search
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Country
    Clear
  • Source
    Clear
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Embargo
  • ES
  • US
  • Applied Energy

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid M. Lopez-Juarez;
    M. Lopez-Juarez
    ORCID
    Harvested from ORCID Public Data File

    M. Lopez-Juarez in OpenAIRE
    orcid bw T. Rockstroh;
    T. Rockstroh
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    T. Rockstroh in OpenAIRE
    R. Novella; orcid R. Vijayagopal;
    R. Vijayagopal
    ORCID
    Harvested from ORCID Public Data File

    R. Vijayagopal in OpenAIRE

    [EN] Fuel cell (FC) technology has been identified as a technically attractive solution to decarbonize the transportation sector, especially for heavy-duty vehicles. In this context, the industry and the scientific community are in need of advanced fuel cell systems (FCS) models that are able to replicate real-world operating conditions. Due to the scarcity of said models in the open literature, this study aimed to develop a comprehensive methodology to calibrate and validate multi-physics dynamic FCS models. Therefore, the key contribution of this paper is the detailed description of the calibration process for each component and the calibration order. The specific focus here was to accurately describe the behavior of the FC stack as well as the cathode, anode, and cooling circuits of the balance of plant. The model was calibrated with the aid of experimental data from a Toyota Mirai FC electric vehicle, which was predominantly retrieved from the vehicle¿s Controller Area Network (CAN) bus system thereby negating the need for major intrusion into the powertrain system. The validation process was deemed successful with the model being able to truthfully replicate the characteristics of the FC vehicle operated on the World-wide harmonized Light duty Test Cycle (WLTC) 3b and US06 driving cycle. The time-resolved physical parameters such as the cathode pressure, mass flow, or the FC stack temperature were captured with high fidelity, while the overall performance parameters such as the H2 consumption in the stack and the system, and the compressor energy consumption were predicted accurately with a deviation lower than 0.47%, 1.75% and 1.89% with respect to the experimental data, respectively. This research is part of the project TED2021-131463B-I00 (DI-VERGENT) funded by MCIN/AEI/10.13039/501100011033 and the European Union "NextGenerationEU"/PRTR. It has also been partially funded by the Spanish Ministry of Science, Innovation, and University through the University Faculty Training (FPU) program (FPU19/00550) . Toby Rockstroh and Ram Vijayagopal acknowledge support through the US DOE Vehicle Technologies Program. Argonne National Laboratory is operated by UChicago Argonne, LLC under Contract no. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly, by or on behalf of the Government. The authors would like to express their gratitude to Kevin Stutenberg from Argonne National Laboratory for the informative discussions surrounding the experimental test campaign.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    RiuNet
    Article . 2024
    License: CC BY NC ND
    Data sources: RiuNet
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility17
    visibilityviews17
    downloaddownloads6
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      RiuNet
      Article . 2024
      License: CC BY NC ND
      Data sources: RiuNet
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid M. Lopez-Juarez;
    M. Lopez-Juarez
    ORCID
    Harvested from ORCID Public Data File

    M. Lopez-Juarez in OpenAIRE
    orcid bw T. Rockstroh;
    T. Rockstroh
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    T. Rockstroh in OpenAIRE
    R. Novella; orcid R. Vijayagopal;
    R. Vijayagopal
    ORCID
    Harvested from ORCID Public Data File

    R. Vijayagopal in OpenAIRE

    [EN] Fuel cell (FC) technology has been identified as a technically attractive solution to decarbonize the transportation sector, especially for heavy-duty vehicles. In this context, the industry and the scientific community are in need of advanced fuel cell systems (FCS) models that are able to replicate real-world operating conditions. Due to the scarcity of said models in the open literature, this study aimed to develop a comprehensive methodology to calibrate and validate multi-physics dynamic FCS models. Therefore, the key contribution of this paper is the detailed description of the calibration process for each component and the calibration order. The specific focus here was to accurately describe the behavior of the FC stack as well as the cathode, anode, and cooling circuits of the balance of plant. The model was calibrated with the aid of experimental data from a Toyota Mirai FC electric vehicle, which was predominantly retrieved from the vehicle¿s Controller Area Network (CAN) bus system thereby negating the need for major intrusion into the powertrain system. The validation process was deemed successful with the model being able to truthfully replicate the characteristics of the FC vehicle operated on the World-wide harmonized Light duty Test Cycle (WLTC) 3b and US06 driving cycle. The time-resolved physical parameters such as the cathode pressure, mass flow, or the FC stack temperature were captured with high fidelity, while the overall performance parameters such as the H2 consumption in the stack and the system, and the compressor energy consumption were predicted accurately with a deviation lower than 0.47%, 1.75% and 1.89% with respect to the experimental data, respectively. This research is part of the project TED2021-131463B-I00 (DI-VERGENT) funded by MCIN/AEI/10.13039/501100011033 and the European Union "NextGenerationEU"/PRTR. It has also been partially funded by the Spanish Ministry of Science, Innovation, and University through the University Faculty Training (FPU) program (FPU19/00550) . Toby Rockstroh and Ram Vijayagopal acknowledge support through the US DOE Vehicle Technologies Program. Argonne National Laboratory is operated by UChicago Argonne, LLC under Contract no. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly, by or on behalf of the Government. The authors would like to express their gratitude to Kevin Stutenberg from Argonne National Laboratory for the informative discussions surrounding the experimental test campaign.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    RiuNet
    Article . 2024
    License: CC BY NC ND
    Data sources: RiuNet
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility17
    visibilityviews17
    downloaddownloads6
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      RiuNet
      Article . 2024
      License: CC BY NC ND
      Data sources: RiuNet
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Jingxuan Wu;
    Jingxuan Wu
    ORCID
    Harvested from ORCID Public Data File

    Jingxuan Wu in OpenAIRE
    orcid Shuting Li;
    Shuting Li
    ORCID
    Harvested from ORCID Public Data File

    Shuting Li in OpenAIRE
    Aihui Fu; Miloš Cvetković; +3 Authors

    The increasing proportion of renewable energy introduces both long-term and short-term uncertainty to power systems, which restricts the implementation of energy management systems (EMSs) with high dependency on accurate prediction techniques. A hierarchical online EMS (HEMS) is proposed in this paper to economically operate the Hybrid hydrogen–electricity Storage System (HSS) in a residential microgrid (RMG). The HEMS dispatches an electrolyzer-fuel cell-based hydrogen energy storage (ES) unit for seasonal energy shifting and an on-site battery stack for daily energy allocation against the uncertainty from the renewable energy source (RES) and demand side. The online decision-making of the proposed HEMS is realized through two parallel fuzzy logic (FL)-based controllers which are decoupled by different operating frequencies. An original local energy estimation model (LEEM) is specifically designed for the decision process of FL controllers to comprehensively evaluate the system status and quantify the electricity price expectation for the HEMS. The proposed HEMS is independent of RES prediction or load forecasting, and gives the optimal operation for HSS in separated resolutions: the hydrogen ES unit is dispatched hourly and the battery is operated every minute. The performance of the proposed method is verified by numerical experiments fed by real-world datasets. The superiority of the HEMS in expense-saving manner is validated through comparison with PSO-based day-ahead optimization methods, fuzzy logic EMS, and rule-based online EMS.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2024
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2024
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Jingxuan Wu;
    Jingxuan Wu
    ORCID
    Harvested from ORCID Public Data File

    Jingxuan Wu in OpenAIRE
    orcid Shuting Li;
    Shuting Li
    ORCID
    Harvested from ORCID Public Data File

    Shuting Li in OpenAIRE
    Aihui Fu; Miloš Cvetković; +3 Authors

    The increasing proportion of renewable energy introduces both long-term and short-term uncertainty to power systems, which restricts the implementation of energy management systems (EMSs) with high dependency on accurate prediction techniques. A hierarchical online EMS (HEMS) is proposed in this paper to economically operate the Hybrid hydrogen–electricity Storage System (HSS) in a residential microgrid (RMG). The HEMS dispatches an electrolyzer-fuel cell-based hydrogen energy storage (ES) unit for seasonal energy shifting and an on-site battery stack for daily energy allocation against the uncertainty from the renewable energy source (RES) and demand side. The online decision-making of the proposed HEMS is realized through two parallel fuzzy logic (FL)-based controllers which are decoupled by different operating frequencies. An original local energy estimation model (LEEM) is specifically designed for the decision process of FL controllers to comprehensively evaluate the system status and quantify the electricity price expectation for the HEMS. The proposed HEMS is independent of RES prediction or load forecasting, and gives the optimal operation for HSS in separated resolutions: the hydrogen ES unit is dispatched hourly and the battery is operated every minute. The performance of the proposed method is verified by numerical experiments fed by real-world datasets. The superiority of the HEMS in expense-saving manner is validated through comparison with PSO-based day-ahead optimization methods, fuzzy logic EMS, and rule-based online EMS.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2024
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2024
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph