- home
- Search
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 1. No poverty
- US
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 1. No poverty
- US
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Haiyan Liu; Jaeyoung Lee;doi: 10.3390/su15065048
The COVID-19 pandemic has tremendously affected the whole of human society worldwide. Travel patterns have greatly changed due to the increased risk perception and the governmental interventions regarding COVID-19. This study aimed to identify contributing factors to the changes in public and private transportation mode choice behavior in China after COVID-19 based on an online questionnaire survey. In the survey, travel behaviors in three periods were studied: before the outbreak (before 27 December 2019), the peak (from 20 January to 17 March 2020), and after the peak (from 18 March to the date of the survey). A series of random-parameter bivariate Probit models was developed to quantify the relationship between individual characteristics and the changes in travel mode choice. The key findings indicated that individual sociodemographic characteristics (e.g., gender, age, ownership, occupation, residence) have significant effects on the changes in mode choice behavior. Other key findings included (1) a higher propensity to use a taxi after the peak compared to urban public transportation (i.e., bus and subway); (2) a significant impact of age on the switch from public transit to private car and two-wheelers; (3) more obvious changes in private car and public transportation modes in more developed cities. The findings from this study are expected to be useful for establishing partial and resilient policies and ensuring sustainable mobility and travel equality in the post-pandemic era.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Rositsa T. Ilieva; Andreas Hernandez;doi: 10.3390/su10114057
To effectively address the sustainability crises our planet faces, decision-makers at different levels of government worldwide will have to get a handle on three key challenges: learning from Global North and South initiatives in tandem, taking stock of social innovations alongside technological fixes, and nurturing grassroots sustainable development initiatives next to, or in place of, top-down corporate and government interventions. Current scientific literature and grant-making institutions have often reinforced the compartmentalized fashion in which we learn and draw policy lessons from North/South, social/technical, and bottom-up/top-down sustainability initiatives, including local food system innovations. The strategic levers for global sustainable development lying in-between are thus left out. This paper uses exploratory, multiple case study analysis to address this omission. By concurrently drawing lessons from grassroots innovations in Brazil, New York, and Senegal—three profoundly different socioeconomic and geographic contexts—we identify common pressure points that have enabled local communities to drive system-wide transformations toward climate adaptation, resilience, and sustainability in the agri-food system. The findings of this paper would be of value to scholars, government officials, and community groups engaged in agri-food systems sustainability and interested in the processes of change that have allowed budding innovations to stabilize and scale up.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:NSF Arctic Data Center Authors: Rennels, Lisa; Boehlert, Brent; Nicolsky, Dmitry J.; Marchenko, Sergey S.;doi: 10.18739/a2h70818v
This dataset holds information on data and methods for the Melvin et al., 2016 publication entitled Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. The abstract for this paper is as follows: Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80–100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2h70818v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2h70818v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Danabasoglu, Gokhan;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.NCAR.CESM2-WACCM.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CESM2-WACCM climate model, released in 2018, includes the following components: aerosol: MAM4 (same grid as atmos), atmos: WACCM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 70 levels; top level 4.5e-06 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320 x 384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean). The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmnrceswapc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmnrceswapc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 17 May 2021Publisher:University of Illinois at Urbana-Champaign Authors: Wuebbles, D; Angel, J; Petersen, K; Lemke, A.M.;Please cite as: Wuebbles, D., J. Angel, K. Petersen, and A.M. Lemke, (Eds.), 2021: An Assessment of the Impacts of Climate Change in Illinois. The Nature Conservancy, Illinois, USA. https://doi.org/10.13012/B2IDB-1260194_V1 Climate change is a major environmental challenge that is likely to affect many aspects of life in Illinois, ranging from human and environmental health to the economy. Illinois is already experiencing impacts from the changing climate and, as climate change progresses and temperatures continue to rise, these impacts are expected to increase over time. This assessment takes an in-depth look at how the climate is changing now in Illinois, and how it is projected to change in the future, to provide greater clarity on how climate change could affect urban and rural communities in the state. Beyond providing an overview of anticipated climate changes, the report explores predicted effects on hydrology, agriculture, human health, and native ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13012/b2idb-1260194_v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13012/b2idb-1260194_v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Bader, David C.; Leung, Ruby; Taylor, Mark; McCoy, Renata B.;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.E3SM-Project.E3SM-1-1' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The E3SM 1.1 (Energy Exascale Earth System Model) climate model, released in 2019, includes the following components: aerosol: MAM4 with resuspension, marine organics, and secondary organics (same grid as atmos), atmos: EAM (v1.1, cubed sphere spectral-element grid; 5400 elements with p=3; 1 deg average grid spacing; 90 x 90 x 6 longitude/latitude/cubeface; 72 levels; top level 0.1 hPa), atmosChem: Troposphere specified oxidants for aerosols. Stratosphere linearized interactive ozone (LINOZ v2) (same grid as atmos), land: ELM (v1.1, same grid as atmos; active biogeochemistry using the Converging Trophic Cascade plant and soil carbon and nutrient mechanisms to represent carbon, nitrogen and phosphorus cycles), MOSART (v1.1, 0.5 degree latitude/longitude grid), ocean: MPAS-Ocean (v6.0, oEC60to30 unstructured SVTs mesh with 235160 cells and 714274 edges, variable resolution 60 km to 30 km; 60 levels; top grid cell 0-10 m), ocnBgchem: BEC (Biogeochemical Elemental Cycling model, NPZD-type with C/N/P/Fe/Si/O; same grid as ocean), seaIce: MPAS-Seaice (v6.0; same grid as ocean). The model was run by the LLNL (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA); ANL (Argonne National Laboratory, Argonne, IL 60439, USA); BNL (Brookhaven National Laboratory, Upton, NY 11973, USA); LANL (Los Alamos National Laboratory, Los Alamos, NM 87545, USA); LBNL (Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA); ORNL (Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA); PNNL (Pacific Northwest National Laboratory, Richland, WA 99352, USA); SNL (Sandia National Laboratories, Albuquerque, NM 87185, USA). Mailing address: LLNL Climate Program, c/o David C. Bader, Principal Investigator, L-103, 7000 East Avenue, Livermore, CA 94550, USA (E3SM-Project) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spepe11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spepe11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020Publisher:IEEE Authors: Haolin Yang; Kristen R. Schell;Electricity price forecasting is critical to numerous tasks in the power system such as strategic bidding, generation scheduling, optimal scheduling of storage reserves and system analysis. Most existing price forecasting models focus on hourly prediction for the day ahead market. This work focuses on the real-time, 5-minute market, with the goal of developing a model able to capture both the long- and short-term temporal distribution of the data. Extending the recent advances in deep learning models of time series forecasting, the proposed model - named HFnet - is a novel multi-branch Gated Recurrent Unit (GRU) architecture for electricity price forecasting. Extensive empirical analyses using real-time data from the New York Independent System Operator (NYISO) illustrate the value of the proposed model when compared to state-of-art prediction models, with an average reduction in error of 10%.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pmaps4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pmaps47429.2020.9183697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pmaps4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pmaps47429.2020.9183697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Annalisa Manera; Timothy P. Grunloh;Abstract A novel multi-scale domain overlapping coupling methodology designed to couple a computational fluid dynamics (CFD) code with a system thermal hydraulic (STH) code was developed and its performance was investigated. The methodology has been implemented in the coupling infrastructure code Janus, developed at the University of Michigan, providing methods for the on-the-fly data transfer through memory between the commercial CFD code STAR-CCM+ and the US NRC best-estimate thermal hydraulic system code TRACE. Coupling between these two software packages is motivated by the desire to extend the range of applicability of TRACE to scenarios in which local momentum and energy transfer are important, such as three-dimensional mixing of localized slugs of deborated or cold water in the downcomer and lower plenum of a reactor pressure vessel. The intra-fluid shear forces necessary to correctly capture these effects are neglected in the TRACE equations of motion, but are readily calculated from CFD solutions. CFD/STH coupling implementations therefore have applications in reactor transients such as boron dilution scenarios, Anticipated Transient Without SCRAM (ATWS) and Main Steam Line Break (MSLB). The proposed method is based on aliasing all spatial sources and sinks of momentum in the CFD domain as frictional losses in the system code domain. The internal velocity fields and, consequently, the inertial component of the pressure field are maintained consistent between the CFD and STH domains through a complementary velocity-matching interface. In this paper, coupled simulations are performed on Cartesian and cylindrical geometry with emphasis on consistency, convergence, and stability during transient scenarios. Results show that the presented domain overlapping coupling method is capable of adjusting pressure and velocity profiles of multi-dimensional system code solutions to match CFD solutions accurately. Important characteristics of transient simulations were found to include the background flow rate, specifically the stabilizing effect of viscous forces, as well as the time derivative of the flow rate. Under certain adverse conditions, the basic coupling method is found to produce unstable behavior. A stabilization method for adjusting CFD data is laid out and found to significantly improve the method’s performance under the most challenging conditions. Recommendations are laid out for further improving the coupling via advanced time stepping methods.
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2017.03.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2017.03.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Fan Shi; Xintong Zhang; Lifen Wang; Zhiyuan Xie; Fushun Liang; Zhongmin Su; Yingying Fu;New zinc phthalocyanine (ZnPc-TDA), peripherally functionalized with donor-acceptor conjugates was synthesized, and its optical, thermal, electrochemical, and photovoltaic properties were studied. The black ZnPc-TDA exhibited both excellent solubility in common organic solvents, and broad absorption covering the range 300-900 nm. The photovoltaic devices with the configuration of ITO/PEDOT-PSS/ZnPc-TDA:PCBM/LiF/Al produced short circuit current densities of 2.26 mA/cm(2), the open circuit voltage of 0.68 V and power conversion efficiency of 0.4% under AM1.5G illumination. (C) 2010 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.05.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.05.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Ernst Worrell; Gijs Biermans;Abstract We demonstrate the importance of stock turnover on industrial energy efficiency through a literature review and a case study of energy-intensive equipment, i.e. the electric arc furnace in the US steel industry. We describe the common methods for assessing stock turnover. We have found that both stock turnover and retrofit are important elements to explain the energy efficiency improvement rates. We investigated the development of electricity use in electric arc furnaces in the United States by tracking the development of individual furnaces over the period 1990–2002. This provides a detailed picture of changes in the stock or fleet of furnaces through turnover and/or retrofit. Our results confirm the results of other empirical studies that there is no clear lifetime of equipment. However, retired furnaces are distinctly less efficient than furnaces remaining in the stock, while new furnaces are distinctly more efficient than the average stock. We found an annual average improvement in specific electricity consumption of 1.3%/year over the studied period, of which 0.7%/year was due to stock turnover and 0.5%/year due to retrofit of stock in service throughout the period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2003.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2003.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Haiyan Liu; Jaeyoung Lee;doi: 10.3390/su15065048
The COVID-19 pandemic has tremendously affected the whole of human society worldwide. Travel patterns have greatly changed due to the increased risk perception and the governmental interventions regarding COVID-19. This study aimed to identify contributing factors to the changes in public and private transportation mode choice behavior in China after COVID-19 based on an online questionnaire survey. In the survey, travel behaviors in three periods were studied: before the outbreak (before 27 December 2019), the peak (from 20 January to 17 March 2020), and after the peak (from 18 March to the date of the survey). A series of random-parameter bivariate Probit models was developed to quantify the relationship between individual characteristics and the changes in travel mode choice. The key findings indicated that individual sociodemographic characteristics (e.g., gender, age, ownership, occupation, residence) have significant effects on the changes in mode choice behavior. Other key findings included (1) a higher propensity to use a taxi after the peak compared to urban public transportation (i.e., bus and subway); (2) a significant impact of age on the switch from public transit to private car and two-wheelers; (3) more obvious changes in private car and public transportation modes in more developed cities. The findings from this study are expected to be useful for establishing partial and resilient policies and ensuring sustainable mobility and travel equality in the post-pandemic era.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Rositsa T. Ilieva; Andreas Hernandez;doi: 10.3390/su10114057
To effectively address the sustainability crises our planet faces, decision-makers at different levels of government worldwide will have to get a handle on three key challenges: learning from Global North and South initiatives in tandem, taking stock of social innovations alongside technological fixes, and nurturing grassroots sustainable development initiatives next to, or in place of, top-down corporate and government interventions. Current scientific literature and grant-making institutions have often reinforced the compartmentalized fashion in which we learn and draw policy lessons from North/South, social/technical, and bottom-up/top-down sustainability initiatives, including local food system innovations. The strategic levers for global sustainable development lying in-between are thus left out. This paper uses exploratory, multiple case study analysis to address this omission. By concurrently drawing lessons from grassroots innovations in Brazil, New York, and Senegal—three profoundly different socioeconomic and geographic contexts—we identify common pressure points that have enabled local communities to drive system-wide transformations toward climate adaptation, resilience, and sustainability in the agri-food system. The findings of this paper would be of value to scholars, government officials, and community groups engaged in agri-food systems sustainability and interested in the processes of change that have allowed budding innovations to stabilize and scale up.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:NSF Arctic Data Center Authors: Rennels, Lisa; Boehlert, Brent; Nicolsky, Dmitry J.; Marchenko, Sergey S.;doi: 10.18739/a2h70818v
This dataset holds information on data and methods for the Melvin et al., 2016 publication entitled Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. The abstract for this paper is as follows: Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80–100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2h70818v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18739/a2h70818v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Danabasoglu, Gokhan;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.NCAR.CESM2-WACCM.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CESM2-WACCM climate model, released in 2018, includes the following components: aerosol: MAM4 (same grid as atmos), atmos: WACCM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 70 levels; top level 4.5e-06 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320 x 384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean). The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmnrceswapc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmnrceswapc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 17 May 2021Publisher:University of Illinois at Urbana-Champaign Authors: Wuebbles, D; Angel, J; Petersen, K; Lemke, A.M.;Please cite as: Wuebbles, D., J. Angel, K. Petersen, and A.M. Lemke, (Eds.), 2021: An Assessment of the Impacts of Climate Change in Illinois. The Nature Conservancy, Illinois, USA. https://doi.org/10.13012/B2IDB-1260194_V1 Climate change is a major environmental challenge that is likely to affect many aspects of life in Illinois, ranging from human and environmental health to the economy. Illinois is already experiencing impacts from the changing climate and, as climate change progresses and temperatures continue to rise, these impacts are expected to increase over time. This assessment takes an in-depth look at how the climate is changing now in Illinois, and how it is projected to change in the future, to provide greater clarity on how climate change could affect urban and rural communities in the state. Beyond providing an overview of anticipated climate changes, the report explores predicted effects on hydrology, agriculture, human health, and native ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13012/b2idb-1260194_v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13012/b2idb-1260194_v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Bader, David C.; Leung, Ruby; Taylor, Mark; McCoy, Renata B.;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.E3SM-Project.E3SM-1-1' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The E3SM 1.1 (Energy Exascale Earth System Model) climate model, released in 2019, includes the following components: aerosol: MAM4 with resuspension, marine organics, and secondary organics (same grid as atmos), atmos: EAM (v1.1, cubed sphere spectral-element grid; 5400 elements with p=3; 1 deg average grid spacing; 90 x 90 x 6 longitude/latitude/cubeface; 72 levels; top level 0.1 hPa), atmosChem: Troposphere specified oxidants for aerosols. Stratosphere linearized interactive ozone (LINOZ v2) (same grid as atmos), land: ELM (v1.1, same grid as atmos; active biogeochemistry using the Converging Trophic Cascade plant and soil carbon and nutrient mechanisms to represent carbon, nitrogen and phosphorus cycles), MOSART (v1.1, 0.5 degree latitude/longitude grid), ocean: MPAS-Ocean (v6.0, oEC60to30 unstructured SVTs mesh with 235160 cells and 714274 edges, variable resolution 60 km to 30 km; 60 levels; top grid cell 0-10 m), ocnBgchem: BEC (Biogeochemical Elemental Cycling model, NPZD-type with C/N/P/Fe/Si/O; same grid as ocean), seaIce: MPAS-Seaice (v6.0; same grid as ocean). The model was run by the LLNL (Lawrence Livermore National Laboratory, Livermore, CA 94550, USA); ANL (Argonne National Laboratory, Argonne, IL 60439, USA); BNL (Brookhaven National Laboratory, Upton, NY 11973, USA); LANL (Los Alamos National Laboratory, Los Alamos, NM 87545, USA); LBNL (Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA); ORNL (Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA); PNNL (Pacific Northwest National Laboratory, Richland, WA 99352, USA); SNL (Sandia National Laboratories, Albuquerque, NM 87185, USA). Mailing address: LLNL Climate Program, c/o David C. Bader, Principal Investigator, L-103, 7000 East Avenue, Livermore, CA 94550, USA (E3SM-Project) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spepe11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spepe11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020Publisher:IEEE Authors: Haolin Yang; Kristen R. Schell;Electricity price forecasting is critical to numerous tasks in the power system such as strategic bidding, generation scheduling, optimal scheduling of storage reserves and system analysis. Most existing price forecasting models focus on hourly prediction for the day ahead market. This work focuses on the real-time, 5-minute market, with the goal of developing a model able to capture both the long- and short-term temporal distribution of the data. Extending the recent advances in deep learning models of time series forecasting, the proposed model - named HFnet - is a novel multi-branch Gated Recurrent Unit (GRU) architecture for electricity price forecasting. Extensive empirical analyses using real-time data from the New York Independent System Operator (NYISO) illustrate the value of the proposed model when compared to state-of-art prediction models, with an average reduction in error of 10%.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pmaps4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pmaps47429.2020.9183697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pmaps4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pmaps47429.2020.9183697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Annalisa Manera; Timothy P. Grunloh;Abstract A novel multi-scale domain overlapping coupling methodology designed to couple a computational fluid dynamics (CFD) code with a system thermal hydraulic (STH) code was developed and its performance was investigated. The methodology has been implemented in the coupling infrastructure code Janus, developed at the University of Michigan, providing methods for the on-the-fly data transfer through memory between the commercial CFD code STAR-CCM+ and the US NRC best-estimate thermal hydraulic system code TRACE. Coupling between these two software packages is motivated by the desire to extend the range of applicability of TRACE to scenarios in which local momentum and energy transfer are important, such as three-dimensional mixing of localized slugs of deborated or cold water in the downcomer and lower plenum of a reactor pressure vessel. The intra-fluid shear forces necessary to correctly capture these effects are neglected in the TRACE equations of motion, but are readily calculated from CFD solutions. CFD/STH coupling implementations therefore have applications in reactor transients such as boron dilution scenarios, Anticipated Transient Without SCRAM (ATWS) and Main Steam Line Break (MSLB). The proposed method is based on aliasing all spatial sources and sinks of momentum in the CFD domain as frictional losses in the system code domain. The internal velocity fields and, consequently, the inertial component of the pressure field are maintained consistent between the CFD and STH domains through a complementary velocity-matching interface. In this paper, coupled simulations are performed on Cartesian and cylindrical geometry with emphasis on consistency, convergence, and stability during transient scenarios. Results show that the presented domain overlapping coupling method is capable of adjusting pressure and velocity profiles of multi-dimensional system code solutions to match CFD solutions accurately. Important characteristics of transient simulations were found to include the background flow rate, specifically the stabilizing effect of viscous forces, as well as the time derivative of the flow rate. Under certain adverse conditions, the basic coupling method is found to produce unstable behavior. A stabilization method for adjusting CFD data is laid out and found to significantly improve the method’s performance under the most challenging conditions. Recommendations are laid out for further improving the coupling via advanced time stepping methods.
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2017.03.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2017.03.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Fan Shi; Xintong Zhang; Lifen Wang; Zhiyuan Xie; Fushun Liang; Zhongmin Su; Yingying Fu;New zinc phthalocyanine (ZnPc-TDA), peripherally functionalized with donor-acceptor conjugates was synthesized, and its optical, thermal, electrochemical, and photovoltaic properties were studied. The black ZnPc-TDA exhibited both excellent solubility in common organic solvents, and broad absorption covering the range 300-900 nm. The photovoltaic devices with the configuration of ITO/PEDOT-PSS/ZnPc-TDA:PCBM/LiF/Al produced short circuit current densities of 2.26 mA/cm(2), the open circuit voltage of 0.68 V and power conversion efficiency of 0.4% under AM1.5G illumination. (C) 2010 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.05.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.05.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Ernst Worrell; Gijs Biermans;Abstract We demonstrate the importance of stock turnover on industrial energy efficiency through a literature review and a case study of energy-intensive equipment, i.e. the electric arc furnace in the US steel industry. We describe the common methods for assessing stock turnover. We have found that both stock turnover and retrofit are important elements to explain the energy efficiency improvement rates. We investigated the development of electricity use in electric arc furnaces in the United States by tracking the development of individual furnaces over the period 1990–2002. This provides a detailed picture of changes in the stock or fleet of furnaces through turnover and/or retrofit. Our results confirm the results of other empirical studies that there is no clear lifetime of equipment. However, retired furnaces are distinctly less efficient than furnaces remaining in the stock, while new furnaces are distinctly more efficient than the average stock. We found an annual average improvement in specific electricity consumption of 1.3%/year over the studied period, of which 0.7%/year was due to stock turnover and 0.5%/year due to retrofit of stock in service throughout the period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2003.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2003.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu