- home
- Search
- Energy Research
- 13. Climate action
- US
- CA
- ES
- CN
- English
- Energy Research
- 13. Climate action
- US
- CA
- ES
- CN
- English
description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right External research report 2014 IrelandPublisher:Elsevier BV Dalton, C.; O Dwyer, B.; Taylor, D.; DeEyto, E.; Jennings, E.; Chen, G.; Poole, R.; Dillane, M.; McGinnity, P.;Oligotrophic catchments with short spatey streams, upland lakes and peaty soils characterise northwest European Atlantic coastal regions. These catchments are important biodiversity refuges, particularly for sensitive diadromous fish populations but are subject to changes in land use and land management practices associated with afforestation, agriculture and rural development. Quantification of the degree of catchment degradation resulting from such anthropogenic impacts is often limited by a lack of long-term baseline data in what are generally relatively isolated, poorly studied catchments. This research uses a combination of palaeolimnological (radiometrically-dated variations in sedimentary geochemical elements, pollen, diatoms and remains of cladocera), census, and instrumental data, along with hindcast estimates to quantify environmental changes and their aquatic impacts since the late 19th century. The most likely drivers of any change are also identified. Results confirm an aquatic biotic response (phyto- and zooplankton) to soil erosion and nutrient enrichment associated with the onset of commercial conifer afforestation, effects that were subsequently enhanced as a result of increased overgrazing in the catchment and, possibly, climate warming. The implications for the health of aquatic resources in the catchment are discussed Environmental Protection Agency in Ireland (ILLUMINATE 2005-W-MS-40, P.McGinnity was supported by the Beaufort Marine Research Award in Fish Population Genetics funded by the Irish Government under the Sea Change Programme.
Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::fdfd86dbf747f2d2017ab37b401961eb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::fdfd86dbf747f2d2017ab37b401961eb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016Publisher:Zenodo Authors: Cordeiro, Juliana Barcelos; Mahani, Khashayar; Farbod Farzan; Jafari, Mohsen A.;{"references": ["U.S. Energy Information Administration. \"How much energy is\nconsumed in residential and commercial buildings in the United States?\"\nAvailable at: http://www.eia.gov/tools/faqs/faq.cfm?id=86&t=1", "S. Darby, \"The effectiveness of feedback on energy consumption.\"\nEnvironmental Change Institute, University of Oxford, 2006. Available\nat: http://www.globalwarmingisreal.com/energyconsump-feedback.pdf.\nVisited: September 2015", "J. S. John, \"Putting energy disaggregation tech to the test,\" November,\n2013. Greentech Media. Available at:\nhttp://www.greentechmedia.com/articles/read/putting-energydisaggregation-tech-to-the-test.\nVisited: September 2015", "A. Zoha, A. Gluhak, M. A. Imran, S. Rajasegarar, \"Non-intrusive load\nmonitoring approaches for disaggregated energy sensing: a survey,\"\nSensors, vol. 12, no. 12, pp. 16838-16866, December 2012.", "G. W. Hart, \"Nonintrusive appliance load monitoring,\" in Proc. of the\nIEEE, vol. 80, pp. 1870-1891, December 1992.", "M. Baranski, J. Voss, \"Non-intrusive appliance load monitoring based\non Optical Sensor,\" IEEE Bologna PowerTech Conference, Bologna,\nItaly, June 2003. Available at:\nhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1304732", "L. Farinaccio, R. Zmeureanu, \"Using a pattern recognition approach to\ndisaggregate the total electricity consumption in a house into the major\nen-uses,\" Elsevier, Energy and Buildings, vol. 30, no. 3, pp. 245-259,\nAugust 1999.", "J. M. Abreu, F. C. Pereira, P. Ferr\u00e3o, \"Using pattern recognition to\nidentify habitual behavior in residential electricity consumption,\"\nElsevier, Energy and Buildings, vol. 49, pp. 479-487, June 2012.", "C. Beckel, L. Sadamori, S. Santini, \"Automatic socio-economic\nclassification of households using electricity consumption data,\" in\nProc. of the 4th international conference on future energy systems, New\nYork, 2013, pp. 75-86.\n[10] H. Zhao, F. Magoul\u00e8s, \"A review on the prediction of building energy\nconsumption,\" Elsevier, Renewable and Sustainable Energy Reviews,\nvol. 16, no. 6, pp. 3586-3592, August 2012.\n[11] G. K. F. Tso, K. K. W. Yau, \"Predicting electricity energy consumption:\nA comparison of regression analysis, decision tree and neural networks,\"\nElsevier, Energy, vol. 32, no. 9, pp. 1761-1768, September 2007.\n[12] F. Farzan, S. A. Vaghefi, K. Mahani, M. A. Jafari, J. Gong, \"Operational\nplanning for multi-building portfolio in an uncertain energy market,\"\nElsevier, Energy and Buildings, vol. 103, pp. 271-283, September 2015."]} Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1124581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1124581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2022 CanadaAuthors: Singh, Akash;handle: 1993/36314
The city of Leh was the capital of the Kingdom of Ladakh from the fifteenth to nineteenth centuries. Over time, due to wars, politics, and isolation, the capital city fell into a state of disrepair soon after the royal family was exiled. An explosion in tourism over the last few decades has seen a revival in the local community but most of the benefits including generated tourism revenue have been directed towards development outside the historical boundary of Leh. The residents of what is now known as Leh Old Town suffer from poverty, lack of basic infrastructures such as drainage, and limited access to water. Additionally, Leh Old Town was also placed under World’s Monument Watch in 2008 due to issues related to low-scale modern construction and urgent need of repair for 55% of the historic buildings. Climate change has also been cited as a cause of concern due to issues related to faster melting glaciers and flash floods due to the lack of a drainage system. The main aim of this practicum is to study and demonstrate the role that landscape architects can play in the rehabilitation of historical alpine settlements that have been adversely affected by anthropological factors such as politics, climate change, and over-tourism. It does so by highlighting the cultural and architectural heritage of the Old Town of Leh, known as Kharyog in Ladakhi, and demonstrating the use of indigenous construction materials and methods that have been superseded by modern materials imported from other parts of the country. It also aims to study how the positive effects of tourism can be distributed equally throughout a community to improve the quality of life for the residents of Leh Old Town.
MSpace at the Univer... arrow_drop_down MSpace at the University of ManitobaMaster thesis . 2022Data sources: MSpace at the University of Manitobaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1993/36314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert MSpace at the Univer... arrow_drop_down MSpace at the University of ManitobaMaster thesis . 2022Data sources: MSpace at the University of Manitobaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1993/36314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2014Publisher:Unknown Authors: Howard, Peter; Sterner, Thomas; Howard, Peter; Sterner, Thomas;Climate change is one of the preeminent policy issues of our day, and the social cost of carbon (SCC) is one of the foremost tools for determining the socially optimal policy response. The SCC is estimated using Integrated Assessment Models (IAMs), of which Nordhaus’ DICE is the oldest and one of the best respected. These numerical models capture the various steps in the climate and economic processes that translate a marginal unit of CO2 emissions into economic damage. While accuracy at each of these steps is necessary to precisely estimate the SCC, correct calibrating the climate damage function, which translates a temperature change into a percentage change in GDP, is critical. Calibration of the damage function determines which climate damages are included and excluded from the cost of carbon. Traditionally, Nordhaus calibrated the DICE damage function using a global damage estimate calculated by aggregating a series of region-sector specific damage estimates (Nordhaus and Boyer, 2000; Nordhaus, 2008). However, in DICE-2013, Nordhaus moved to calibrating the DICE damage function using a meta-analysis at the global scale (Nordhaus and Sztorc, 2013). This paper critiques this meta-analysis approach as it is currently applied and re-estimates the DICE-2013 damage function using up-to-date meta-analysis techniques to more accurately reflect climate damages and the uncertainty underlying them. This paper finds that DICE-2013 damage function significantly under-estimates climate damages by a factor of two to three. This is a working paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.169952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.169952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Zenodo Authors: Qiancheng Sun; Zela-Koort, Andrea; Stokes, Ava; Salahaldin Alshatshati;The goal of this study is to determine the difference in CO2 emissions between 2019-2020 and 2020-2021, more specifically during lockdown periods during the COVID-19 pandemic. In the beginning of the pandemic, most countries were forced into lockdowns, and a countless number of people had to continue their daily work from home in isolation. Previously, people would go to an office or to school and leave their houses empty for eight hours, without having lights or any electronics on. Because of this, there should be a direct correlation between electricity usage before and during lockdowns, as a private residence should have higher electricity consumption during 2020-2021, when they are at home. Using machine learning, we will investigate to see if COVID-19 affected CO2 emissions as a result of more electricity usage in private residences. A model will be made to predict what the CO2 emissions would be for 2019-2020, based on electricity usage data from 2020-2021. Then, the real CO2 emissions from 2019-2020 will be compared with the model’s predicted values, and the difference will indicate if COVID-19 caused an inconsistency between actual and predicted CO2 emissions. Factors that were taken into account when making a model were independent variables relating to outdoor conditions, the number of people living in the house, and the temperature that the thermostat is set at, making the response variable CO2 emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5048479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5048479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2016 FrancePublisher:WIP Perez-Lopez, Paula; Blanc, Isabelle; Gschwind, Benoît; Blanc, Philippe; Ménard, Lionel; Frischknecht, Rolf; Stolz, Philippe; Durand, Yvonnick; Heath, Garvin;Photovoltaic (PV) technologies constitute a leading renewable energy source with a worldwide installed capacity of 135 GW in 2013 that may increase to nearly 4700 GW in 2050. To achieve this production level while minimizing environmental impacts, decision makers must rely at national level on relevant technological, economic and planning aspects which are highly geographically dependent. The access to performance data is a critical issue in the decision-making process and determines the successful development of efficient PV systems. For this reason, a new interactive tool is proposed here to provide the users with easy-to-use data and maps for the solar irradiation and screening level environmental results of representative PV technologies. The calculation procedures account for the geographic location and the PV system layout (installation, orientation and inclination angles). The tool has a worldwide coverage with a multi-criteria scope, both in terms of the numerous technological scenarios and of the wide range of environmental indicators. Moreover, the user is given the possibility to compare the PV environmental performance to the corresponding country electricity mix environmental footprint. 32nd European Photovoltaic Solar Energy Conference and Exhibition; 2869-2873
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2016Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20162016-7do.13.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2016Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20162016-7do.13.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2013Publisher:IFSA Publishing, S.L. Authors: Zhuolun Chen;Building materials have played a more and more important role in saving building energy since the central government of China set higher standards and requirements for new-constructed and retrofit buildings after 2005. Glazing units, especially energy-saving units including LOW-E coated glazing units and PVB laminated glass, are utilized nation-wide. This paper employs energy simulation to analyze the energy-saving effects of different glazing units in residential buildings in the city of Guangzhou, as an example of hot-humid climate in China. It appeals that the PVB laminated glass can refuse 44 % solar radiation to enter rooms and reduce 40 % of the shading coefficient comparing to clear glass. Meanwhile, in the aspects of operation and design of the HVAC system, 28 % of cooling load, 21 % of installed capacity and 8.6 % of full-load operation time can be saved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::e8c72f5a6c2581f3689f61217cc39182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::e8c72f5a6c2581f3689f61217cc39182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2009 SpainPublisher:WIP-Munich Pozo Vázquez, David; Remund, Jan; Müller, Stefan C.; Traunmüller, Wolfgang; Steinmaurer, Gerald; Pozo Vázquez, D.; Ruiz Arias, Jose Antonio; Lara Fanego, Vicente; Ramírez, Lourdes; Gastón, Martín; Kurz, Christian; Martin Pomares, Luis; Geijo, Carlos;Power generation from photovoltaic systems is highly variable due to its dependence on meteorological conditions. An efficient use of this fluctuating energy source requires reliable forecast information for management and operation strategies. Due to the strong increase of solar power generation the prediction of solar yields becomes more and more important. As a consequence, in the last years various research organisations and companies have developed different methods to forecast irradiance as a basis for respective power forecasts. For the end-users of these forecasts it is important that standardized methodology is used when presenting results on the accuracy of a prediction model in order to get a clear idea on the advantages of a specific approach. In this paper we introduce a benchmarking procedure to asses the accuracy of irradiance forecasts and compare different approaches of forecasting. The evaluation shows a strong dependence of the forecast accuracy on the climatic conditions. For Central European stations the relative rmse ranges from 40 % to 60 %, for Spanish stations relative rmse values are in the range of 20 % to 35 %. 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany; 4199-4208
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 96 citations 96 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 42 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2002 CanadaAuthors: Reinhart, C. F.;The COPE (cost-effective open plan environments) project investigates the effect of open-plan office design on the indoor environment and on the occupant satisfaction with that environment. COPE is sponsored by a consortium of North American public and private-sector organizations and relies on field, laboratory and simulation studies to address designaspects like acoustics, lighting quality, indoor air quality, operating costs and energy efficiency. This paper describes the influence of various design variables on the daylight availability and electric lighting requirements in open plan office spaces using the RADIANCE-based annual daylight simulation method DAYSIM. To make simulation results more reliable a manual and an automated blind control strategy have been considered. Five climatic centers which represent the ambient daylight conditions of 186 North American Metropolitan Areas have been identified. For these five climatic centers over 1000 officesettings have been investigated which feature varying external shading situations, glazing types, facade orientations ceiling designs and partition arrangements. The daylight performance of the offices was expressed in terms of their daylight autonomy distributions and energy savings for an ideally dimmed lighting system. The simulation results reveal, that the daylight availability in peripheral offices allowsfor electric lighting energy savings between 25% and 60% for an ideally commissioned, dimmed lighting system depending on the underlying blind control strategy. 2 nd row offices receive considerably less daylight even though a reduced partition height and increased ceiling reflectances can double electric lighting energy savings up to 40%. Conference Proceedings of the 2002 Summer Study of the American Commission for an Energy Efficient Environment (ACE): 18 August 2002, Pacific Grove, CA., U.S.A.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1674::4cc43a453f23476ed8396bf2b32341e8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1674::4cc43a453f23476ed8396bf2b32341e8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right External research report 2014 IrelandPublisher:Elsevier BV Dalton, C.; O Dwyer, B.; Taylor, D.; DeEyto, E.; Jennings, E.; Chen, G.; Poole, R.; Dillane, M.; McGinnity, P.;Oligotrophic catchments with short spatey streams, upland lakes and peaty soils characterise northwest European Atlantic coastal regions. These catchments are important biodiversity refuges, particularly for sensitive diadromous fish populations but are subject to changes in land use and land management practices associated with afforestation, agriculture and rural development. Quantification of the degree of catchment degradation resulting from such anthropogenic impacts is often limited by a lack of long-term baseline data in what are generally relatively isolated, poorly studied catchments. This research uses a combination of palaeolimnological (radiometrically-dated variations in sedimentary geochemical elements, pollen, diatoms and remains of cladocera), census, and instrumental data, along with hindcast estimates to quantify environmental changes and their aquatic impacts since the late 19th century. The most likely drivers of any change are also identified. Results confirm an aquatic biotic response (phyto- and zooplankton) to soil erosion and nutrient enrichment associated with the onset of commercial conifer afforestation, effects that were subsequently enhanced as a result of increased overgrazing in the catchment and, possibly, climate warming. The implications for the health of aquatic resources in the catchment are discussed Environmental Protection Agency in Ireland (ILLUMINATE 2005-W-MS-40, P.McGinnity was supported by the Beaufort Marine Research Award in Fish Population Genetics funded by the Irish Government under the Sea Change Programme.
Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::fdfd86dbf747f2d2017ab37b401961eb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::fdfd86dbf747f2d2017ab37b401961eb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016Publisher:Zenodo Authors: Cordeiro, Juliana Barcelos; Mahani, Khashayar; Farbod Farzan; Jafari, Mohsen A.;{"references": ["U.S. Energy Information Administration. \"How much energy is\nconsumed in residential and commercial buildings in the United States?\"\nAvailable at: http://www.eia.gov/tools/faqs/faq.cfm?id=86&t=1", "S. Darby, \"The effectiveness of feedback on energy consumption.\"\nEnvironmental Change Institute, University of Oxford, 2006. Available\nat: http://www.globalwarmingisreal.com/energyconsump-feedback.pdf.\nVisited: September 2015", "J. S. John, \"Putting energy disaggregation tech to the test,\" November,\n2013. Greentech Media. Available at:\nhttp://www.greentechmedia.com/articles/read/putting-energydisaggregation-tech-to-the-test.\nVisited: September 2015", "A. Zoha, A. Gluhak, M. A. Imran, S. Rajasegarar, \"Non-intrusive load\nmonitoring approaches for disaggregated energy sensing: a survey,\"\nSensors, vol. 12, no. 12, pp. 16838-16866, December 2012.", "G. W. Hart, \"Nonintrusive appliance load monitoring,\" in Proc. of the\nIEEE, vol. 80, pp. 1870-1891, December 1992.", "M. Baranski, J. Voss, \"Non-intrusive appliance load monitoring based\non Optical Sensor,\" IEEE Bologna PowerTech Conference, Bologna,\nItaly, June 2003. Available at:\nhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1304732", "L. Farinaccio, R. Zmeureanu, \"Using a pattern recognition approach to\ndisaggregate the total electricity consumption in a house into the major\nen-uses,\" Elsevier, Energy and Buildings, vol. 30, no. 3, pp. 245-259,\nAugust 1999.", "J. M. Abreu, F. C. Pereira, P. Ferr\u00e3o, \"Using pattern recognition to\nidentify habitual behavior in residential electricity consumption,\"\nElsevier, Energy and Buildings, vol. 49, pp. 479-487, June 2012.", "C. Beckel, L. Sadamori, S. Santini, \"Automatic socio-economic\nclassification of households using electricity consumption data,\" in\nProc. of the 4th international conference on future energy systems, New\nYork, 2013, pp. 75-86.\n[10] H. Zhao, F. Magoul\u00e8s, \"A review on the prediction of building energy\nconsumption,\" Elsevier, Renewable and Sustainable Energy Reviews,\nvol. 16, no. 6, pp. 3586-3592, August 2012.\n[11] G. K. F. Tso, K. K. W. Yau, \"Predicting electricity energy consumption:\nA comparison of regression analysis, decision tree and neural networks,\"\nElsevier, Energy, vol. 32, no. 9, pp. 1761-1768, September 2007.\n[12] F. Farzan, S. A. Vaghefi, K. Mahani, M. A. Jafari, J. Gong, \"Operational\nplanning for multi-building portfolio in an uncertain energy market,\"\nElsevier, Energy and Buildings, vol. 103, pp. 271-283, September 2015."]} Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1124581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1124581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2022 CanadaAuthors: Singh, Akash;handle: 1993/36314
The city of Leh was the capital of the Kingdom of Ladakh from the fifteenth to nineteenth centuries. Over time, due to wars, politics, and isolation, the capital city fell into a state of disrepair soon after the royal family was exiled. An explosion in tourism over the last few decades has seen a revival in the local community but most of the benefits including generated tourism revenue have been directed towards development outside the historical boundary of Leh. The residents of what is now known as Leh Old Town suffer from poverty, lack of basic infrastructures such as drainage, and limited access to water. Additionally, Leh Old Town was also placed under World’s Monument Watch in 2008 due to issues related to low-scale modern construction and urgent need of repair for 55% of the historic buildings. Climate change has also been cited as a cause of concern due to issues related to faster melting glaciers and flash floods due to the lack of a drainage system. The main aim of this practicum is to study and demonstrate the role that landscape architects can play in the rehabilitation of historical alpine settlements that have been adversely affected by anthropological factors such as politics, climate change, and over-tourism. It does so by highlighting the cultural and architectural heritage of the Old Town of Leh, known as Kharyog in Ladakhi, and demonstrating the use of indigenous construction materials and methods that have been superseded by modern materials imported from other parts of the country. It also aims to study how the positive effects of tourism can be distributed equally throughout a community to improve the quality of life for the residents of Leh Old Town.
MSpace at the Univer... arrow_drop_down MSpace at the University of ManitobaMaster thesis . 2022Data sources: MSpace at the University of Manitobaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1993/36314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert MSpace at the Univer... arrow_drop_down MSpace at the University of ManitobaMaster thesis . 2022Data sources: MSpace at the University of Manitobaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1993/36314&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2014Publisher:Unknown Authors: Howard, Peter; Sterner, Thomas; Howard, Peter; Sterner, Thomas;Climate change is one of the preeminent policy issues of our day, and the social cost of carbon (SCC) is one of the foremost tools for determining the socially optimal policy response. The SCC is estimated using Integrated Assessment Models (IAMs), of which Nordhaus’ DICE is the oldest and one of the best respected. These numerical models capture the various steps in the climate and economic processes that translate a marginal unit of CO2 emissions into economic damage. While accuracy at each of these steps is necessary to precisely estimate the SCC, correct calibrating the climate damage function, which translates a temperature change into a percentage change in GDP, is critical. Calibration of the damage function determines which climate damages are included and excluded from the cost of carbon. Traditionally, Nordhaus calibrated the DICE damage function using a global damage estimate calculated by aggregating a series of region-sector specific damage estimates (Nordhaus and Boyer, 2000; Nordhaus, 2008). However, in DICE-2013, Nordhaus moved to calibrating the DICE damage function using a meta-analysis at the global scale (Nordhaus and Sztorc, 2013). This paper critiques this meta-analysis approach as it is currently applied and re-estimates the DICE-2013 damage function using up-to-date meta-analysis techniques to more accurately reflect climate damages and the uncertainty underlying them. This paper finds that DICE-2013 damage function significantly under-estimates climate damages by a factor of two to three. This is a working paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.169952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.169952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Zenodo Authors: Qiancheng Sun; Zela-Koort, Andrea; Stokes, Ava; Salahaldin Alshatshati;The goal of this study is to determine the difference in CO2 emissions between 2019-2020 and 2020-2021, more specifically during lockdown periods during the COVID-19 pandemic. In the beginning of the pandemic, most countries were forced into lockdowns, and a countless number of people had to continue their daily work from home in isolation. Previously, people would go to an office or to school and leave their houses empty for eight hours, without having lights or any electronics on. Because of this, there should be a direct correlation between electricity usage before and during lockdowns, as a private residence should have higher electricity consumption during 2020-2021, when they are at home. Using machine learning, we will investigate to see if COVID-19 affected CO2 emissions as a result of more electricity usage in private residences. A model will be made to predict what the CO2 emissions would be for 2019-2020, based on electricity usage data from 2020-2021. Then, the real CO2 emissions from 2019-2020 will be compared with the model’s predicted values, and the difference will indicate if COVID-19 caused an inconsistency between actual and predicted CO2 emissions. Factors that were taken into account when making a model were independent variables relating to outdoor conditions, the number of people living in the house, and the temperature that the thermostat is set at, making the response variable CO2 emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5048479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5048479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2016 FrancePublisher:WIP Perez-Lopez, Paula; Blanc, Isabelle; Gschwind, Benoît; Blanc, Philippe; Ménard, Lionel; Frischknecht, Rolf; Stolz, Philippe; Durand, Yvonnick; Heath, Garvin;Photovoltaic (PV) technologies constitute a leading renewable energy source with a worldwide installed capacity of 135 GW in 2013 that may increase to nearly 4700 GW in 2050. To achieve this production level while minimizing environmental impacts, decision makers must rely at national level on relevant technological, economic and planning aspects which are highly geographically dependent. The access to performance data is a critical issue in the decision-making process and determines the successful development of efficient PV systems. For this reason, a new interactive tool is proposed here to provide the users with easy-to-use data and maps for the solar irradiation and screening level environmental results of representative PV technologies. The calculation procedures account for the geographic location and the PV system layout (installation, orientation and inclination angles). The tool has a worldwide coverage with a multi-criteria scope, both in terms of the numerous technological scenarios and of the wide range of environmental indicators. Moreover, the user is given the possibility to compare the PV environmental performance to the corresponding country electricity mix environmental footprint. 32nd European Photovoltaic Solar Energy Conference and Exhibition; 2869-2873
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2016Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20162016-7do.13.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2016Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20162016-7do.13.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2013Publisher:IFSA Publishing, S.L. Authors: Zhuolun Chen;Building materials have played a more and more important role in saving building energy since the central government of China set higher standards and requirements for new-constructed and retrofit buildings after 2005. Glazing units, especially energy-saving units including LOW-E coated glazing units and PVB laminated glass, are utilized nation-wide. This paper employs energy simulation to analyze the energy-saving effects of different glazing units in residential buildings in the city of Guangzhou, as an example of hot-humid climate in China. It appeals that the PVB laminated glass can refuse 44 % solar radiation to enter rooms and reduce 40 % of the shading coefficient comparing to clear glass. Meanwhile, in the aspects of operation and design of the HVAC system, 28 % of cooling load, 21 % of installed capacity and 8.6 % of full-load operation time can be saved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::e8c72f5a6c2581f3689f61217cc39182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::e8c72f5a6c2581f3689f61217cc39182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2009 SpainPublisher:WIP-Munich Pozo Vázquez, David; Remund, Jan; Müller, Stefan C.; Traunmüller, Wolfgang; Steinmaurer, Gerald; Pozo Vázquez, D.; Ruiz Arias, Jose Antonio; Lara Fanego, Vicente; Ramírez, Lourdes; Gastón, Martín; Kurz, Christian; Martin Pomares, Luis; Geijo, Carlos;Power generation from photovoltaic systems is highly variable due to its dependence on meteorological conditions. An efficient use of this fluctuating energy source requires reliable forecast information for management and operation strategies. Due to the strong increase of solar power generation the prediction of solar yields becomes more and more important. As a consequence, in the last years various research organisations and companies have developed different methods to forecast irradiance as a basis for respective power forecasts. For the end-users of these forecasts it is important that standardized methodology is used when presenting results on the accuracy of a prediction model in order to get a clear idea on the advantages of a specific approach. In this paper we introduce a benchmarking procedure to asses the accuracy of irradiance forecasts and compare different approaches of forecasting. The evaluation shows a strong dependence of the forecast accuracy on the climatic conditions. For Central European stations the relative rmse ranges from 40 % to 60 %, for Spanish stations relative rmse values are in the range of 20 % to 35 %. 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany; 4199-4208
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 96 citations 96 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 37visibility views 37 download downloads 42 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2009Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivo Climatológico y Meteorológico Institucional de AEMETConference object . 2009add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/24theupvsec2009-5bv.2.50&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2002 CanadaAuthors: Reinhart, C. F.;The COPE (cost-effective open plan environments) project investigates the effect of open-plan office design on the indoor environment and on the occupant satisfaction with that environment. COPE is sponsored by a consortium of North American public and private-sector organizations and relies on field, laboratory and simulation studies to address designaspects like acoustics, lighting quality, indoor air quality, operating costs and energy efficiency. This paper describes the influence of various design variables on the daylight availability and electric lighting requirements in open plan office spaces using the RADIANCE-based annual daylight simulation method DAYSIM. To make simulation results more reliable a manual and an automated blind control strategy have been considered. Five climatic centers which represent the ambient daylight conditions of 186 North American Metropolitan Areas have been identified. For these five climatic centers over 1000 officesettings have been investigated which feature varying external shading situations, glazing types, facade orientations ceiling designs and partition arrangements. The daylight performance of the offices was expressed in terms of their daylight autonomy distributions and energy savings for an ideally dimmed lighting system. The simulation results reveal, that the daylight availability in peripheral offices allowsfor electric lighting energy savings between 25% and 60% for an ideally commissioned, dimmed lighting system depending on the underlying blind control strategy. 2 nd row offices receive considerably less daylight even though a reduced partition height and increased ceiling reflectances can double electric lighting energy savings up to 40%. Conference Proceedings of the 2002 Summer Study of the American Commission for an Energy Efficient Environment (ACE): 18 August 2002, Pacific Grove, CA., U.S.A.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1674::4cc43a453f23476ed8396bf2b32341e8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1674::4cc43a453f23476ed8396bf2b32341e8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu