- home
- Search
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- NL
- University of California System
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- NL
- University of California System
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Erin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; +9 AuthorsErin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; Christopher Jack; Christopher Jack; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Izidine Pinto; Izidine Pinto; Elisabeth Stephens; Elisabeth Stephens;Climate change and solar geoengineering have different implications for drought. Climate change can “speed up” the hydrological cycle, but it causesgreater evapotranspiration than the historical climate because of higher temperatures. Solar geoengineering (stratospheric aerosol injection), on the other hand, tends to “slow down” the hydrological cycle while reducing potential evapotranspiration. There are two common definitions of drought that take this into account; rainfall-only (SPI) and potential-evapotranspiration (SPEI). In different regions of Africa, this can result in different versions of droughts for each scenario, with drier rainfall (SPI) droughts under geoengineering and drier potential-evapotranspiration (SPEI) droughts under climate change. However, the societal implications of these different types of drought are not clear. We present a systematic review of all papers comparing the relationship between real-world outcomes (streamflow, vegetation, and agricultural yields) with these two definitions of drought in Africa. We also correlate the two drought definitions (SPI and SPEI) with historical vegetation conditions across the continent. We find that potential-evapotranspiration-droughts (SPEI) tend to be more closely related with vegetation conditions, while rainfall-droughts (SPI) tend to be more closely related with streamflows across Africa. In many regions, adaptation plans are likely to be affected differently by these two drought types. In parts of East Africa and coastal West Africa, geoengineering could exacerbate both types of drought, which has implications for current investments in water infrastructure. The reverse is true in parts of Southern Africa. In the Sahel, sectors more sensitive to rainfall-drought (SPI), such as reservoir management, could see reduced water availability under solar geoengineering, while sectors more sensitive to potential-evapotranspiration-drought (SPEI), such as rainfed agriculture, could see increased water availability under solar geoengineering. Given that the implications of climate change and solar geoengineering futures are different in different regions and also for different sectors, we recommend that deliberations on solar geoengineering include the widest possible representation of stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, United KingdomPublisher:Resilience Alliance, Inc. Huitema, Dave; Adger, W. Neil; Berkhout, Frans; Massey, Eric; Mazmanian, Daniel; Munaretto, Stefania; Plummer, Ryan; Termeer, Catrien C J A M;The governance of climate adaptation involves the collective efforts of multiple societal actors to address problems, or to reap the benefits, associated with impacts of climate change. Governing involves the creation of institutions, rules and organizations, and the selection of normative principles to guide problem solution and institution building. We argue that actors involved in governing climate change adaptation, as climate change governance regimes evolve, inevitably must engage in making choices, for instance on problem definitions, jurisdictional levels, on modes of governance and policy instruments, and on the timing of interventions. Yet little is known about how and why these choices are made in practice, and how such choices affect the outcomes of our efforts to govern adaptation. In this introduction we review the current state of evidence and the specific contribution of the articles published in this Special Feature, which are aimed at bringing greater clarity in these matters, and thereby informing both governance theory and practice. Collectively, the contributing papers suggest that the way issues are defined has important consequences for the support for governance interventions, and their effectiveness. The articles suggest that currently the emphasis in adaptation governance is on the local and regional levels, while underscoring the benefits of interventions and governance at higher jurisdictional levels in terms of visioning and scaling-up effective approaches. The articles suggest that there is a central role of government agencies in leading governance interventions to address spillover effects, to provide public goods, and to promote the long-term perspectives for planning. They highlight the issue of justice in the governance of adaptation showing how governance measures have wide distributional consequences, including the potential to amplify existing inequalities, access to resources, or generating new injustices through distribution of risks. For several of these findings, future research directions are suggested.
Ecology and Society arrow_drop_down King's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-08797-210337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
download 45download downloads 45 Powered bymore_vert Ecology and Society arrow_drop_down King's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-08797-210337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1980Publisher:American Society of Civil Engineers (ASCE) Douglas L. Inman; James A. Zampol; Thomas E. White; Daniel M. Hanes; B. Walton Waldorf; Kim A. Kastens;doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
Mass transport phenomenon was first recognized by Stokes in 1847 using a Lagrangian description. Later, a basic theory for the mass transport in water waves in viscous fluid and of finite depth was derived by Longuet-Higgins in 1953. Theoretical solutions of mass transport in progressive waves of permanent type are subjected to the definitions of wave celerity in deriving the various finite amplitude wave theories. As it has been generally acknowledged that the Stokes wave theory can not yield a correct prediction of mass transport in the shallow depths, some new theories have been developed. Recently the authors(1974 § 1977) have derived a new finite amplitude wave theory in shallow water for quasi- Stokes and cnoidal waves by the so-called reductive perturbation method, in which the mass transport is formulated both in Lagrangian and Eulerian descriptions. On the experimental verification, Russell and 0sorio(1957) investigated and compared Longuet-Higgins' solution with experimental data of Lagrangian mass transport velocity obtained in a normal closed wave tank of finite length. Since then, many investigations, and nearly all of them, have employed the finite length of wave tank in carrying out their experiments. However, no experiment has yet been attempted at verifying the Stokes drift in progressive waves of permanent type in a wave tank of infinite length. It is not realistic nor economical in constructing such an infinitely long flume to investigate experimentally the mass transport velocity in progressive waves. Instead of using such an ideal wave tank, a new one incorporated with natural water re-circulation was equipped to carry out experiments by the authors(1978). It was confirmed from these experiments that mass transport in progressive waves of permanent type exists in the Same direction of wave propagation throughout the depth, and agrees with both the Stokes drift and the authors' new formulations, within the test range of experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu451 citations 451 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Norway, France, FrancePublisher:Copernicus GmbH Funded by:EC | GEOCARBON, EC | COMBINE, RCN | Support for the Scientifi... +3 projectsEC| GEOCARBON ,EC| COMBINE ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| CARBOCHANGE ,SNSF| Climate and Environmental Physics ,SNSF| Klima- und UmweltphysikClare Enright; Chris Huntingford; Peter Levy; Atul K. Jain; Richard A. Houghton; Laurent Bopp; Samuel Levis; Anders Ahlström; Gregg Marland; Jörg Schwinger; Jörg Schwinger; C. Le Quéré; Ning Zeng; Joanna Isobel House; Thomas J. Conway; Robert J. Andres; Sönke Zaehle; Etsushi Kato; Philippe Ciais; G. R. van der Werf; Tom Boden; Michael R. Raupach; Benjamin D. Stocker; Kees Klein Goldewijk; Kees Klein Goldewijk; Benjamin Poulter; Stephen Sitch; Ralph F. Keeling; Pierre Friedlingstein; Scott C. Doney; Mark R. Lomas; Glen P. Peters; Josep G. Canadell; Robbie M. Andrew; Nicolas Viovy; C. Jourdain; C. Jourdain;Abstract. Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 &pm; 0.4 PgC yr−1, ELUC 1.0 &pm; 0.5 PgC yr−1, GATM 4.3 &pm; 0.1 PgC yr−1, SOCEAN 2.5 &pm; 0.5 PgC yr−1, and SLAND 2.6 &pm; 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 &pm; 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 &pm; 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 &pm; 0.2 PgC yr−1, SOCEAN was 2.7 &pm; 0.5 PgC yr−1, and SLAND was 4.1 &pm; 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 &pm; 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as &pm;1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 645 citations 645 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2006 United States, United Kingdom, United States, France, France, United States, United States, NetherlandsPublisher:American Geophysical Union (AGU) Markus Amann; Henk Eskes; Nicholas Savage; M. Gauss; Tim Butler; T. P. C. van Noije; M. G. Sanderson; Martin G. Schultz; John A. Pyle; Drew Shindell; Dan Bergmann; Frank Dentener; Kengo Sudo; Arlene M. Fiore; Ivar S. A. Isaksen; Ruth M. Doherty; Larry W. Horowitz; Louisa K. Emmons; David Stevenson; I. Bey; Jean-François Müller; J. Drevet; Nadine Unger; Michael J. Prather; Didier A. Hauglustaine; Guang Zeng; Giovanni Pitari; Susan E. Strahan; Jose M. Rodriguez; Sebastian Rast; Gregory Faluvegi; Oliver Wild; Oliver Wild; Sophie Szopa; K. Ellingsen; Maarten Krol; C. S. Atherton; Richard G. Derwent; Janusz Cofala; Jean-Francois Lamarque; V. Montanaro; Mark Lawrence; Gabrielle Pétron; William J. Collins;We analyze present‐day and future carbon monoxide (CO) simulations in 26 state‐of‐the‐art atmospheric chemistry models run to study future air quality and climate change. In comparison with near‐global satellite observations from the MOPITT instrument and local surface measurements, the models show large underestimates of Northern Hemisphere (NH) extratropical CO, while typically performing reasonably well elsewhere. The results suggest that year‐round emissions, probably from fossil fuel burning in east Asia and seasonal biomass burning emissions in south‐central Africa, are greatly underestimated in current inventories such as IIASA and EDGAR3.2. Variability among models is large, likely resulting primarily from intermodel differences in representations and emissions of nonmethane volatile organic compounds (NMVOCs) and in hydrologic cycles, which affect OH and soluble hydrocarbon intermediates. Global mean projections of the 2030 CO response to emissions changes are quite robust. Global mean midtropospheric (500 hPa) CO increases by 12.6 ± 3.5 ppbv (16%) for the high‐emissions (A2) scenario, by 1.7 ± 1.8 ppbv (2%) for the midrange (CLE) scenario, and decreases by 8.1 ± 2.3 ppbv (11%) for the low‐emissions (MFR) scenario. Projected 2030 climate changes decrease global 500 hPa CO by 1.4 ± 1.4 ppbv. Local changes can be much larger. In response to climate change, substantial effects are seen in the tropics, but intermodel variability is quite large. The regional CO responses to emissions changes are robust across models, however. These range from decreases of 10–20 ppbv over much of the industrialized NH for the CLE scenario to CO increases worldwide and year‐round under A2, with the largest changes over central Africa (20–30 ppbv), southern Brazil (20–35 ppbv) and south and east Asia (30–70 ppbv). The trajectory of future emissions thus has the potential to profoundly affect air quality over most of the world's populated areas.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2006Full-Text: https://doi.org/10.7916/D8RB747RData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2006Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 234 citations 234 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 18 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2006Full-Text: https://doi.org/10.7916/D8RB747RData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2006Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Argentina, Argentina, United StatesPublisher:American Geophysical Union (AGU) Benjamin Z. Houlton; Amy T. Austin; Kenneth G. Cassman; Guolin Yao; Viney P. Aneja; Chao Wang; Jan Willem Erisman; Jana E. Compton; William H. Schlesinger; Luiz Antonio Martinelli; James N. Galloway; Baojing Gu; Edith Bai; Edith Bai; Thomas P. Tomich; Maya Almaraz; Kate M. Scow; Xin Zhang; Eric A. Davidson;AbstractNitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation.
FAUBA Digital (Facul... arrow_drop_down Earth's FutureOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FAUBA Digital (Facul... arrow_drop_down Earth's FutureOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Informa UK Limited Authors: Hoekstra, Rutger; Michel, Bernhard; Suh, Sangwon;ABSTRACTThe effect of changes in trade patterns, particularly increasing international sourcing, on global CO2-emissions growth has yet to be clearly understood. In this paper, we estimate the emission cost of sourcing (ECS), which originates from replacing domestic products by imports from countries with more CO2-intensive technologies. Using a structural decomposition analysis, we find that changes in sourcing patterns between 1995 and 2007 contribute (1) to reducing territorial emissions in high-wage countries (70% of their territorial emissions growth) and (2) to increasing territorial emissions in low-wage countries (30% of their territorial emissions increase). The net global effect, the ECS, amounts to 18% of total global CO2-emissions growth. Our results call the climate change policies based on territorial principles into question given that they disregard that differences in emission intensities between countries contribute to raising global emissions. In contrast, policies fostering the transfe...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2016.1166099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2016.1166099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Australia, Netherlands, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | FAIRFISH, EC | GAIN, FCT | LA 1 +2 projectsEC| FAIRFISH ,EC| GAIN ,FCT| LA 1 ,NSF| Collaborative Research: Evaluating how abalone populations in the California Current are structured by the interplay of large-scale oceanographic forcing and nearshore variability ,NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human HealthAuthors: Xavier Basurto; Edward H. Allison; Colette C. C. Wabnitz; Colette C. C. Wabnitz; +29 AuthorsXavier Basurto; Edward H. Allison; Colette C. C. Wabnitz; Colette C. C. Wabnitz; Caroline E. Ferguson; Peter Edwards; Fiorenza Micheli; Alexander M. Kaminski; Rebecca E. Short; Benjamin S. Halpern; Ling Cao; Sangeeta Mangubhai; Christopher D. Golden; Rosamond L. Naylor; Derek Johnson; Philippa J. Cohen; Philippa J. Cohen; Ben Belton; Ben Belton; Christina C. Hicks; Wenbo Zhang; Beatrice Crona; Lucie Hazen; Stefan Gelcich; Nicole Franz; David C. Little; Shakuntala H. Thilsted; Melba Reantaso; Simon R. Bush; Cecile Brugere; Omar Defeo; Ussif Rashid Sumaila; Michelle Tigchelaar;Small-scale fisheries and aquaculture (SSFA) provide livelihoods for over 100 million people and sustenance for ~1 billion people, particularly in the Global South. Aquatic foods are distributed through diverse supply chains, with the potential to be highly adaptable to stresses and shocks, but face a growing range of threats and adaptive challenges. Contemporary governance assumes homogeneity in SSFA despite the diverse nature of this sector. Here we use SSFA actor profiles to capture the key dimensions and dynamism of SSFA diversity, reviewing contemporary threats and exploring opportunities for the SSFA sector. The heuristic framework can inform adaptive governance actions supporting the diversity and vital roles of SSFA in food systems, and in the health and livelihoods of nutritionally vulnerable people-supporting their viability through appropriate policies whilst fostering equitable and sustainable food systems.
CORE arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-021-00363-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert CORE arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-021-00363-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Italy, Netherlands, Denmark, United States, Italy, United States, Germany, United StatesPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:NSERC, NWO | Long term observation of ..., NSF | CAREER: Contrasting envir... +6 projectsNSERC ,NWO| Long term observation of soil carbon and methane fluxes in Siberian tundra. ,NSF| CAREER: Contrasting environmental controls on regional CO2 and CH4 biogeochemistry-Research and education for placing global change in a regional, local context ,AKA| Towards comprehensive understanding of surface layer exchange processes of biogenic volatile organic compounds ,AKA| ICOS - Integrated Carbon Observation System ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| ICE-ARC ,RSF| The development of ecosystem spatial-temporal thermodynamics theory and methods of thermodynamic variables measurement ,NSF| Measurement and Analysis of Methane Fluxes in a Northern Peatland EcosystemAna Meijide; Arjan Hensen; Elmar Veenendaal; Magnus Lund; Magnus Lund; A. J. Dolman; Thomas Friborg; Derrick Y.F. Lai; Tuomas Laurila; Barbara Marcolla; Janne Rinne; Janne Rinne; Pertti J. Martikainen; Lawrence B. Flanagan; Alessandro Cescatti; Christian Bernhofer; Annalea Lohila; Andrej Varlagin; Torben R. Christensen; Torben R. Christensen; Dennis D. Baldocchi; Marcin Jackowicz-Korczynski; Narasinha J. Shurpali; Nigel T. Roulet; Thomas Grünwald; Walter C. Oechel; Juha-Pekka Tuovinen; Ute Skiba; Chiara A. R. Corradi; Gerard Kiely; Shashi B. Verma; Mika Aurela; A.P. Schrier-Uijl; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; A.M.R. Petrescu; Matteo Sottocornola; Jacobus van Huissteden; Carsten Grüning; Torsten Sachs; Mikhail Mastepanov; Mikhail Mastepanov; Lutz Merbold; Elyn Humphreys; Ankur R. Desai; Jaclyn Hatala Matthes; Timo Vesala; Donatella Zona; Donatella Zona; Mikkel P. Tamstorf;pmid: 25831506
pmc: PMC4403212
Significance Wetlands are unique ecosystems because they are in general sinks for carbon dioxide and sources of methane. Their climate footprint therefore depends on the relative sign and magnitude of the land–atmosphere exchange of these two major greenhouse gases. This work presents a synthesis of simultaneous measurements of carbon dioxide and methane fluxes to assess the radiative forcing of natural wetlands converted to agricultural or forested land. The net climate impact of wetlands is strongly dependent on whether they are natural or managed. Here we show that the conversion of natural wetlands produces a significant increase of the atmospheric radiative forcing. The findings suggest that management plans for these complex ecosystems should carefully account for the potential biogeochemical effects on climate.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, France, United StatesPublisher:Elsevier BV Terry Keating; Gregory J. Frost; Gregory J. Frost; Hugo Denier van der Gon; Alex Guenther; Greet Janssens-Maenhout; Ute Skiba; Claire Granier; Yuxuan Wang; Martin G. Schultz; Zbigniew Klimont; John van Aardenne; B. Cardenas; Jean-Francois Lamarque; Catherine Liousse; Johannes W. Kaiser; Johannes W. Kaiser; Johannes W. Kaiser; Toshimasa Ohara; Leonor Tarrasón; Slobodan Nickovic; Paulette Middleton;We are witnessing a crucial change in how we quantify and understand emissions of greenhouse gases and air pollutants, with an increasing demand for science-based transparent emissions information produced by robust community efforts. Today’s scientific capabilities, with near-real-time in-situ and remote sensing observations combined with forward and inverse models and a better understanding of the controlling processes, are contributing to this transformation and providing newapproaches to derive, verify, and forecast emissions (Tong et al., 2011; Frost et al., 2012) and to quantify their impacts on the environment (e.g., Bond et al., 2013). At the same time, the needs for emissions information and the demands for their accuracy and consistency have grown. Changing economies, demographics, agricultural practices, and energy sources, along with mandates to evaluate emissions mitigation efforts, demonstrate compliance with legislation, and verify treaties, are leading to new challenges in emissions understanding. To quote NOAA Senior Technical Scientist David Fahey, “We are in the Century of Accountability. Emissions information is critical not only for environmental science and decision-making, but also as an instrument of foreign policy and international diplomacy.” Emissions quantification represents a key step in explaining observed variability and trends in atmospheric composition and in attributing these observed changes to their causes. Accurate emissions data are necessary to identify feasible controls that reduce adverse impacts associated with air quality and climate and to track the success of implemented policies. To progress further, the international community must improve the understanding of drivers and contributing factors to emissions, and it must strengthen connections among and within different scientific disciplines that characterize our environment and entities that protect the environment and influence further emissions. The Global Emissions InitiAtive, GEIA (http://www.geiacenter. org/), is a center for emissions information exchange and competence building created in 1990 in response to the need for high quality global emissions data (Graedel et al., 1993). While the past two decades have seen considerable progress in developing, improving and assessing emission estimates, emissions continue to be a major contributor to overall uncertainty in atmospheric model simulations. Moving forward, GEIA aims to help build emissions knowledge in a rapidly evolving society by: 1) enhancing understanding, quantification, and analysis of emissions processes; 2) improving access to emissions information; and 3) strengthening the community of emissions groups involved in research, assessment, operations, regulation and policy.
Atmospheric Environm... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2013.08.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Atmospheric Environm... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2013.08.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Erin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; +9 AuthorsErin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; Christopher Jack; Christopher Jack; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Izidine Pinto; Izidine Pinto; Elisabeth Stephens; Elisabeth Stephens;Climate change and solar geoengineering have different implications for drought. Climate change can “speed up” the hydrological cycle, but it causesgreater evapotranspiration than the historical climate because of higher temperatures. Solar geoengineering (stratospheric aerosol injection), on the other hand, tends to “slow down” the hydrological cycle while reducing potential evapotranspiration. There are two common definitions of drought that take this into account; rainfall-only (SPI) and potential-evapotranspiration (SPEI). In different regions of Africa, this can result in different versions of droughts for each scenario, with drier rainfall (SPI) droughts under geoengineering and drier potential-evapotranspiration (SPEI) droughts under climate change. However, the societal implications of these different types of drought are not clear. We present a systematic review of all papers comparing the relationship between real-world outcomes (streamflow, vegetation, and agricultural yields) with these two definitions of drought in Africa. We also correlate the two drought definitions (SPI and SPEI) with historical vegetation conditions across the continent. We find that potential-evapotranspiration-droughts (SPEI) tend to be more closely related with vegetation conditions, while rainfall-droughts (SPI) tend to be more closely related with streamflows across Africa. In many regions, adaptation plans are likely to be affected differently by these two drought types. In parts of East Africa and coastal West Africa, geoengineering could exacerbate both types of drought, which has implications for current investments in water infrastructure. The reverse is true in parts of Southern Africa. In the Sahel, sectors more sensitive to rainfall-drought (SPI), such as reservoir management, could see reduced water availability under solar geoengineering, while sectors more sensitive to potential-evapotranspiration-drought (SPEI), such as rainfed agriculture, could see increased water availability under solar geoengineering. Given that the implications of climate change and solar geoengineering futures are different in different regions and also for different sectors, we recommend that deliberations on solar geoengineering include the widest possible representation of stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, United KingdomPublisher:Resilience Alliance, Inc. Huitema, Dave; Adger, W. Neil; Berkhout, Frans; Massey, Eric; Mazmanian, Daniel; Munaretto, Stefania; Plummer, Ryan; Termeer, Catrien C J A M;The governance of climate adaptation involves the collective efforts of multiple societal actors to address problems, or to reap the benefits, associated with impacts of climate change. Governing involves the creation of institutions, rules and organizations, and the selection of normative principles to guide problem solution and institution building. We argue that actors involved in governing climate change adaptation, as climate change governance regimes evolve, inevitably must engage in making choices, for instance on problem definitions, jurisdictional levels, on modes of governance and policy instruments, and on the timing of interventions. Yet little is known about how and why these choices are made in practice, and how such choices affect the outcomes of our efforts to govern adaptation. In this introduction we review the current state of evidence and the specific contribution of the articles published in this Special Feature, which are aimed at bringing greater clarity in these matters, and thereby informing both governance theory and practice. Collectively, the contributing papers suggest that the way issues are defined has important consequences for the support for governance interventions, and their effectiveness. The articles suggest that currently the emphasis in adaptation governance is on the local and regional levels, while underscoring the benefits of interventions and governance at higher jurisdictional levels in terms of visioning and scaling-up effective approaches. The articles suggest that there is a central role of government agencies in leading governance interventions to address spillover effects, to provide public goods, and to promote the long-term perspectives for planning. They highlight the issue of justice in the governance of adaptation showing how governance measures have wide distributional consequences, including the potential to amplify existing inequalities, access to resources, or generating new injustices through distribution of risks. For several of these findings, future research directions are suggested.
Ecology and Society arrow_drop_down King's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-08797-210337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
download 45download downloads 45 Powered bymore_vert Ecology and Society arrow_drop_down King's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-08797-210337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1980Publisher:American Society of Civil Engineers (ASCE) Douglas L. Inman; James A. Zampol; Thomas E. White; Daniel M. Hanes; B. Walton Waldorf; Kim A. Kastens;doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
Mass transport phenomenon was first recognized by Stokes in 1847 using a Lagrangian description. Later, a basic theory for the mass transport in water waves in viscous fluid and of finite depth was derived by Longuet-Higgins in 1953. Theoretical solutions of mass transport in progressive waves of permanent type are subjected to the definitions of wave celerity in deriving the various finite amplitude wave theories. As it has been generally acknowledged that the Stokes wave theory can not yield a correct prediction of mass transport in the shallow depths, some new theories have been developed. Recently the authors(1974 § 1977) have derived a new finite amplitude wave theory in shallow water for quasi- Stokes and cnoidal waves by the so-called reductive perturbation method, in which the mass transport is formulated both in Lagrangian and Eulerian descriptions. On the experimental verification, Russell and 0sorio(1957) investigated and compared Longuet-Higgins' solution with experimental data of Lagrangian mass transport velocity obtained in a normal closed wave tank of finite length. Since then, many investigations, and nearly all of them, have employed the finite length of wave tank in carrying out their experiments. However, no experiment has yet been attempted at verifying the Stokes drift in progressive waves of permanent type in a wave tank of infinite length. It is not realistic nor economical in constructing such an infinitely long flume to investigate experimentally the mass transport velocity in progressive waves. Instead of using such an ideal wave tank, a new one incorporated with natural water re-circulation was equipped to carry out experiments by the authors(1978). It was confirmed from these experiments that mass transport in progressive waves of permanent type exists in the Same direction of wave propagation throughout the depth, and agrees with both the Stokes drift and the authors' new formulations, within the test range of experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu451 citations 451 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, Norway, France, FrancePublisher:Copernicus GmbH Funded by:EC | GEOCARBON, EC | COMBINE, RCN | Support for the Scientifi... +3 projectsEC| GEOCARBON ,EC| COMBINE ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| CARBOCHANGE ,SNSF| Climate and Environmental Physics ,SNSF| Klima- und UmweltphysikClare Enright; Chris Huntingford; Peter Levy; Atul K. Jain; Richard A. Houghton; Laurent Bopp; Samuel Levis; Anders Ahlström; Gregg Marland; Jörg Schwinger; Jörg Schwinger; C. Le Quéré; Ning Zeng; Joanna Isobel House; Thomas J. Conway; Robert J. Andres; Sönke Zaehle; Etsushi Kato; Philippe Ciais; G. R. van der Werf; Tom Boden; Michael R. Raupach; Benjamin D. Stocker; Kees Klein Goldewijk; Kees Klein Goldewijk; Benjamin Poulter; Stephen Sitch; Ralph F. Keeling; Pierre Friedlingstein; Scott C. Doney; Mark R. Lomas; Glen P. Peters; Josep G. Canadell; Robbie M. Andrew; Nicolas Viovy; C. Jourdain; C. Jourdain;Abstract. Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 &pm; 0.4 PgC yr−1, ELUC 1.0 &pm; 0.5 PgC yr−1, GATM 4.3 &pm; 0.1 PgC yr−1, SOCEAN 2.5 &pm; 0.5 PgC yr−1, and SLAND 2.6 &pm; 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 &pm; 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 &pm; 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 &pm; 0.2 PgC yr−1, SOCEAN was 2.7 &pm; 0.5 PgC yr−1, and SLAND was 4.1 &pm; 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 &pm; 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as &pm;1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013). Global carbon budget 2013
Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 645 citations 645 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-03208397Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10044/1/41754Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/1956/12481Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-5-165-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2006 United States, United Kingdom, United States, France, France, United States, United States, NetherlandsPublisher:American Geophysical Union (AGU) Markus Amann; Henk Eskes; Nicholas Savage; M. Gauss; Tim Butler; T. P. C. van Noije; M. G. Sanderson; Martin G. Schultz; John A. Pyle; Drew Shindell; Dan Bergmann; Frank Dentener; Kengo Sudo; Arlene M. Fiore; Ivar S. A. Isaksen; Ruth M. Doherty; Larry W. Horowitz; Louisa K. Emmons; David Stevenson; I. Bey; Jean-François Müller; J. Drevet; Nadine Unger; Michael J. Prather; Didier A. Hauglustaine; Guang Zeng; Giovanni Pitari; Susan E. Strahan; Jose M. Rodriguez; Sebastian Rast; Gregory Faluvegi; Oliver Wild; Oliver Wild; Sophie Szopa; K. Ellingsen; Maarten Krol; C. S. Atherton; Richard G. Derwent; Janusz Cofala; Jean-Francois Lamarque; V. Montanaro; Mark Lawrence; Gabrielle Pétron; William J. Collins;We analyze present‐day and future carbon monoxide (CO) simulations in 26 state‐of‐the‐art atmospheric chemistry models run to study future air quality and climate change. In comparison with near‐global satellite observations from the MOPITT instrument and local surface measurements, the models show large underestimates of Northern Hemisphere (NH) extratropical CO, while typically performing reasonably well elsewhere. The results suggest that year‐round emissions, probably from fossil fuel burning in east Asia and seasonal biomass burning emissions in south‐central Africa, are greatly underestimated in current inventories such as IIASA and EDGAR3.2. Variability among models is large, likely resulting primarily from intermodel differences in representations and emissions of nonmethane volatile organic compounds (NMVOCs) and in hydrologic cycles, which affect OH and soluble hydrocarbon intermediates. Global mean projections of the 2030 CO response to emissions changes are quite robust. Global mean midtropospheric (500 hPa) CO increases by 12.6 ± 3.5 ppbv (16%) for the high‐emissions (A2) scenario, by 1.7 ± 1.8 ppbv (2%) for the midrange (CLE) scenario, and decreases by 8.1 ± 2.3 ppbv (11%) for the low‐emissions (MFR) scenario. Projected 2030 climate changes decrease global 500 hPa CO by 1.4 ± 1.4 ppbv. Local changes can be much larger. In response to climate change, substantial effects are seen in the tropics, but intermodel variability is quite large. The regional CO responses to emissions changes are robust across models, however. These range from decreases of 10–20 ppbv over much of the industrialized NH for the CLE scenario to CO increases worldwide and year‐round under A2, with the largest changes over central Africa (20–30 ppbv), southern Brazil (20–35 ppbv) and south and east Asia (30–70 ppbv). The trajectory of future emissions thus has the potential to profoundly affect air quality over most of the world's populated areas.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2006Full-Text: https://doi.org/10.7916/D8RB747RData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2006Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 234 citations 234 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 18 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2006Full-Text: https://doi.org/10.7916/D8RB747RData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2006Full-Text: https://hal.science/hal-03048346Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2006Data sources: DANS (Data Archiving and Networked Services)Journal of Geophysical Research AtmospheresArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006jd007100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Argentina, Argentina, United StatesPublisher:American Geophysical Union (AGU) Benjamin Z. Houlton; Amy T. Austin; Kenneth G. Cassman; Guolin Yao; Viney P. Aneja; Chao Wang; Jan Willem Erisman; Jana E. Compton; William H. Schlesinger; Luiz Antonio Martinelli; James N. Galloway; Baojing Gu; Edith Bai; Edith Bai; Thomas P. Tomich; Maya Almaraz; Kate M. Scow; Xin Zhang; Eric A. Davidson;AbstractNitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation.
FAUBA Digital (Facul... arrow_drop_down Earth's FutureOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FAUBA Digital (Facul... arrow_drop_down Earth's FutureOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Informa UK Limited Authors: Hoekstra, Rutger; Michel, Bernhard; Suh, Sangwon;ABSTRACTThe effect of changes in trade patterns, particularly increasing international sourcing, on global CO2-emissions growth has yet to be clearly understood. In this paper, we estimate the emission cost of sourcing (ECS), which originates from replacing domestic products by imports from countries with more CO2-intensive technologies. Using a structural decomposition analysis, we find that changes in sourcing patterns between 1995 and 2007 contribute (1) to reducing territorial emissions in high-wage countries (70% of their territorial emissions growth) and (2) to increasing territorial emissions in low-wage countries (30% of their territorial emissions increase). The net global effect, the ECS, amounts to 18% of total global CO2-emissions growth. Our results call the climate change policies based on territorial principles into question given that they disregard that differences in emission intensities between countries contribute to raising global emissions. In contrast, policies fostering the transfe...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2016.1166099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09535314.2016.1166099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Australia, Netherlands, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | FAIRFISH, EC | GAIN, FCT | LA 1 +2 projectsEC| FAIRFISH ,EC| GAIN ,FCT| LA 1 ,NSF| Collaborative Research: Evaluating how abalone populations in the California Current are structured by the interplay of large-scale oceanographic forcing and nearshore variability ,NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human HealthAuthors: Xavier Basurto; Edward H. Allison; Colette C. C. Wabnitz; Colette C. C. Wabnitz; +29 AuthorsXavier Basurto; Edward H. Allison; Colette C. C. Wabnitz; Colette C. C. Wabnitz; Caroline E. Ferguson; Peter Edwards; Fiorenza Micheli; Alexander M. Kaminski; Rebecca E. Short; Benjamin S. Halpern; Ling Cao; Sangeeta Mangubhai; Christopher D. Golden; Rosamond L. Naylor; Derek Johnson; Philippa J. Cohen; Philippa J. Cohen; Ben Belton; Ben Belton; Christina C. Hicks; Wenbo Zhang; Beatrice Crona; Lucie Hazen; Stefan Gelcich; Nicole Franz; David C. Little; Shakuntala H. Thilsted; Melba Reantaso; Simon R. Bush; Cecile Brugere; Omar Defeo; Ussif Rashid Sumaila; Michelle Tigchelaar;Small-scale fisheries and aquaculture (SSFA) provide livelihoods for over 100 million people and sustenance for ~1 billion people, particularly in the Global South. Aquatic foods are distributed through diverse supply chains, with the potential to be highly adaptable to stresses and shocks, but face a growing range of threats and adaptive challenges. Contemporary governance assumes homogeneity in SSFA despite the diverse nature of this sector. Here we use SSFA actor profiles to capture the key dimensions and dynamism of SSFA diversity, reviewing contemporary threats and exploring opportunities for the SSFA sector. The heuristic framework can inform adaptive governance actions supporting the diversity and vital roles of SSFA in food systems, and in the health and livelihoods of nutritionally vulnerable people-supporting their viability through appropriate policies whilst fostering equitable and sustainable food systems.
CORE arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-021-00363-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert CORE arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-021-00363-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Italy, Netherlands, Denmark, United States, Italy, United States, Germany, United StatesPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:NSERC, NWO | Long term observation of ..., NSF | CAREER: Contrasting envir... +6 projectsNSERC ,NWO| Long term observation of soil carbon and methane fluxes in Siberian tundra. ,NSF| CAREER: Contrasting environmental controls on regional CO2 and CH4 biogeochemistry-Research and education for placing global change in a regional, local context ,AKA| Towards comprehensive understanding of surface layer exchange processes of biogenic volatile organic compounds ,AKA| ICOS - Integrated Carbon Observation System ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| ICE-ARC ,RSF| The development of ecosystem spatial-temporal thermodynamics theory and methods of thermodynamic variables measurement ,NSF| Measurement and Analysis of Methane Fluxes in a Northern Peatland EcosystemAna Meijide; Arjan Hensen; Elmar Veenendaal; Magnus Lund; Magnus Lund; A. J. Dolman; Thomas Friborg; Derrick Y.F. Lai; Tuomas Laurila; Barbara Marcolla; Janne Rinne; Janne Rinne; Pertti J. Martikainen; Lawrence B. Flanagan; Alessandro Cescatti; Christian Bernhofer; Annalea Lohila; Andrej Varlagin; Torben R. Christensen; Torben R. Christensen; Dennis D. Baldocchi; Marcin Jackowicz-Korczynski; Narasinha J. Shurpali; Nigel T. Roulet; Thomas Grünwald; Walter C. Oechel; Juha-Pekka Tuovinen; Ute Skiba; Chiara A. R. Corradi; Gerard Kiely; Shashi B. Verma; Mika Aurela; A.P. Schrier-Uijl; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; A.M.R. Petrescu; Matteo Sottocornola; Jacobus van Huissteden; Carsten Grüning; Torsten Sachs; Mikhail Mastepanov; Mikhail Mastepanov; Lutz Merbold; Elyn Humphreys; Ankur R. Desai; Jaclyn Hatala Matthes; Timo Vesala; Donatella Zona; Donatella Zona; Mikkel P. Tamstorf;pmid: 25831506
pmc: PMC4403212
Significance Wetlands are unique ecosystems because they are in general sinks for carbon dioxide and sources of methane. Their climate footprint therefore depends on the relative sign and magnitude of the land–atmosphere exchange of these two major greenhouse gases. This work presents a synthesis of simultaneous measurements of carbon dioxide and methane fluxes to assess the radiative forcing of natural wetlands converted to agricultural or forested land. The net climate impact of wetlands is strongly dependent on whether they are natural or managed. Here we show that the conversion of natural wetlands produces a significant increase of the atmospheric radiative forcing. The findings suggest that management plans for these complex ecosystems should carefully account for the potential biogeochemical effects on climate.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, France, United StatesPublisher:Elsevier BV Terry Keating; Gregory J. Frost; Gregory J. Frost; Hugo Denier van der Gon; Alex Guenther; Greet Janssens-Maenhout; Ute Skiba; Claire Granier; Yuxuan Wang; Martin G. Schultz; Zbigniew Klimont; John van Aardenne; B. Cardenas; Jean-Francois Lamarque; Catherine Liousse; Johannes W. Kaiser; Johannes W. Kaiser; Johannes W. Kaiser; Toshimasa Ohara; Leonor Tarrasón; Slobodan Nickovic; Paulette Middleton;We are witnessing a crucial change in how we quantify and understand emissions of greenhouse gases and air pollutants, with an increasing demand for science-based transparent emissions information produced by robust community efforts. Today’s scientific capabilities, with near-real-time in-situ and remote sensing observations combined with forward and inverse models and a better understanding of the controlling processes, are contributing to this transformation and providing newapproaches to derive, verify, and forecast emissions (Tong et al., 2011; Frost et al., 2012) and to quantify their impacts on the environment (e.g., Bond et al., 2013). At the same time, the needs for emissions information and the demands for their accuracy and consistency have grown. Changing economies, demographics, agricultural practices, and energy sources, along with mandates to evaluate emissions mitigation efforts, demonstrate compliance with legislation, and verify treaties, are leading to new challenges in emissions understanding. To quote NOAA Senior Technical Scientist David Fahey, “We are in the Century of Accountability. Emissions information is critical not only for environmental science and decision-making, but also as an instrument of foreign policy and international diplomacy.” Emissions quantification represents a key step in explaining observed variability and trends in atmospheric composition and in attributing these observed changes to their causes. Accurate emissions data are necessary to identify feasible controls that reduce adverse impacts associated with air quality and climate and to track the success of implemented policies. To progress further, the international community must improve the understanding of drivers and contributing factors to emissions, and it must strengthen connections among and within different scientific disciplines that characterize our environment and entities that protect the environment and influence further emissions. The Global Emissions InitiAtive, GEIA (http://www.geiacenter. org/), is a center for emissions information exchange and competence building created in 1990 in response to the need for high quality global emissions data (Graedel et al., 1993). While the past two decades have seen considerable progress in developing, improving and assessing emission estimates, emissions continue to be a major contributor to overall uncertainty in atmospheric model simulations. Moving forward, GEIA aims to help build emissions knowledge in a rapidly evolving society by: 1) enhancing understanding, quantification, and analysis of emissions processes; 2) improving access to emissions information; and 3) strengthening the community of emissions groups involved in research, assessment, operations, regulation and policy.
Atmospheric Environm... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2013.08.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Atmospheric Environm... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverDANS (Data Archiving and Networked Services)Article . 2013Data sources: DANS (Data Archiving and Networked Services)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2013.08.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu