- home
- Search
- Energy Research
- 11. Sustainability
- 15. Life on land
- NL
- FI
- Energy Research
- 11. Sustainability
- 15. Life on land
- NL
- FI
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Authors: Klaassen, R.E.; Patel, Martin;Domestic heating represents the most dominant energy function in Dutch households nowadays. Using district heat from CHP (combined heat and power) by means of a NGCC (natural gas-fired combined cycle) plants is generally acknowledged as an effective option to reduce primary energy consumption for heating. However, methods to calculate energy savings from CHP differ widely. This paper compares a number of different methods, including the method from the EU CHP Directive, to estimate primary energy savings in comparison with the typically used domestic gas-fired condensing boiler. Real hourly CHP plant performance data is used. An estimation of the CO2 mitigation cost of delivering district heat to Dutch dwellings is made. We find that supplying dwellings with district heat from an NGCC-CHP saves energy, regardless of the calculation method and for a rather wide range of reference efficiencies. CO2 mitigation costs are acceptable from a social perspective (at discount rates up to 4%, excluding fuel taxes) and negative from a private perspective (at discount rates up to 10%, including fuel taxes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Netherlands, China (People's Republic of), NetherlandsPublisher:American Chemical Society (ACS) Wu, Guoping; Seow, Wei Jie; Zhang, Linlin; Chapman, Robert Sedgwick; Hosgood, Howard Dean; Bassig, Bryan A.; Xu, Jun; Reiss, Boris; Downward, George S.; Hu, Wei; Tian, Linwei; Wei, Fusheng; Vermeulen, Roel CH H; Lan, Qing;The combustion of biomass and coal is the dominant source of household air pollution (HAP) in China, and contributes significantly to the total burden of disease in the Chinese population. To characterize HAP exposure related to solid fuel use and ventilation patterns, an exposure assessment study of 163 nonsmoking female heads of households enrolled from 30 villages was conducted in Xuanwei and Fuyuan, two neighboring rural counties with high incidence of lung cancer due to the burning of smoky coal (a bituminous coal, which in health evaluations is usually compared to smokeless coal--an anthracite coal available in some parts of the area). Personal and indoor 24-h PM2.5 samples were collected over two consecutive days in each household, with approximately one-third of measurements retaken in a second season. The overall geometric means (GM) of personal PM2.5 concentrations in Xuanwei and Fuyuan were 166 [Geometric Standard Deviation (GSD):2.0] and 146 (GSD:1.9) μg/m(3), respectively, which were similar to the indoor PM2.5 air concentrations [GM(GSD):162 (2.1) and 136 (2.0) μg/m(3), respectively]. Personal PM2.5 was moderately highly correlated with indoor PM2.5 (Spearman r = 0.70, p < 0.0001). Burning wood or plant materials (tobacco stems, corncobs etc.) resulted in the highest personal PM2.5 concentrations (GM:289 and 225 μg/m(3), respectively), followed by smoky coal, and smokeless coal (GM:148 and 115 μg/m(3), respectively). PM2.5 levels of vented stoves were 34-80% lower than unvented stoves and firepits across fuel types. Mixed effect models indicated that fuel type, ventilation, number of windows, season, and burning time per stove were the main factors related to personal PM2.5 exposure. Lower PM2.5 among vented stoves compared with unvented stoves and firepits is of interest as it parallels the observation of reduced risks of malignant and nonmalignant lung diseases in the region.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallUniversity of Hong Kong: HKU Scholars HubArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es502201s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallUniversity of Hong Kong: HKU Scholars HubArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es502201s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Embargo end date: 01 Jan 2016 Portugal, Finland, Portugal, United Kingdom, SwitzerlandPublisher:SAGE Publications Publicly fundedFunded by:SSHRC, SNSF | The Politics of Climate C..., NSF | HSD: Collaborative Resear...SSHRC ,SNSF| The Politics of Climate Change: Options for Action in a Changing International Environment ,NSF| HSD: Collaborative Research: Social Networks as Agents of Change in Climate Change Policy MakingBroadbent, J; Sonnett, J; Botetzagias, I; Carson, M; Carvalho, A; Chien, Y-J; Edling, C; Fisher, D; Giouzepas, G; Haluza-DeLay, R; Hasegawa, K; Hirschi, C; Horta, A; Ikeda, K; Jin, J; Ku, D; Lahsen, M; Lee, H-C; Lin, T-LA; Malang, T; Ollmann, J; Payne, D; Pellissery, S; Price, S; Pulver, S; Sainz, J; Satoh, K; Saunders, C; Schmidt, L; Stoddart, MCJ; Swarnakar, P; Tatsumi, T; Tindall, D; Vaughter, P; Wagner, P; Yun, S-J; Zhengyi, S;handle: 10138/303363 , 10871/29754
Reducing global emissions will require a global cosmopolitan culture built from detailed attention to conflicting national climate change frames (interpretations) in media discourse. The authors analyze the global field of media climate change discourse using 17 diverse cases and 131 frames. They find four main conflicting dimensions of difference: validity of climate science, scale of ecological risk, scale of climate politics, and support for mitigation policy. These dimensions yield four clusters of cases producing a fractured global field. Positive values on the dimensions show modest association with emissions reductions. Data-mining media research is needed to determine trends in this global field.
CORE arrow_drop_down Open Research ExeterArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/10871/29754Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversidade de Lisboa: Repositório.ULArticle . 2016Data sources: Universidade de Lisboa: Repositório.ULZurich Open Repository and ArchiveArticle . 2016License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/2378023116670660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Open Research ExeterArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/10871/29754Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversidade de Lisboa: Repositório.ULArticle . 2016Data sources: Universidade de Lisboa: Repositório.ULZurich Open Repository and ArchiveArticle . 2016License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/2378023116670660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Netherlands, Netherlands, Netherlands, Germany, United KingdomPublisher:The Royal Society Publicly fundedFunded by:UKRI | Global scale impacts of c..., EC | CLIMATECOSTUKRI| Global scale impacts of climate change: a multi-sectoral analysis ,EC| CLIMATECOSTNicholls, R.; Marinova, N.; Lowe, J.; Brown, S.; Vellinga, P.; de Gusmão, D.; Hinkel, J.; Tol, R.;The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m—the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.
Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 France, Spain, BelgiumPublisher:Elsevier BV Funded by:NSF | Graduate Research Fellows..., SNSF | Climate change impacts on..., ANR | IMPRINT +2 projectsNSF| Graduate Research Fellowship Program (GRFP) ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ANR| IMPRINT ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC)Authors: de Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; +22 Authorsde Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; Lembrechts, Jonas; Rodríguez-Sánchez, Francisco; Luoto, Miska; Scheffers, Brett; Haesen, Stef; Aalto, Juha; Christiansen, Ditte Marie; de Pauw, Karen; Depauw, Leen; Govaert, Sanne; Greiser, Caroline; Hampe, Arndt; Hylander, Kristoffer; Klinges, David; Koelemeijer, Irena; Meeussen, Camille; Ogée, Jérôme; Sanczuk, Pieter; Vanneste, Thomas; Zellweger, Florian; Baeten, Lander; de Frenne, Pieter;pmid: 34748832
handle: 10067/1833220151162165141 , 1854/LU-8726229
Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Wiley Authors: Buchspies, Benedikt; Kaltschmitt, Martin; Junginger, Martin;doi: 10.1111/gcbb.12734
handle: 11420/7682
AbstractThe shift from straw incorporation to biofuel production entails emissions from production, changes in soil organic carbon (SOC) and through the provision of (co‐)products and entailed displacement effects. This paper analyses changes in greenhouse gas (GHG) emissions arising from the shift from straw incorporation to biomethane and bioethanol production. The biomethane concept comprises comminution, anaerobic digestion and amine washing. It additionally provides an organic fertilizer. Bioethanol production comprises energetic use of lignin, steam explosion, enzymatic hydrolysis and co‐fermentation. Additionally, feed is provided. A detailed consequential GHG balance with in‐depth focus on the time dependency of emissions is conducted: (a) the change in the atmospheric load of emissions arising from the change in the temporal occurrence of emissions comparing two steady states (before the shift and once a new steady state has established); and (b) the annual change in overall emissions over time starting from the shift are assessed. The shift from straw incorporation to biomethane production results in net changes in GHG emissions of (a) −979 (−436 to −1,654) and (b) −955 (−220 to −1,623) kg CO2‐eq. per tdry matter straw converted to biomethane (minimum and maximum). The shift to bioethanol production results in net changes of (a) −409 (−107 to −610) and (b) −361 (57 to −603) kg CO2‐eq. per tdry matter straw converted to bioethanol. If the atmospheric load of emissions arising from different timing of emissions is neglected in case (a), the change in GHG emissions differs by up to 54%. Case (b) reveals carbon payback times of 0 (0–49) and 19 (1–100) years in case of biomethane and bioethanol production, respectively. These results demonstrate that the detailed inclusion of temporal aspects into GHG balances is required to get a comprehensive understanding of changes in GHG emissions induced by the introduction of advanced biofuels from agricultural residues.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, GermanyPublisher:Wiley Funded by:EC | EARLYWARNING, EC | BACCHUSEC| EARLYWARNING ,EC| BACCHUSEgbert H. van Nes; Marten Scheffer; Milena Holmgren; Chi Xu; Chi Xu; Arie Staal; Stijn Hantson;doi: 10.1002/ecy.1470
pmid: 27859090
AbstractAlthough canopy height has long been a focus of interest in ecology, it has remained difficult to study at large spatial scales. Recently, satellite‐borne LiDAR equipment produced the first systematic high resolution maps of vegetation height worldwide. Here we show that this new resource reveals three marked modes in tropical canopy height ~40, ~12, and ~2 m corresponding to forest, savanna, and treeless landscapes. The distribution of these modes is consistent with the often hypothesized forest‐savanna bistability and suggests that both states can be stable in areas with a mean annual precipitation between ~1,500 and ~2,000 mm. Although the canopy height states correspond largely to the much discussed tree cover states, there are differences, too. For instance, there are places with savanna‐like sparse tree cover that have a forest‐like high canopy, suggesting that rather than true savanna, those are thinned relicts of forest. This illustrates how complementary sets of remotely sensed indicators may provide increasingly sophisticated ways to study ecological phenomena at a global scale.
Ecology arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/ecy....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/ecy....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 NetherlandsPublisher:Wiley Berg, L.J.L. van den; Dorland, E.; Vergeer, P.; Hart, M.A.C.; Bobbink, R.; Roelofs, J.G.M.;The effects of increasing ammonium concentrations in combination with different pH levels were studied on five heathland plant species to determine whether their occurrence and decline could be attributed to ammonium toxicity and/or pH levels. Plants were grown in growth media amended with four different ammonium concentrations (10, 100, 500 and 1000 micromol l(-1)) and two pH levels resembling acidified (pH 3.5 or 4) and weakly buffered (pH 5 or 5.5) situations. Survival of Antennaria dioica and Succisa pratensis was reduced by low pH in combination with high ammonium concentrations. Biomass decreased with increased ammonium concentrations and decreasing pH levels. Internal pH of the plants decreased with increasing ammonium concentrations. Survival of Calluna vulgaris, Deschampsia flexuosa and Gentiana pneumonanthe was not affected by ammonium. Moreover, biomass increased with increasing ammonium concentrations. Biomass production of G. pneumonanthe reduced at low pH levels. A decline of acid-sensitive species in heathlands was attributed to ammonium toxicity effects in combination with a low pH.
New Phytologist arrow_drop_down New PhytologistArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2005.01338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 174 citations 174 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2005.01338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, BelgiumPublisher:MDPI AG Funded by:FCT | D4FCT| D4Ilaria Rosetti; Clara Bertrand Cabral; Ana Pereira Roders; Marc Jacobs; Rosana Albuquerque;In the past three decades, there has been increasing research carried out on the role of heritage and its processes in achieving broader sustainable development objectives beyond heritage conservation. As part of this movement, people-centered approaches and participation have been widely integrated into international regulations and guidelines on heritage management, stimulating the implementation of case studies-based research worldwide. Despite the wide advocacy of participatory heritage practices’ contributions to more inclusive and culturally sensitive local development in a great variety of projects, there is limited research into the roles these practices can have in addressing sustainability objectives. How are these roles addressed in international heritage regulatory frameworks, and what forms of participation are promoted for their fulfillment? This paper seeks to answer this research question through a content analysis of international declarations, conventions, guidelines, and policy documents focused on the roles and forms of participation that are promoted. A crossed-matched analysis of results reveals that active forms of participation are those most used to promote all roles and subcategories of participation, as a right, as a driver, and as an enabler of sustainable development. However, fewer active forms are presented as complementary at different stages of sustainability-oriented heritage practices. Moreover, a higher incidence of generic forms of participation can be observed in documents addressing international stakeholders, while partnership and intervention are to be found in those targeting regional and local actors. Nevertheless, the low incidence of decisional forms of participation confirms the challenges of power-sharing at all scales. Trends and influences are highlighted, informing heritage research, governance, and policymaking, but also revealing gaps and ambiguities in current regulations that further research encompassing a larger number of documents might confirm.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1674/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenVrije Universiteit Brussel Research PortalArticle . 2022Data sources: Vrije Universiteit Brussel Research PortalDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 11 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1674/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenVrije Universiteit Brussel Research PortalArticle . 2022Data sources: Vrije Universiteit Brussel Research PortalDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 Feb 2020 Spain, Spain, Italy, Switzerland, Spain, NetherlandsPublisher:Wiley Funded by:EC | ECOHYDRY, EC | CASCADEEC| ECOHYDRY ,EC| CASCADEAuthors: Francisco Rodríguez; Max Rietkerk; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; +14 AuthorsFrancisco Rodríguez; Max Rietkerk; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; Victor M. Santana; Victor M. Santana; V. Ramón Vallejo; Ángeles G. Mayor; Ángeles G. Mayor; Ángeles G. Mayor; Alejandro Valdecantos; Mara Baudena; Lia Hemerik; M. Jaime Baeza; Maarten B. Eppinga; Maarten B. Eppinga; Susana Bautista;SummaryRecent observations suggest that repeated fires could drive Mediterranean forests to shrublands, hosting flammable vegetation that regrows quickly after fire. This feedback supposedly favours shrubland persistence and may be strengthened in the future by predicted increased aridity. An assessment was made of how fires and aridity in combination modulated the dynamics of Mediterranean ecosystems and whether the feedback could be strong enough to maintain shrubland as an alternative stable state to forest.A model was developed for vegetation dynamics, including stochastic fires and different plant fire‐responses. Parameters were calibrated using observational data from a period up to 100 yr ago, from 77 sites with and without fires in Southeast Spain and Southern France.The forest state was resilient to the separate impact of fires and increased aridity. However, water stress could convert forests into open shrublands by hampering post‐fire recovery, with a possible tipping point at intermediate aridity.Projected increases in aridity may reduce the resilience of Mediterranean forests against fires and drive post‐fire ecosystem dynamics toward open shrubland. The main effect of increased aridity is the limitation of post‐fire recovery. Including plant fire‐responses is thus fundamental when modelling the fate of Mediterranean‐type vegetation under climate‐change scenarios.
IRIS Cnr arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveRepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteDiposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 95visibility views 95 download downloads 75 Powered bymore_vert IRIS Cnr arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveRepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteDiposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Authors: Klaassen, R.E.; Patel, Martin;Domestic heating represents the most dominant energy function in Dutch households nowadays. Using district heat from CHP (combined heat and power) by means of a NGCC (natural gas-fired combined cycle) plants is generally acknowledged as an effective option to reduce primary energy consumption for heating. However, methods to calculate energy savings from CHP differ widely. This paper compares a number of different methods, including the method from the EU CHP Directive, to estimate primary energy savings in comparison with the typically used domestic gas-fired condensing boiler. Real hourly CHP plant performance data is used. An estimation of the CO2 mitigation cost of delivering district heat to Dutch dwellings is made. We find that supplying dwellings with district heat from an NGCC-CHP saves energy, regardless of the calculation method and for a rather wide range of reference efficiencies. CO2 mitigation costs are acceptable from a social perspective (at discount rates up to 4%, excluding fuel taxes) and negative from a private perspective (at discount rates up to 10%, including fuel taxes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Netherlands, China (People's Republic of), NetherlandsPublisher:American Chemical Society (ACS) Wu, Guoping; Seow, Wei Jie; Zhang, Linlin; Chapman, Robert Sedgwick; Hosgood, Howard Dean; Bassig, Bryan A.; Xu, Jun; Reiss, Boris; Downward, George S.; Hu, Wei; Tian, Linwei; Wei, Fusheng; Vermeulen, Roel CH H; Lan, Qing;The combustion of biomass and coal is the dominant source of household air pollution (HAP) in China, and contributes significantly to the total burden of disease in the Chinese population. To characterize HAP exposure related to solid fuel use and ventilation patterns, an exposure assessment study of 163 nonsmoking female heads of households enrolled from 30 villages was conducted in Xuanwei and Fuyuan, two neighboring rural counties with high incidence of lung cancer due to the burning of smoky coal (a bituminous coal, which in health evaluations is usually compared to smokeless coal--an anthracite coal available in some parts of the area). Personal and indoor 24-h PM2.5 samples were collected over two consecutive days in each household, with approximately one-third of measurements retaken in a second season. The overall geometric means (GM) of personal PM2.5 concentrations in Xuanwei and Fuyuan were 166 [Geometric Standard Deviation (GSD):2.0] and 146 (GSD:1.9) μg/m(3), respectively, which were similar to the indoor PM2.5 air concentrations [GM(GSD):162 (2.1) and 136 (2.0) μg/m(3), respectively]. Personal PM2.5 was moderately highly correlated with indoor PM2.5 (Spearman r = 0.70, p < 0.0001). Burning wood or plant materials (tobacco stems, corncobs etc.) resulted in the highest personal PM2.5 concentrations (GM:289 and 225 μg/m(3), respectively), followed by smoky coal, and smokeless coal (GM:148 and 115 μg/m(3), respectively). PM2.5 levels of vented stoves were 34-80% lower than unvented stoves and firepits across fuel types. Mixed effect models indicated that fuel type, ventilation, number of windows, season, and burning time per stove were the main factors related to personal PM2.5 exposure. Lower PM2.5 among vented stoves compared with unvented stoves and firepits is of interest as it parallels the observation of reduced risks of malignant and nonmalignant lung diseases in the region.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallUniversity of Hong Kong: HKU Scholars HubArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es502201s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallUniversity of Hong Kong: HKU Scholars HubArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es502201s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Embargo end date: 01 Jan 2016 Portugal, Finland, Portugal, United Kingdom, SwitzerlandPublisher:SAGE Publications Publicly fundedFunded by:SSHRC, SNSF | The Politics of Climate C..., NSF | HSD: Collaborative Resear...SSHRC ,SNSF| The Politics of Climate Change: Options for Action in a Changing International Environment ,NSF| HSD: Collaborative Research: Social Networks as Agents of Change in Climate Change Policy MakingBroadbent, J; Sonnett, J; Botetzagias, I; Carson, M; Carvalho, A; Chien, Y-J; Edling, C; Fisher, D; Giouzepas, G; Haluza-DeLay, R; Hasegawa, K; Hirschi, C; Horta, A; Ikeda, K; Jin, J; Ku, D; Lahsen, M; Lee, H-C; Lin, T-LA; Malang, T; Ollmann, J; Payne, D; Pellissery, S; Price, S; Pulver, S; Sainz, J; Satoh, K; Saunders, C; Schmidt, L; Stoddart, MCJ; Swarnakar, P; Tatsumi, T; Tindall, D; Vaughter, P; Wagner, P; Yun, S-J; Zhengyi, S;handle: 10138/303363 , 10871/29754
Reducing global emissions will require a global cosmopolitan culture built from detailed attention to conflicting national climate change frames (interpretations) in media discourse. The authors analyze the global field of media climate change discourse using 17 diverse cases and 131 frames. They find four main conflicting dimensions of difference: validity of climate science, scale of ecological risk, scale of climate politics, and support for mitigation policy. These dimensions yield four clusters of cases producing a fractured global field. Positive values on the dimensions show modest association with emissions reductions. Data-mining media research is needed to determine trends in this global field.
CORE arrow_drop_down Open Research ExeterArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/10871/29754Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversidade de Lisboa: Repositório.ULArticle . 2016Data sources: Universidade de Lisboa: Repositório.ULZurich Open Repository and ArchiveArticle . 2016License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/2378023116670660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Open Research ExeterArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/10871/29754Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversidade de Lisboa: Repositório.ULArticle . 2016Data sources: Universidade de Lisboa: Repositório.ULZurich Open Repository and ArchiveArticle . 2016License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/2378023116670660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Netherlands, Netherlands, Netherlands, Germany, United KingdomPublisher:The Royal Society Publicly fundedFunded by:UKRI | Global scale impacts of c..., EC | CLIMATECOSTUKRI| Global scale impacts of climate change: a multi-sectoral analysis ,EC| CLIMATECOSTNicholls, R.; Marinova, N.; Lowe, J.; Brown, S.; Vellinga, P.; de Gusmão, D.; Hinkel, J.; Tol, R.;The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m—the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.
Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 France, Spain, BelgiumPublisher:Elsevier BV Funded by:NSF | Graduate Research Fellows..., SNSF | Climate change impacts on..., ANR | IMPRINT +2 projectsNSF| Graduate Research Fellowship Program (GRFP) ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ANR| IMPRINT ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC)Authors: de Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; +22 Authorsde Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; Lembrechts, Jonas; Rodríguez-Sánchez, Francisco; Luoto, Miska; Scheffers, Brett; Haesen, Stef; Aalto, Juha; Christiansen, Ditte Marie; de Pauw, Karen; Depauw, Leen; Govaert, Sanne; Greiser, Caroline; Hampe, Arndt; Hylander, Kristoffer; Klinges, David; Koelemeijer, Irena; Meeussen, Camille; Ogée, Jérôme; Sanczuk, Pieter; Vanneste, Thomas; Zellweger, Florian; Baeten, Lander; de Frenne, Pieter;pmid: 34748832
handle: 10067/1833220151162165141 , 1854/LU-8726229
Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Wiley Authors: Buchspies, Benedikt; Kaltschmitt, Martin; Junginger, Martin;doi: 10.1111/gcbb.12734
handle: 11420/7682
AbstractThe shift from straw incorporation to biofuel production entails emissions from production, changes in soil organic carbon (SOC) and through the provision of (co‐)products and entailed displacement effects. This paper analyses changes in greenhouse gas (GHG) emissions arising from the shift from straw incorporation to biomethane and bioethanol production. The biomethane concept comprises comminution, anaerobic digestion and amine washing. It additionally provides an organic fertilizer. Bioethanol production comprises energetic use of lignin, steam explosion, enzymatic hydrolysis and co‐fermentation. Additionally, feed is provided. A detailed consequential GHG balance with in‐depth focus on the time dependency of emissions is conducted: (a) the change in the atmospheric load of emissions arising from the change in the temporal occurrence of emissions comparing two steady states (before the shift and once a new steady state has established); and (b) the annual change in overall emissions over time starting from the shift are assessed. The shift from straw incorporation to biomethane production results in net changes in GHG emissions of (a) −979 (−436 to −1,654) and (b) −955 (−220 to −1,623) kg CO2‐eq. per tdry matter straw converted to biomethane (minimum and maximum). The shift to bioethanol production results in net changes of (a) −409 (−107 to −610) and (b) −361 (57 to −603) kg CO2‐eq. per tdry matter straw converted to bioethanol. If the atmospheric load of emissions arising from different timing of emissions is neglected in case (a), the change in GHG emissions differs by up to 54%. Case (b) reveals carbon payback times of 0 (0–49) and 19 (1–100) years in case of biomethane and bioethanol production, respectively. These results demonstrate that the detailed inclusion of temporal aspects into GHG balances is required to get a comprehensive understanding of changes in GHG emissions induced by the introduction of advanced biofuels from agricultural residues.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, GermanyPublisher:Wiley Funded by:EC | EARLYWARNING, EC | BACCHUSEC| EARLYWARNING ,EC| BACCHUSEgbert H. van Nes; Marten Scheffer; Milena Holmgren; Chi Xu; Chi Xu; Arie Staal; Stijn Hantson;doi: 10.1002/ecy.1470
pmid: 27859090
AbstractAlthough canopy height has long been a focus of interest in ecology, it has remained difficult to study at large spatial scales. Recently, satellite‐borne LiDAR equipment produced the first systematic high resolution maps of vegetation height worldwide. Here we show that this new resource reveals three marked modes in tropical canopy height ~40, ~12, and ~2 m corresponding to forest, savanna, and treeless landscapes. The distribution of these modes is consistent with the often hypothesized forest‐savanna bistability and suggests that both states can be stable in areas with a mean annual precipitation between ~1,500 and ~2,000 mm. Although the canopy height states correspond largely to the much discussed tree cover states, there are differences, too. For instance, there are places with savanna‐like sparse tree cover that have a forest‐like high canopy, suggesting that rather than true savanna, those are thinned relicts of forest. This illustrates how complementary sets of remotely sensed indicators may provide increasingly sophisticated ways to study ecological phenomena at a global scale.
Ecology arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/ecy....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/ecy....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 NetherlandsPublisher:Wiley Berg, L.J.L. van den; Dorland, E.; Vergeer, P.; Hart, M.A.C.; Bobbink, R.; Roelofs, J.G.M.;The effects of increasing ammonium concentrations in combination with different pH levels were studied on five heathland plant species to determine whether their occurrence and decline could be attributed to ammonium toxicity and/or pH levels. Plants were grown in growth media amended with four different ammonium concentrations (10, 100, 500 and 1000 micromol l(-1)) and two pH levels resembling acidified (pH 3.5 or 4) and weakly buffered (pH 5 or 5.5) situations. Survival of Antennaria dioica and Succisa pratensis was reduced by low pH in combination with high ammonium concentrations. Biomass decreased with increased ammonium concentrations and decreasing pH levels. Internal pH of the plants decreased with increasing ammonium concentrations. Survival of Calluna vulgaris, Deschampsia flexuosa and Gentiana pneumonanthe was not affected by ammonium. Moreover, biomass increased with increasing ammonium concentrations. Biomass production of G. pneumonanthe reduced at low pH levels. A decline of acid-sensitive species in heathlands was attributed to ammonium toxicity effects in combination with a low pH.
New Phytologist arrow_drop_down New PhytologistArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2005.01338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 174 citations 174 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2005.01338.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, BelgiumPublisher:MDPI AG Funded by:FCT | D4FCT| D4Ilaria Rosetti; Clara Bertrand Cabral; Ana Pereira Roders; Marc Jacobs; Rosana Albuquerque;In the past three decades, there has been increasing research carried out on the role of heritage and its processes in achieving broader sustainable development objectives beyond heritage conservation. As part of this movement, people-centered approaches and participation have been widely integrated into international regulations and guidelines on heritage management, stimulating the implementation of case studies-based research worldwide. Despite the wide advocacy of participatory heritage practices’ contributions to more inclusive and culturally sensitive local development in a great variety of projects, there is limited research into the roles these practices can have in addressing sustainability objectives. How are these roles addressed in international heritage regulatory frameworks, and what forms of participation are promoted for their fulfillment? This paper seeks to answer this research question through a content analysis of international declarations, conventions, guidelines, and policy documents focused on the roles and forms of participation that are promoted. A crossed-matched analysis of results reveals that active forms of participation are those most used to promote all roles and subcategories of participation, as a right, as a driver, and as an enabler of sustainable development. However, fewer active forms are presented as complementary at different stages of sustainability-oriented heritage practices. Moreover, a higher incidence of generic forms of participation can be observed in documents addressing international stakeholders, while partnership and intervention are to be found in those targeting regional and local actors. Nevertheless, the low incidence of decisional forms of participation confirms the challenges of power-sharing at all scales. Trends and influences are highlighted, informing heritage research, governance, and policymaking, but also revealing gaps and ambiguities in current regulations that further research encompassing a larger number of documents might confirm.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1674/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenVrije Universiteit Brussel Research PortalArticle . 2022Data sources: Vrije Universiteit Brussel Research PortalDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 11 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1674/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenVrije Universiteit Brussel Research PortalArticle . 2022Data sources: Vrije Universiteit Brussel Research PortalDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 01 Feb 2020 Spain, Spain, Italy, Switzerland, Spain, NetherlandsPublisher:Wiley Funded by:EC | ECOHYDRY, EC | CASCADEEC| ECOHYDRY ,EC| CASCADEAuthors: Francisco Rodríguez; Max Rietkerk; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; +14 AuthorsFrancisco Rodríguez; Max Rietkerk; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; Ana Carolina Junqueira Vasques; Victor M. Santana; Victor M. Santana; V. Ramón Vallejo; Ángeles G. Mayor; Ángeles G. Mayor; Ángeles G. Mayor; Alejandro Valdecantos; Mara Baudena; Lia Hemerik; M. Jaime Baeza; Maarten B. Eppinga; Maarten B. Eppinga; Susana Bautista;SummaryRecent observations suggest that repeated fires could drive Mediterranean forests to shrublands, hosting flammable vegetation that regrows quickly after fire. This feedback supposedly favours shrubland persistence and may be strengthened in the future by predicted increased aridity. An assessment was made of how fires and aridity in combination modulated the dynamics of Mediterranean ecosystems and whether the feedback could be strong enough to maintain shrubland as an alternative stable state to forest.A model was developed for vegetation dynamics, including stochastic fires and different plant fire‐responses. Parameters were calibrated using observational data from a period up to 100 yr ago, from 77 sites with and without fires in Southeast Spain and Southern France.The forest state was resilient to the separate impact of fires and increased aridity. However, water stress could convert forests into open shrublands by hampering post‐fire recovery, with a possible tipping point at intermediate aridity.Projected increases in aridity may reduce the resilience of Mediterranean forests against fires and drive post‐fire ecosystem dynamics toward open shrubland. The main effect of increased aridity is the limitation of post‐fire recovery. Including plant fire‐responses is thus fundamental when modelling the fate of Mediterranean‐type vegetation under climate‐change scenarios.
IRIS Cnr arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveRepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteDiposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 95visibility views 95 download downloads 75 Powered bymore_vert IRIS Cnr arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsZurich Open Repository and ArchiveArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveRepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteDiposit Digital de la Universitat de BarcelonaArticle . 2019Data sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu