as 73% of the largest colonies on a neighbouring island. This suggests generality in the mechanisms driving breeding distributions, and provides an approach for identifying habitat for seabird reintroductions considering current and projected wind speeds and directions. Methods detailed in manuscript: https://doi.org/10.1111/ecog.05733.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Idiano D'Adamo; Gastaldi, Massimo; Ioppolo, Giuseppe; Morone, Piergiuseppe;The aggregation of data concerned 103 Italian cities and for each city 45 indicators were considered
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Funded by:EC | REINVENTEC| REINVENTHansen, Teis; Keaney, Monica; Bulkeley, Harriet A.; Cooper, Mark; Mölter, Helena; Nielsen, Hjalti; Pietzner, Katja; Sonesson, Ludwig B.; Stripple, Johannes; S.I. Aan Den Toorn; Tziva, Maria; Tönjes, Annika; Vallentin, Daniel; Van-Veelen, Bregje;This database includes more than 100 decarbonisation innovations in Paper, Plastic, Steel and Meat & Dairy sectors, across their value chains, as well as in Finance. For each innovation there is a description, information about its contribution to decarbonisation, actors and collaborators involved, sources of funding, drivers, (co)benefits and disadvantages. More information on the method for selecting innovations for the database is available here. The database was created as part of REINVENT – a Horizon 2020 research project funded by the European Commission (grant agreement 730053). REINVENT involves five research institutions from four countries: Lund University (Sweden), Durham University (United Kingdom), Wuppertal Institute (Germany), PBL Netherlands Environmental Assessment Agency (the Netherlands) and Utrecht University (the Netherlands). More information can be found on our website: www.reinvent-project.eu.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3529696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3529696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 16 Jan 2024Publisher:Dryad Authors: Pérez-Navarro, María Ángeles;This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.kh18932dg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEDoukas, Haris; Spiliotis, Evangelos; Jafari, Mohsen A.; Giarola, Sara; Nikas, Alexandros;This dataset contains the underlying data for the following publication: Doukas, H., Spiliotis, E., Jafari, M. A., Giarola, S. & Nikas, A. (2021). Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment, 94, 102815, https://doi.org/10.1016/j.trd.2021.102815.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5666359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Embargo end date: 01 Apr 2017Publisher:Dryad Russell, Debbie J. F.; Hastie, Gordon D.; Thompson, David; Janik, Vincent M.; Hammond, Philip S.; Scott-Hayward, Lindesay A. S.; Matthiopoulos, Jason; Jones, Esther L.; McConnell, Bernie J.; Russell, Debbie J.F.;doi: 10.5061/dryad.9r0gv
As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts. Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another. Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause. There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 μPa(p-p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement. Wash_diagWash_diag.xlsx is the historic location data (pre windfarm construction) for the 19 individuals used in the analysis described in Russell et al.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Matteo, Nigro; Michele, Barsanti; Roberto, Giannecchini;The version 1.0 contains the supporting data for the work (still under submission) "Last century changes in annual precipitation in a Mediterranean area and their spatial variability. Insights from northern Tuscany (Italy)". The following files are here available (all file are georeferenced in EPSG: 3003): - AVG_Rainfall_1990-2019.tif -> Raster map of the mean annual precipitation for the northern Tuscany, Italy. It encompasses the portion of the Tuscany region northern of the cities of Livorno - Florence. The interpolation was validated via a leave one out cross-validation procedure. - D3-1_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1921 to 1950 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - D3-2_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1951 to 1980 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - DeltaSHP_Points_AVG_Annual_Rainfall.zip -> Shape file of the raingauges locations with the mean annual precipitation values of the period 1990 to 2019. - RaingaugesSHP_Points_AVG_Annual_Rainfall_1990-2019.zip -> Shape file of the raingauges locations with the following information: differences in the mean annual precipitation values between the two 3-decades periods 1951 to 1980 and 1990 to 2019 (named D3-2); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1951 to 1980 and 1990 to 2019; difference in the mean annual precipitation values between the two 3-decades periods 1921 to 1950 and 1990 to 2019 (named D3-1); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1921 to 1950 and 1990 to 2019.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 11 Oct 2023Publisher:Dryad Ding, Fangyu; Ge, Honghan; Ma, Tian; Wang, Qian; Hao, Mengmeng; Li, Hao; Zhang, Xiao-Ai; Maude, Richard James; Wang, Liping; Jiang, Dong; Fang, Li-Qun; Liu, Wei;# Data on: Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China [https://doi.org/10.5061/dryad.vdncjsz1z](https://doi.org/10.5061/dryad.vdncjsz1z) This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. ## Description of the data and file structure The predicted annual incidence of national SFTS cases with or without human population reduction under four RCPs under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The value represents the annual incidence, and the unit is 105/year. The Dataset-1 file includes the predicted annual incidence of national SFTS cases with a fixed future human population under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The Dataset-2 file includes the predicted annual incidence of national SFTS cases in the 2030s, 2050s, and 2080s with human population reduction (SSP2) under four RCPs. ## Sharing/Access information Data was derived from the following sources: * https://doi.org/10.1111/gcb.16969 This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. The SFTS incidence in three time periods (2030-2039, 2050-2059, 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. The projected spatiotemporal dynamics of SFTS will be heterogeneous across provinces. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas. See the Materials and methods section in the original paper. The code used in the statistical analyses are present in the paper and/or the Supplementary Materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 11 Oct 2021Publisher:Dryad Authors: Lempidakis, Emmanouil; Ross, Andrew; Börger, Luca; Shepard, Emily;Variable list for files: SW wind - Section table on Skomer (Standardised).csv / NW wind - Section table on Skomer (Standardised).csv / SE wind - Section table on Skomer (Standardised).csv /NE wind - Section table on Skomer (Standardised).csv and SW wind - Sections on Skokholm (Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanUMedian; MeanUIQR, MeanUSkewness, MeanUCV: Median, interquartile range,skewness and coefficient of variation of mean wind speed per section HorizontalMedian;HorizontalIQR,HorizontalSkewness,HorizontalCV: Median, interquartile range,skewness and coefficient of variation of horizontal wind speed per section PMedian;PIQR,PSkewness,PCV: Median, interquartile range,skewness and coefficient of variation of preessure per section TKEMedian;TKEIQR,TKESkewness,TKECV: Median, interquartile range,skewness and coefficient of variation of turbulent kinetic energy per section TIMedian;TIIQR,TISkewness,TICV: Median, interquartile range,skewness and coefficient of variation of turbulence intensity per section U_2Median;lU_2IQR;U_2Skewness;U_2CV: Median, interquartile range,skewness and coefficient of variation of vertical wind speed per section EpsilonMedian;EpsilonIQR,EpsilonSkewness,EpsilonCV: Median, interquartile range,skewness and coefficient of variation of turbulent dissipation rate per section NutMedian;NutIQR,NutSkewness,NutCV: Median, interquartile range,skewness and coefficient of variation of kinematic viscosity per section GustsMedian;GustsIQR,GustsSkewness,GustsCV: Median, interquartile range,skewness and coefficient of variation of instataneous gusts per section MeanSectorSlope: Mean slope per section ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: Section table on Skomer - with Mean cliff orientation and Slope (NOT-Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section ApsectClass: Factor indicating whether the mean cliff orientation is lee- or windward to the SW wind ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: SW wind - Sections on Skokholm to predict colonies using cliff orientation and slope model from Skomer (NON - Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section Wind is fundamentally related to shelter and flight performance: two factors that are critical for birds at their nest sites. Despite this, airflows have never been fully integrated into models of breeding habitat selection, even for well-studied seabirds. Here we use computational fluid dynamics to provide the first assessment of whether flow characteristics (including wind speed and turbulence) predict the distribution of seabird colonies, taking common guillemots (Uria aalge) breeding on Skomer island as our study system. This demonstrates that occupancy is driven by the need to shelter from both wind and rain/ wave action, rather than airflow characteristics alone. Models of airflows and cliff orientation both performed well in predicting high quality habitat in our study site, identifying 80% of colonies and 93% of avoided sites, as well as 73% of the largest colonies on a neighbouring island. This suggests generality in the mechanisms driving breeding distributions, and provides an approach for identifying habitat for seabird reintroductions considering current and projected wind speeds and directions. Methods detailed in manuscript: https://doi.org/10.1111/ecog.05733.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Idiano D'Adamo; Gastaldi, Massimo; Ioppolo, Giuseppe; Morone, Piergiuseppe;The aggregation of data concerned 103 Italian cities and for each city 45 indicators were considered
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu