- home
- Search
- Energy Research
- Restricted
- ES
- US
- RU
- Applied Energy
- Energy Research
- Restricted
- ES
- US
- RU
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Elsevier BV Authors:Hao Wang;
Hao Wang
Hao Wang in OpenAIREJunguo Liu;
Junguo Liu
Junguo Liu in OpenAIREGanquan Mao;
Ganquan Mao
Ganquan Mao in OpenAIREJinyue Yan;
+7 AuthorsJinyue Yan
Jinyue Yan in OpenAIREHao Wang;
Hao Wang
Hao Wang in OpenAIREJunguo Liu;
Junguo Liu
Junguo Liu in OpenAIREGanquan Mao;
Ganquan Mao
Ganquan Mao in OpenAIREJinyue Yan;
Jinyue Yan;Jinyue Yan
Jinyue Yan in OpenAIREChunmiao Zheng;
Chunmiao Zheng
Chunmiao Zheng in OpenAIREArjen Ysbert Hoekstra;
Arjen Ysbert Hoekstra
Arjen Ysbert Hoekstra in OpenAIREMichelle T. H. van Vliet;
Michelle T. H. van Vliet
Michelle T. H. van Vliet in OpenAIREBenjamin L. Ruddell;
Jianhua Wang; May Wu;Benjamin L. Ruddell
Benjamin L. Ruddell in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Elsevier BV Authors:Hao Wang;
Hao Wang
Hao Wang in OpenAIREJunguo Liu;
Junguo Liu
Junguo Liu in OpenAIREGanquan Mao;
Ganquan Mao
Ganquan Mao in OpenAIREJinyue Yan;
+7 AuthorsJinyue Yan
Jinyue Yan in OpenAIREHao Wang;
Hao Wang
Hao Wang in OpenAIREJunguo Liu;
Junguo Liu
Junguo Liu in OpenAIREGanquan Mao;
Ganquan Mao
Ganquan Mao in OpenAIREJinyue Yan;
Jinyue Yan;Jinyue Yan
Jinyue Yan in OpenAIREChunmiao Zheng;
Chunmiao Zheng
Chunmiao Zheng in OpenAIREArjen Ysbert Hoekstra;
Arjen Ysbert Hoekstra
Arjen Ysbert Hoekstra in OpenAIREMichelle T. H. van Vliet;
Michelle T. H. van Vliet
Michelle T. H. van Vliet in OpenAIREBenjamin L. Ruddell;
Jianhua Wang; May Wu;Benjamin L. Ruddell
Benjamin L. Ruddell in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Authors:Nazari-Heris, Morteza;
Loni, Abdolah; Asadi, Somayeh; Mohammadi-ivatloo, Behnam;Nazari-Heris, Morteza
Nazari-Heris, Morteza in OpenAIREElectric vehicles (EVs) are considered a substitute for fossil-fueled vehicles due to rising fossil fuel prices and accompanying environmental concerns, and their use is predicted to increase dramatically shortly. However, the widespread use of EVs and their large-scale integration into the energy system will present several operational and technological hurdles. In the energy industry, an innovative solution known as the EVs smart parking lot (SPL) is introduced to handle EV charging and discharging electricity and energy supply challenges. This paper investigates social equity access and mobile charging stations (MCSs) for EVs, where the owner of MCSs is the EV parking lot. Accordingly, a new self-scheduling model for SPLs is presented in this paper that incorporates scheduling of the MCSs as temporary charging infrastructures while considering social equity access and optimizes SPL energy generation and storage schedule. The main objectives of this research are to (i) develop MCSs accessibility measures and quantify the equity impacts of MCSs locations by modeling prioritized demand based on several indices; (ii) determine the optimal set-points of SPL components (i.e., combined heat and power (CHP), photovoltaic system, electrical and heat-energy storage, and MCSs) to manage electrical peak demand and to maximize the economic benefits of SPLs. Results indicate that the proposed demand prioritization function model can meet the required EV charging demands for prioritized events, and the self-scheduling model for SPLs satisfies the charging demand of the EVs in the SPL location. Also, the social equity access to the EV charging stations is satisfied by analyzing the operation of MCSs around the prioritized demand of the prioritized events and social equity access indices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Authors:Nazari-Heris, Morteza;
Loni, Abdolah; Asadi, Somayeh; Mohammadi-ivatloo, Behnam;Nazari-Heris, Morteza
Nazari-Heris, Morteza in OpenAIREElectric vehicles (EVs) are considered a substitute for fossil-fueled vehicles due to rising fossil fuel prices and accompanying environmental concerns, and their use is predicted to increase dramatically shortly. However, the widespread use of EVs and their large-scale integration into the energy system will present several operational and technological hurdles. In the energy industry, an innovative solution known as the EVs smart parking lot (SPL) is introduced to handle EV charging and discharging electricity and energy supply challenges. This paper investigates social equity access and mobile charging stations (MCSs) for EVs, where the owner of MCSs is the EV parking lot. Accordingly, a new self-scheduling model for SPLs is presented in this paper that incorporates scheduling of the MCSs as temporary charging infrastructures while considering social equity access and optimizes SPL energy generation and storage schedule. The main objectives of this research are to (i) develop MCSs accessibility measures and quantify the equity impacts of MCSs locations by modeling prioritized demand based on several indices; (ii) determine the optimal set-points of SPL components (i.e., combined heat and power (CHP), photovoltaic system, electrical and heat-energy storage, and MCSs) to manage electrical peak demand and to maximize the economic benefits of SPLs. Results indicate that the proposed demand prioritization function model can meet the required EV charging demands for prioritized events, and the self-scheduling model for SPLs satisfies the charging demand of the EVs in the SPL location. Also, the social equity access to the EV charging stations is satisfied by analyzing the operation of MCSs around the prioritized demand of the prioritized events and social equity access indices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Authors:Mäkelä, Mikko;
Mäkelä, Mikko
Mäkelä, Mikko in OpenAIREBenavente Domenech, Verónica;
Benavente Domenech, Verónica
Benavente Domenech, Verónica in OpenAIREFullana, Andres;
Fullana, Andres
Fullana, Andres in OpenAIREAlthough hydrothermal carbonization of biomass components is known to be mainly governed by reaction temperature, consistent reports on the effect and statistical significance of process conditions on hydrochar properties are still lacking. The objective of this research was to determine the importance and significance of reaction temperature, retention time and solid load on the properties of hydrochar produced from an industrial lignocellulosic sludge residue. According to the results, reaction temperature and retention time had a statistically significant effect on hydrochar ash content, solid yield, carbon content, O/C-ratio, energy densification and energy yield as reactor solid load was statistically insignificant for all acquired models within the design range. Although statistically significant, the effect of retention time was 3-7 times lower than that of reaction temperature. Predicted dry ash-free solid yields of attained hydrochar decreased to approximately 40% due to the dissolution of biomass components at higher reaction temperatures, as respective oxygen contents were comparable to subbituminous coal. Significant increases in the carbon contents of hydrochar led to predicted energy densification ratios of 1-1.5 with respective energy yields of 60-100%. Estimated theoretical energy requirements of carbonization were dependent on the literature method used and mainly controlled by reaction temperature and reactor solid load. The attained results enable future prediction of hydrochar properties from this feedstock and help to understand the effect of process conditions on hydrothermal treatment of lignocellulosic biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.06.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.06.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Authors:Mäkelä, Mikko;
Mäkelä, Mikko
Mäkelä, Mikko in OpenAIREBenavente Domenech, Verónica;
Benavente Domenech, Verónica
Benavente Domenech, Verónica in OpenAIREFullana, Andres;
Fullana, Andres
Fullana, Andres in OpenAIREAlthough hydrothermal carbonization of biomass components is known to be mainly governed by reaction temperature, consistent reports on the effect and statistical significance of process conditions on hydrochar properties are still lacking. The objective of this research was to determine the importance and significance of reaction temperature, retention time and solid load on the properties of hydrochar produced from an industrial lignocellulosic sludge residue. According to the results, reaction temperature and retention time had a statistically significant effect on hydrochar ash content, solid yield, carbon content, O/C-ratio, energy densification and energy yield as reactor solid load was statistically insignificant for all acquired models within the design range. Although statistically significant, the effect of retention time was 3-7 times lower than that of reaction temperature. Predicted dry ash-free solid yields of attained hydrochar decreased to approximately 40% due to the dissolution of biomass components at higher reaction temperatures, as respective oxygen contents were comparable to subbituminous coal. Significant increases in the carbon contents of hydrochar led to predicted energy densification ratios of 1-1.5 with respective energy yields of 60-100%. Estimated theoretical energy requirements of carbonization were dependent on the literature method used and mainly controlled by reaction temperature and reactor solid load. The attained results enable future prediction of hydrochar properties from this feedstock and help to understand the effect of process conditions on hydrothermal treatment of lignocellulosic biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.06.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.06.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors:A. Bonmatí;
G. Silvestre;A. Bonmatí
A. Bonmatí in OpenAIREB. Fernández;
Josep Illa;B. Fernández
B. Fernández in OpenAIREThermophilic co-digestion of sewage sludge with three different doses of trapped grease waste (GW) from the pre-treatment of a WWTP has been assessed in a CSTR bench-scale reactor. After adding 12% and 27% of grease waste (on COD basis), the organic loading rate increased from 2.2 to 2.3 and 2.8 kgCOD m-3 d-1 respectively, and the methane yield increased 1.2 and 2.2 times. Further GW increase (37% on COD basis) resulted in an unstable methane yield and in long chain fatty acids (LCFA) accumulation. Although this inestability, the presence of volatile fatty acids in the effluent was negligible, showing good adaptation to fats of the thermophilic biomass. Nevertheless, the presence of LCFA in the effluent worsens its dewatering properties. Specific methanogenic activity tests showed that the addition of grease waste ameliorates the acetoclastic activity in detriment of the hydrogenotrophic activity, and suggests that the tolerance to LCFA can be further enhanced by slowly increasing the addition of lipidrich materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu121 citations 121 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors:A. Bonmatí;
G. Silvestre;A. Bonmatí
A. Bonmatí in OpenAIREB. Fernández;
Josep Illa;B. Fernández
B. Fernández in OpenAIREThermophilic co-digestion of sewage sludge with three different doses of trapped grease waste (GW) from the pre-treatment of a WWTP has been assessed in a CSTR bench-scale reactor. After adding 12% and 27% of grease waste (on COD basis), the organic loading rate increased from 2.2 to 2.3 and 2.8 kgCOD m-3 d-1 respectively, and the methane yield increased 1.2 and 2.2 times. Further GW increase (37% on COD basis) resulted in an unstable methane yield and in long chain fatty acids (LCFA) accumulation. Although this inestability, the presence of volatile fatty acids in the effluent was negligible, showing good adaptation to fats of the thermophilic biomass. Nevertheless, the presence of LCFA in the effluent worsens its dewatering properties. Specific methanogenic activity tests showed that the addition of grease waste ameliorates the acetoclastic activity in detriment of the hydrogenotrophic activity, and suggests that the tolerance to LCFA can be further enhanced by slowly increasing the addition of lipidrich materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu121 citations 121 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors:Capasso Clemente;
Capasso Clemente
Capasso Clemente in OpenAIREVeneri Ottorino;
Veneri Ottorino
Veneri Ottorino in OpenAIREhandle: 20.500.14243/288604
This paper deals with an experimental evaluation regarding the real performance of lithium based energy storage systems for automotive applications. In particular real working operations of different lithium based storage system technologies, such as Li[NiCoMn]O-2 and LiFePO4 batteries, are compared in this work from the point of view of their application in supplying full electric and hybrid vehicles, taking as a reference the well-known behavior of lead acid batteries. For this purpose, the experimental tests carried out in laboratory are firstly performed on single storage modules in stationary conditions. In this case the related results are obtained by means of a bidirectional cycle tester based on the IGBT technology, and consent to evaluate, compare and contrast charge/discharge characteristics and efficiency at constant values of current/voltage/power for each storage technology analyzed. Then, lithium battery packs are tested in supplying a 1.8 kW electric power train using a laboratory test bench, based on a 48 V DC bus and specifically configured to simulate working operations of electric vehicles on the road. For this other experimentation the test bench is equipped with an electric brake and acquisition/control system, able to represent in laboratory the real vehicle conditions and road characteristics on predefined driving cycles at different slopes. The obtained experimental results on both charge/discharge tests and driving cycles demonstrate the advantages of using lithium technologies, mainly in terms of their high efficiency, particularly at high current values. That represents a feasible solution to offer vehicle designers and users extended driving ranges and reduced recharging times. (C) 2014 Elsevier Ltd. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu156 citations 156 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors:Capasso Clemente;
Capasso Clemente
Capasso Clemente in OpenAIREVeneri Ottorino;
Veneri Ottorino
Veneri Ottorino in OpenAIREhandle: 20.500.14243/288604
This paper deals with an experimental evaluation regarding the real performance of lithium based energy storage systems for automotive applications. In particular real working operations of different lithium based storage system technologies, such as Li[NiCoMn]O-2 and LiFePO4 batteries, are compared in this work from the point of view of their application in supplying full electric and hybrid vehicles, taking as a reference the well-known behavior of lead acid batteries. For this purpose, the experimental tests carried out in laboratory are firstly performed on single storage modules in stationary conditions. In this case the related results are obtained by means of a bidirectional cycle tester based on the IGBT technology, and consent to evaluate, compare and contrast charge/discharge characteristics and efficiency at constant values of current/voltage/power for each storage technology analyzed. Then, lithium battery packs are tested in supplying a 1.8 kW electric power train using a laboratory test bench, based on a 48 V DC bus and specifically configured to simulate working operations of electric vehicles on the road. For this other experimentation the test bench is equipped with an electric brake and acquisition/control system, able to represent in laboratory the real vehicle conditions and road characteristics on predefined driving cycles at different slopes. The obtained experimental results on both charge/discharge tests and driving cycles demonstrate the advantages of using lithium technologies, mainly in terms of their high efficiency, particularly at high current values. That represents a feasible solution to offer vehicle designers and users extended driving ranges and reduced recharging times. (C) 2014 Elsevier Ltd. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu156 citations 156 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors:Amrizal, N.;
Amrizal, N.
Amrizal, N. in OpenAIREChemisana Villegas, Daniel;
Rosell Urrutia, Joan Ignasi;Chemisana Villegas, Daniel
Chemisana Villegas, Daniel in OpenAIREBarrau, Jérôme;
Barrau, Jérôme
Barrau, Jérôme in OpenAIREhandle: 10459.1/58596
Abstract A simple, transient model for the characterization of the dynamic thermal performance of solar thermal collectors was developed and experimentally validated. The proposed model equation is linear with respect to the input parameters and does not require any treatment for ordinary differential equations (ODEs). The temperature distribution in the fluid flowing inside the collector is described by means of the piston flow and finite increment concepts. The dynamic effect, for a given flow rate, is expressed by the heat transport time and is based on the effective thermal capacity of the collector. The results reveal that the characteristic parameters involved in the model agree reasonably well with the experimental variables obtained from standard steady-state measurements. After a calibration process the model can well predict the thermal performance of a solar thermal collector, for a specific weather data set.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors:Amrizal, N.;
Amrizal, N.
Amrizal, N. in OpenAIREChemisana Villegas, Daniel;
Rosell Urrutia, Joan Ignasi;Chemisana Villegas, Daniel
Chemisana Villegas, Daniel in OpenAIREBarrau, Jérôme;
Barrau, Jérôme
Barrau, Jérôme in OpenAIREhandle: 10459.1/58596
Abstract A simple, transient model for the characterization of the dynamic thermal performance of solar thermal collectors was developed and experimentally validated. The proposed model equation is linear with respect to the input parameters and does not require any treatment for ordinary differential equations (ODEs). The temperature distribution in the fluid flowing inside the collector is described by means of the piston flow and finite increment concepts. The dynamic effect, for a given flow rate, is expressed by the heat transport time and is based on the effective thermal capacity of the collector. The results reveal that the characteristic parameters involved in the model agree reasonably well with the experimental variables obtained from standard steady-state measurements. After a calibration process the model can well predict the thermal performance of a solar thermal collector, for a specific weather data set.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV handle: 11575/137018 , 11386/4813971 , 2158/1308779
Climate change has been posing an increasing threat to the planet at the environmental and economic levels, and the rise of clean energy (CE) is ever more fundamental for ensuring a qualified alternative for the energy mix, attracting the financial interest of different investment entities. In this respect, the significance of corporate venture capitalists (CVCs) has been on a steady rise for every sector, even for CE, since the 1990 s, and it is shaping up to become a major force behind the worldwide innovation. The aim of this research is to investigate the essential profiles about the phenomenon regarding CVCs that are active in CE, with a focus on the Asia-Pacific (APAC) region, to understand how they act in pursuing their strategic intention. The specific contribution of this study, which adopts a quantitative approach to operate a descriptive analysis on the dynamics operating in the context under investigation by combining relating data from several institutional databases, is to provide a scenario analysis with explorative intention that may define the main characteristics, roles in innovation, and growing participation of CVCs in the CE sector, especially in the APAC area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV handle: 11575/137018 , 11386/4813971 , 2158/1308779
Climate change has been posing an increasing threat to the planet at the environmental and economic levels, and the rise of clean energy (CE) is ever more fundamental for ensuring a qualified alternative for the energy mix, attracting the financial interest of different investment entities. In this respect, the significance of corporate venture capitalists (CVCs) has been on a steady rise for every sector, even for CE, since the 1990 s, and it is shaping up to become a major force behind the worldwide innovation. The aim of this research is to investigate the essential profiles about the phenomenon regarding CVCs that are active in CE, with a focus on the Asia-Pacific (APAC) region, to understand how they act in pursuing their strategic intention. The specific contribution of this study, which adopts a quantitative approach to operate a descriptive analysis on the dynamics operating in the context under investigation by combining relating data from several institutional databases, is to provide a scenario analysis with explorative intention that may define the main characteristics, roles in innovation, and growing participation of CVCs in the CE sector, especially in the APAC area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Authors:Omar J. Guerra;
Omar J. Guerra
Omar J. Guerra in OpenAIREDiego A. Tejada;
Gintaras V. Reklaitis;Diego A. Tejada
Diego A. Tejada in OpenAIREhandle: 11531/7669
Artículos en revistas Energy, and particularly electricity, has played and will continue to play a very important role in the development of human society. Electricity, which is the most flexible and manageable energy form, is currently used in a variety of activities and applications. For instance, electricity is used for heating, cooling, lighting, and for operating electronic appliances and electric vehicles. Nowadays, given the rapid development and commercialization of technologies and devices that rely on electricity, electricity demand is increasing faster than overall primary energy supply. Consequently, the design and planning of power systems is becoming a progressively more important issue in order to provide affordable, reliable and sustainable energy in timely fashion, not only in developed countries but particularly in developing economies where electricity demand is increasing even faster. Power systems are networks of electrical devices, such as power plants, transformers, and transmission lines, used to produce, transmit, and supply electricity. The design and planning of such systems require the selection of generation technologies, along with the capacity, location, and timing of generation and transmission capacity expansions to meet electricity demand over a long-term horizon. This manuscript presents a comprehensive optimization framework for the design and planning of interconnected power systems, including the integration of generation and transmission capacity expansion planning. The proposed framework also considers renewable energies, carbon capture and sequestration (CCS) technologies, demand-side management (DSM), as well as reserve and CO2 emission constraints. The novelty of this framework relies on an integrated assessment of the aforementioned features, which can reveal possible interactions and synergies within the power system. Moreover, the capabilities of the proposed framework are demonstrated using a suite of case studies inspired by a real-world power system, including business as usual and CO2 mitigation policy scenarios. These case studies illustrated the adaptability and effectiveness of the framework at dealing with typical situations that can arise in designing and planning power systems. info:eu-repo/semantics/publishedVersion
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:Elsevier BV Authors:Omar J. Guerra;
Omar J. Guerra
Omar J. Guerra in OpenAIREDiego A. Tejada;
Gintaras V. Reklaitis;Diego A. Tejada
Diego A. Tejada in OpenAIREhandle: 11531/7669
Artículos en revistas Energy, and particularly electricity, has played and will continue to play a very important role in the development of human society. Electricity, which is the most flexible and manageable energy form, is currently used in a variety of activities and applications. For instance, electricity is used for heating, cooling, lighting, and for operating electronic appliances and electric vehicles. Nowadays, given the rapid development and commercialization of technologies and devices that rely on electricity, electricity demand is increasing faster than overall primary energy supply. Consequently, the design and planning of power systems is becoming a progressively more important issue in order to provide affordable, reliable and sustainable energy in timely fashion, not only in developed countries but particularly in developing economies where electricity demand is increasing even faster. Power systems are networks of electrical devices, such as power plants, transformers, and transmission lines, used to produce, transmit, and supply electricity. The design and planning of such systems require the selection of generation technologies, along with the capacity, location, and timing of generation and transmission capacity expansions to meet electricity demand over a long-term horizon. This manuscript presents a comprehensive optimization framework for the design and planning of interconnected power systems, including the integration of generation and transmission capacity expansion planning. The proposed framework also considers renewable energies, carbon capture and sequestration (CCS) technologies, demand-side management (DSM), as well as reserve and CO2 emission constraints. The novelty of this framework relies on an integrated assessment of the aforementioned features, which can reveal possible interactions and synergies within the power system. Moreover, the capabilities of the proposed framework are demonstrated using a suite of case studies inspired by a real-world power system, including business as usual and CO2 mitigation policy scenarios. These case studies illustrated the adaptability and effectiveness of the framework at dealing with typical situations that can arise in designing and planning power systems. info:eu-repo/semantics/publishedVersion
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Journal , Report 2018 SpainPublisher:Elsevier BV Authors:Tomás Gómez;
Tomás Gómez
Tomás Gómez in OpenAIREIbtihal Abdelmotteleb;
Ibtihal Abdelmotteleb;Ibtihal Abdelmotteleb
Ibtihal Abdelmotteleb in OpenAIREJavier Reneses;
+1 AuthorsJavier Reneses
Javier Reneses in OpenAIRETomás Gómez;
Tomás Gómez
Tomás Gómez in OpenAIREIbtihal Abdelmotteleb;
Ibtihal Abdelmotteleb;Ibtihal Abdelmotteleb
Ibtihal Abdelmotteleb in OpenAIREJavier Reneses;
Javier Reneses
Javier Reneses in OpenAIREJosé Pablo Chaves Ávila;
José Pablo Chaves Ávila
José Pablo Chaves Ávila in OpenAIREhandle: 11531/21996 , 11531/18020
The transformation of electricity network users from passive to active agents, as a result of decreasing costs of distributed energy resources, requires several adaptions, one of which is revising the distribution network charges. Often current network charge designs do not ensure network cost recovery and lack to incentivize efficient network investments and usage. New network charge methodologies are required to guide and incentivize customers in an efficient way while maximizing system economic efficiency. This paper proposes an efficient methodology that ensures network cost recovery while promoting efficient usage of the network as well as efficient network investments. The proposed network charge design consisting of two components: a peak coincidence network charge (PCNC) and fixed charge. The PCNC is a forward-looking charge as it considers the cost of future network reinforcements required and assigned to consumers during peak hours of the network utilization. Fixed charges allocate the residual of the network costs following Ramsey-pricing principles. This paper compares the outcome from economic optimum customers response to four different network charges: (i) volumetric charges (ii) fixed charges (iii) peak demand charge (iv) fixed charges + PCNC. Two case studies for two different load profiles are simulated using linear programming on Matlab to minimize their total costs within each charges design, considering the possibility of buying electricity from the grid and investing on onsite generation or curtail load. Finally, the paper highlights through the case studies how customer s response is highly influenced by different network charge designs, and compare the consequences of these responses in terms of network cost recovery and total system costs. The paper concludes with practical issues that need to be considered for the implementation of the proposed network charges design. info:eu-repo/semantics/draft
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAResearch . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAResearch . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Journal , Report 2018 SpainPublisher:Elsevier BV Authors:Tomás Gómez;
Tomás Gómez
Tomás Gómez in OpenAIREIbtihal Abdelmotteleb;
Ibtihal Abdelmotteleb;Ibtihal Abdelmotteleb
Ibtihal Abdelmotteleb in OpenAIREJavier Reneses;
+1 AuthorsJavier Reneses
Javier Reneses in OpenAIRETomás Gómez;
Tomás Gómez
Tomás Gómez in OpenAIREIbtihal Abdelmotteleb;
Ibtihal Abdelmotteleb;Ibtihal Abdelmotteleb
Ibtihal Abdelmotteleb in OpenAIREJavier Reneses;
Javier Reneses
Javier Reneses in OpenAIREJosé Pablo Chaves Ávila;
José Pablo Chaves Ávila
José Pablo Chaves Ávila in OpenAIREhandle: 11531/21996 , 11531/18020
The transformation of electricity network users from passive to active agents, as a result of decreasing costs of distributed energy resources, requires several adaptions, one of which is revising the distribution network charges. Often current network charge designs do not ensure network cost recovery and lack to incentivize efficient network investments and usage. New network charge methodologies are required to guide and incentivize customers in an efficient way while maximizing system economic efficiency. This paper proposes an efficient methodology that ensures network cost recovery while promoting efficient usage of the network as well as efficient network investments. The proposed network charge design consisting of two components: a peak coincidence network charge (PCNC) and fixed charge. The PCNC is a forward-looking charge as it considers the cost of future network reinforcements required and assigned to consumers during peak hours of the network utilization. Fixed charges allocate the residual of the network costs following Ramsey-pricing principles. This paper compares the outcome from economic optimum customers response to four different network charges: (i) volumetric charges (ii) fixed charges (iii) peak demand charge (iv) fixed charges + PCNC. Two case studies for two different load profiles are simulated using linear programming on Matlab to minimize their total costs within each charges design, considering the possibility of buying electricity from the grid and investing on onsite generation or curtail load. Finally, the paper highlights through the case studies how customer s response is highly influenced by different network charge designs, and compare the consequences of these responses in terms of network cost recovery and total system costs. The paper concludes with practical issues that need to be considered for the implementation of the proposed network charges design. info:eu-repo/semantics/draft
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAResearch . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAResearch . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 PortugalPublisher:Elsevier BV Authors:Senentxu Lanceros-Méndez;
Senentxu Lanceros-Méndez
Senentxu Lanceros-Méndez in OpenAIRED. Miranda;
D. Miranda; A. M. Almeida; +1 AuthorsD. Miranda
D. Miranda in OpenAIRESenentxu Lanceros-Méndez;
Senentxu Lanceros-Méndez
Senentxu Lanceros-Méndez in OpenAIRED. Miranda;
D. Miranda; A. M. Almeida;D. Miranda
D. Miranda in OpenAIRECarlos M. Costa;
Carlos M. Costa
Carlos M. Costa in OpenAIREhandle: 1822/43523
Abstract In order to optimize battery performance, different geometries have been evaluated taking into account their suitability for different applications. These different geometries include conventional, interdigitated batteries and unconventional geometries such as horseshoe, spiral, ring, antenna and gear batteries. The geometry optimization was performed by the finite element method, applying the Doyle/Fuller/Newman model. At 330 C, the capacity values for conventional, ring, spiral, horseshoe, gear and interdigitated geometries are 0.58 A h m −2 , 149 A h m −2 , 182 A h m −2 , 216 A h m −2 , 289 A h m −2 and 318 A h m −2 , respectively. The delivered capacity depends on geometrical parameters such as maximum distance for the ions to move to the current collector, d _max, distance between of current collectors, d _cc, as well as the thickness of separator and electrodes, allowing to tailor battery performance and geometry for specific applications.
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMOther literature type . 2016Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 1 Powered bymore_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMOther literature type . 2016Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 PortugalPublisher:Elsevier BV Authors:Senentxu Lanceros-Méndez;
Senentxu Lanceros-Méndez
Senentxu Lanceros-Méndez in OpenAIRED. Miranda;
D. Miranda; A. M. Almeida; +1 AuthorsD. Miranda
D. Miranda in OpenAIRESenentxu Lanceros-Méndez;
Senentxu Lanceros-Méndez
Senentxu Lanceros-Méndez in OpenAIRED. Miranda;
D. Miranda; A. M. Almeida;D. Miranda
D. Miranda in OpenAIRECarlos M. Costa;
Carlos M. Costa
Carlos M. Costa in OpenAIREhandle: 1822/43523
Abstract In order to optimize battery performance, different geometries have been evaluated taking into account their suitability for different applications. These different geometries include conventional, interdigitated batteries and unconventional geometries such as horseshoe, spiral, ring, antenna and gear batteries. The geometry optimization was performed by the finite element method, applying the Doyle/Fuller/Newman model. At 330 C, the capacity values for conventional, ring, spiral, horseshoe, gear and interdigitated geometries are 0.58 A h m −2 , 149 A h m −2 , 182 A h m −2 , 216 A h m −2 , 289 A h m −2 and 318 A h m −2 , respectively. The delivered capacity depends on geometrical parameters such as maximum distance for the ions to move to the current collector, d _max, distance between of current collectors, d _cc, as well as the thickness of separator and electrodes, allowing to tailor battery performance and geometry for specific applications.
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMOther literature type . 2016Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 1 Powered bymore_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMOther literature type . 2016Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu