- home
- Search
- Energy Research
- 2021-2025
- US
- Chinese Academy of Sciences
- Energy Research
- 2021-2025
- US
- Chinese Academy of Sciences
description Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 07 Oct 2024 Spain, Germany, United KingdomPublisher:Wiley Funded by:NSF | CAREER: Integrating a Mic...NSF| CAREER: Integrating a Microbial Data System with an Earth System Model for Evaluating Microbial BiogeochemistryYongxing Cui; Junxi Hu; Shushi Peng; Manuel Delgado‐Baquerizo; Daryl L. Moorhead; Robert L. Sinsabaugh; Xiaofeng Xu; Kevin M. Geyer; Linchuan Fang; Pete Smith; Josep Peñuelas; Yakov Kuzyakov; Ji Chen;AbstractMicrobial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 57visibility views 57 download downloads 122 Powered bymore_vert Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Elsevier BV Hongyou Lu; Kairui You; Wei Feng; Nan Zhou; David Fridley; Lynn Price; Stephane de la Rue du Can;Embodied emissions from the production of building materials account for 17% of China's carbon dioxide (CO2) emissions and are important to focus on as China aims to achieve its carbon neutrality goals. However, there is a lack of systematic assessments on embodied emissions reduction potential of building materials that consider both the heterogeneous industrial characteristics as well as the Chinese buildings sector context. Here, we developed an integrated model that combines future demand of building materials in China with the strategies to reduce CO2 emissions associated with their production, using, and recycling. We found that measures to improve material efficiency in the value-chain has the largest CO2 mitigation potential before 2030 in both Low Carbon and Carbon Neutrality Scenarios, and continues to be significant through 2060. Policies to accelerate material efficiency practices, such as incorporating embodied emissions in building codes and conducting robust research, development, and demonstration (RD&D) in carbon removal are critical.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/3jx4k3qmData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2024.109028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/3jx4k3qmData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2024.109028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Ang Li; Shi Chen;doi: 10.1002/eap.2450
pmid: 34515410
AbstractAcross the world, social‐ecological rangeland systems have been transformed from a preindustrial extensive status to intensive exploitation, often leading to long‐term livestock population booms, overgrazing, and rangeland degradation. To understand the regulatory mechanisms involved in such historical social‐ecological transformations, we collected population data on the native sheep of the last nomadic county in the Inner Mongolia Autonomous Region (1961–2005). We detected changes in internal feedbacks (e.g., density‐dependent effects) and external disturbance (e.g., winter harshness, rainfall, harvest) between the extensive and intensive management periods using regression models of sheep population growth rate and counterfactual analyses. We found that, in the extensive period, sheep populations were regulated during harsh winters by climate, while they were regulated during mild winters by negative density dependence. In the intensive period, the negative feedback of density dependence was removed through the provision of additional forage and shelter, and only winter climate and growing season rainfall regulated sheep populations. Counterfactual analyses also confirmed the irreplaceable role of density‐dependence in maintaining a sustainable rangeland ecosystem. Although herders attempted to adapt to the removal of negative feedbacks by improving livestock harvest, overgrazing and grassland degradation remain a challenge in this system. We conclude that internal feedbacks within social‐ecological systems should be carefully anticipated and accounted for when managing rangelands for sustainability.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Zhanshan, Wang; Jiayi, Yan; Puzhen, Zhang; Zhigang, Li; Chen, Guo; Kai, Wu; Xiaoqian, Li; Xiaojing, Zhu; Zhaobin, Sun; Yongjie, Wei;Abstract To clarify the chemical characteristics, source contributions, and health risks of pollution events associated with high PM2.5 in typical industrial areas of North China, manual sampling and analysis of PM2.5 were conducted in the spring, summer, autumn, and winter of 2019 in Pingyin County, Jinan City, Shandong Province. The results showed that the total concentration of 29 components in PM2.5 was 53.4 μg·m-3; the largest contribution was from the NO3- ion, at 14.6 ± 14.2 μg·m-3, followed by organic carbon (OC), SO42-, and NH4+, with concentrations of 9.3 ± 5.5, 9.1 ± 6.4, and 8.1 ± 6.8 μg·m-3, respectively. The concentrations of OC, NO3-, and SO42- were highest in winter and lowest in summer, whereas the NH4+ concentration was highest in winter and lowest in spring. Typical heavy metals had higher concentrations in autumn and winter, and lower concentrations in spring and summer. The annual average sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) were 0.30 ± 0.14 and 0.21 ± 0.12, respectively, with the highest SO2 emission and conversion rates in winter, resulting in the SO42- concentration being highest in winter. Although the emission rate of SO2 was low in summer, its conversion rate was high. In winter and autumn, NORs were significantly higher than in spring and summer, and a higher NOR in autumn contributed to significant elevation of the NO3- concentration in autumn relative to spring and summer. The average concentration of secondary organic carbon in 2019 was 2.8±1.9 μg·m-3, and it comprised approximately 30% of total OC. The health risk assessment for typical heavy metals showed that Pb poses a potential carcinogenic risk for adults, whereas As may pose a carcinogenic risk for adults, children, and adolescents. Positive matrix factorization analysis indicated that coal-burning emissions contributed the largest fraction of PM2.5, accounting for 35.9% of the total. The contribution of automotive emissions is similar to that of coal, at 32.1%. The third-largest contributor was industrial sources, which accounted for 17.2%. The contributions of dust and other emissions sources to PM2.5 were 8.4% and 6.4%, respectively.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SingaporePublisher:American Chemical Society (ACS) Shaoxin Li; Shuo Deng; Ran Xu; Di Liu; Yang Nan; Zhiwei Zhang; Yikui Gao; Haifei Lv; Min Li; Qing Zhang; Jie Wang; Zhong Lin Wang;handle: 10356/163351
As an energy harvester that converts mechanical power into electrical energy, a triboelectric nanogenerator (TENG) with a pair of metallic and insulating electrodes can generate only the displacement current (Idis) in the electrodes, whereas a chemical potential difference generator (CPG) with a pair of semiconducting or/and metallic electrodes can generate both Idis and conduction current (Icon). Considering the effects of motion parameters on Idis and Icon is important for harvesting different mechanical energies in practical scenarios; the output characteristics of CPGs and traditional TENGs under different external resistance (R), contact-separation frequency (f), and maximum separation distance (xm) were systematically studied for the first time in this work. More interestingly, a direct current (DC) output can be generated directly by CPGs under R > 10 Mω or f > 100 Hz. This work not only provides a guideline for collecting different mechanical energies but also promotes the development of CPGs as an energy harvester and self-powered vibration sensor in the semiconductor industry. Agency for Science, Technology and Research (A*STAR) Ministry of Education (MOE) This project is financially supported by National Key Research and Development Program of China for Young Scientists (2021YFF0603500), National Natural Science Foundation of China (11974266 and U21A20147), Fundamental Research Funds for the Central Universities (WUT:2022IVA061, E1E46802), A*STAR AME IRG Grant SERC A1983c0027, and MOE AcRF Tier2 (2018-T2-2-005), Singapore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Authors: Yinpeng Liu; Yaling Chen;With the increasing share of renewable energy resources in the microgrid, the microgrid faces more and more challenges in its reliable operation. One major challenge is the potential congestion caused by the uncoordinated operation of flexible demands such as heat pumps and the high penetration of renewable energy resources such as photovoltaics. Therefore, it is important to conduct microgrid energy management to ensure its reliable operation. The energy storage system (ESS) scheduling as an efficient means to alleviate congestion has been widely used. However, in the existing literature, the ESSs are usually scheduled by the microgrid system operator (MSO) in a direct control manner, which is impractical in the case where customers own ESSs and are willing to schedule ESSs by themselves. To resolve this issue, this study proposes a network reconfiguration integrated dynamic tariff–subsidy (DTS) congestion management method to utilize ESSs and network reconfiguration to alleviate congestion in microgrids caused by renewable energy resources and flexible demands. In the proposed method, the MSO controls sectionalization switches while customers or aggregators schedule ESSs in response to DTS to alleviate congestion. The DTS calculation model is formulated as a mixed-integer linear programming model, considering heat pumps (HPs), ESSs, and reconfigurable microgrid topology. The numerical results demonstrate that the proposed method can effectively use ESSs and network topology to alleviate congestion and the MSO does not need to take over the scheduling of the ESS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 South AfricaPublisher:Elsevier BV Authors: Luo, Jiawen; Demirer, Riza; Gupta, Rangan; Ji, Qiang;handle: 2263/84434
This paper contributes to the literature on forecasting the realized volatility of oil and gold by (i) utilizing the Infinite Hidden Markov (IHM) switching model within the Heterogeneous Autoregressive (HAR) framework to accommodate structural breaks in the data and (ii) incorporating, for the first time in the literature, various sentiment indicators that proxy for the speculative and hedging tendencies of investors in these markets as predictors in the forecasting models. We show that accounting for structural breaks and incorporating sentiment-related indicators in the forecasting model does not only improve the out-of-sample forecasting performance of volatility models but also has significant economic implications, offering improved risk-adjusted returns for investors, particularly for short-term and mid-term forecasts. We also find evidence of significant cross-market information spilling over across the oil, gold, and stock markets that also contributes to the predictability of short-term market fluctuations due to sentiment-related factors. The results highlight the predictive role of investor sentiment-related factors in improving the forecast accuracy of volatility dynamics in commodities with the potential to also yield economic gains for investors in these markets. ; The National Natural Science Foundation of China; Guangzhou Philosophy and Social Sciences Fund and Fundamental Research Fund for Central University. ; http://www.elsevier.com/locate/eneco ; 2023-06-09 ; hj2022 ; Economics
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105751&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105751&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:NSF | NRT-HDR: Convergent Gradu...NSF| NRT-HDR: Convergent Graduate Training and EmPOWERment for a Sustainable Energy Futurenull Rozina; Okezie Emmanuel; Mushtaq Ahmad; Shaista Jabeen; Shabeer Ahmad; Ahamefula A. Ahuchaogu;The production of bioenergy and bioproducts from streams of biowaste has ignited interest in fostering a circular economy worldwide. This study investigates the potential of transforming Grewia asiatica L. waste seed oil into sustainable biodiesel using green-synthesized niobium oxide nanoparticle. Niobium oxide nanocatalyst was synthesized using aqueous leaf extract of Fumaria indica L. Advanced characterization techniques were employed to confirm the pure and nano-scale nature of the synthesized niobium oxide nanocatalyst. The synthesized nanocatalyst exhibited an average particle size of 31 nm, resulting in efficient catalytic activity that persited through the fifth cycle of transesterification. An optimum biodiesel yield of 90% was achieved under reaction conditions of a methanol to oil molar ratio of 9:1, a reaction time of 180 min, a temperature of 60 °C and a catalyst load of 0.32 (wt. %). Results of Gas chromatography mass spectrometry (GC–MS) analysis of G. asiatica-derived biodiesel revealed 5, 8-Octadecadienoic acid methyl ester as the primary fatty acid methyl ester, with the highest concentration. The fuel properties of G. asiatica-derived biodiesel complied with international standards. The minimal sulphur content of 0.0001% highlights the clean, environmentally benign and cost-effective nature of biodiesel synthesized from G. asiatica waste seed oil. This study contributes to the renewable alternative effort toward transitioning from a linear economy to a circular bioeconomy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wmb.2024.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wmb.2024.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Yuanyuan Jing; Jun Luo; Xue Han; Jiawei Yang; Qiulin Liu; Yuanyuan Zheng; Xinyi Chen; Fuli Huang; Jiawen Chen; Qinliang Zhuang; Yanan Shen; Haisheng Chen; Huaizhou Zhao; G. Jeffrey Snyder; Guodong Li; Ting Zhang; Kun Zhang;doi: 10.1039/d3ee90044d
Correction for ‘Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system’ by Yuanyuan Jing et al., Energy Environ. Sci., 2023, https://doi.org/10.1039/d3ee01031g.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee90044d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee90044d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesSilvio Marta; Roberto Sergio Azzoni; Davide Fugazza; Levan Tielidze; Pritam Chand; Katrin Sieron; Peter Almond; Roberto Ambrosini; Fabien Anthelme; Pablo Alviz Gazitúa; Rakesh Bhambri; Aurélie Bonin; Marco Caccianiga; Sophie Cauvy-Fraunié; Jorge Luis Ceballos Lievano; John Clague; Justiniano Alejo Cochachín Rapre; Olivier Dangles; Philip Deline; Andre Eger; Rolando Cruz Encarnación; Sergey Erokhin; Andrea Franzetti; Ludovic Gielly; Fabrizio Gili; Mauro Gobbi; Alessia Guerrieri; Sigmund Hågvar; Norine Khedim; Rahab Kinyanjui; Erwan Messager; Marco Aurelio Morales-Martínez; Gwendolyn Peyre; Francesca Pittino; Jerome Poulenard; Roberto Seppi; Milap Chand Sharma; Nurai Urseitova; Blake Weissling; Yan Yang; Vitalii Zaginaev; Anaïs Zimmer; Guglielmina Adele Diolaiuti; Antoine Rabatel; Gentile Francesco Ficetola;doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 07 Oct 2024 Spain, Germany, United KingdomPublisher:Wiley Funded by:NSF | CAREER: Integrating a Mic...NSF| CAREER: Integrating a Microbial Data System with an Earth System Model for Evaluating Microbial BiogeochemistryYongxing Cui; Junxi Hu; Shushi Peng; Manuel Delgado‐Baquerizo; Daryl L. Moorhead; Robert L. Sinsabaugh; Xiaofeng Xu; Kevin M. Geyer; Linchuan Fang; Pete Smith; Josep Peñuelas; Yakov Kuzyakov; Ji Chen;AbstractMicrobial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 57visibility views 57 download downloads 122 Powered bymore_vert Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Elsevier BV Hongyou Lu; Kairui You; Wei Feng; Nan Zhou; David Fridley; Lynn Price; Stephane de la Rue du Can;Embodied emissions from the production of building materials account for 17% of China's carbon dioxide (CO2) emissions and are important to focus on as China aims to achieve its carbon neutrality goals. However, there is a lack of systematic assessments on embodied emissions reduction potential of building materials that consider both the heterogeneous industrial characteristics as well as the Chinese buildings sector context. Here, we developed an integrated model that combines future demand of building materials in China with the strategies to reduce CO2 emissions associated with their production, using, and recycling. We found that measures to improve material efficiency in the value-chain has the largest CO2 mitigation potential before 2030 in both Low Carbon and Carbon Neutrality Scenarios, and continues to be significant through 2060. Policies to accelerate material efficiency practices, such as incorporating embodied emissions in building codes and conducting robust research, development, and demonstration (RD&D) in carbon removal are critical.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/3jx4k3qmData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2024.109028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/3jx4k3qmData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2024.109028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Ang Li; Shi Chen;doi: 10.1002/eap.2450
pmid: 34515410
AbstractAcross the world, social‐ecological rangeland systems have been transformed from a preindustrial extensive status to intensive exploitation, often leading to long‐term livestock population booms, overgrazing, and rangeland degradation. To understand the regulatory mechanisms involved in such historical social‐ecological transformations, we collected population data on the native sheep of the last nomadic county in the Inner Mongolia Autonomous Region (1961–2005). We detected changes in internal feedbacks (e.g., density‐dependent effects) and external disturbance (e.g., winter harshness, rainfall, harvest) between the extensive and intensive management periods using regression models of sheep population growth rate and counterfactual analyses. We found that, in the extensive period, sheep populations were regulated during harsh winters by climate, while they were regulated during mild winters by negative density dependence. In the intensive period, the negative feedback of density dependence was removed through the provision of additional forage and shelter, and only winter climate and growing season rainfall regulated sheep populations. Counterfactual analyses also confirmed the irreplaceable role of density‐dependence in maintaining a sustainable rangeland ecosystem. Although herders attempted to adapt to the removal of negative feedbacks by improving livestock harvest, overgrazing and grassland degradation remain a challenge in this system. We conclude that internal feedbacks within social‐ecological systems should be carefully anticipated and accounted for when managing rangelands for sustainability.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Zhanshan, Wang; Jiayi, Yan; Puzhen, Zhang; Zhigang, Li; Chen, Guo; Kai, Wu; Xiaoqian, Li; Xiaojing, Zhu; Zhaobin, Sun; Yongjie, Wei;Abstract To clarify the chemical characteristics, source contributions, and health risks of pollution events associated with high PM2.5 in typical industrial areas of North China, manual sampling and analysis of PM2.5 were conducted in the spring, summer, autumn, and winter of 2019 in Pingyin County, Jinan City, Shandong Province. The results showed that the total concentration of 29 components in PM2.5 was 53.4 μg·m-3; the largest contribution was from the NO3- ion, at 14.6 ± 14.2 μg·m-3, followed by organic carbon (OC), SO42-, and NH4+, with concentrations of 9.3 ± 5.5, 9.1 ± 6.4, and 8.1 ± 6.8 μg·m-3, respectively. The concentrations of OC, NO3-, and SO42- were highest in winter and lowest in summer, whereas the NH4+ concentration was highest in winter and lowest in spring. Typical heavy metals had higher concentrations in autumn and winter, and lower concentrations in spring and summer. The annual average sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) were 0.30 ± 0.14 and 0.21 ± 0.12, respectively, with the highest SO2 emission and conversion rates in winter, resulting in the SO42- concentration being highest in winter. Although the emission rate of SO2 was low in summer, its conversion rate was high. In winter and autumn, NORs were significantly higher than in spring and summer, and a higher NOR in autumn contributed to significant elevation of the NO3- concentration in autumn relative to spring and summer. The average concentration of secondary organic carbon in 2019 was 2.8±1.9 μg·m-3, and it comprised approximately 30% of total OC. The health risk assessment for typical heavy metals showed that Pb poses a potential carcinogenic risk for adults, whereas As may pose a carcinogenic risk for adults, children, and adolescents. Positive matrix factorization analysis indicated that coal-burning emissions contributed the largest fraction of PM2.5, accounting for 35.9% of the total. The contribution of automotive emissions is similar to that of coal, at 32.1%. The third-largest contributor was industrial sources, which accounted for 17.2%. The contributions of dust and other emissions sources to PM2.5 were 8.4% and 6.4%, respectively.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19843-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SingaporePublisher:American Chemical Society (ACS) Shaoxin Li; Shuo Deng; Ran Xu; Di Liu; Yang Nan; Zhiwei Zhang; Yikui Gao; Haifei Lv; Min Li; Qing Zhang; Jie Wang; Zhong Lin Wang;handle: 10356/163351
As an energy harvester that converts mechanical power into electrical energy, a triboelectric nanogenerator (TENG) with a pair of metallic and insulating electrodes can generate only the displacement current (Idis) in the electrodes, whereas a chemical potential difference generator (CPG) with a pair of semiconducting or/and metallic electrodes can generate both Idis and conduction current (Icon). Considering the effects of motion parameters on Idis and Icon is important for harvesting different mechanical energies in practical scenarios; the output characteristics of CPGs and traditional TENGs under different external resistance (R), contact-separation frequency (f), and maximum separation distance (xm) were systematically studied for the first time in this work. More interestingly, a direct current (DC) output can be generated directly by CPGs under R > 10 Mω or f > 100 Hz. This work not only provides a guideline for collecting different mechanical energies but also promotes the development of CPGs as an energy harvester and self-powered vibration sensor in the semiconductor industry. Agency for Science, Technology and Research (A*STAR) Ministry of Education (MOE) This project is financially supported by National Key Research and Development Program of China for Young Scientists (2021YFF0603500), National Natural Science Foundation of China (11974266 and U21A20147), Fundamental Research Funds for the Central Universities (WUT:2022IVA061, E1E46802), A*STAR AME IRG Grant SERC A1983c0027, and MOE AcRF Tier2 (2018-T2-2-005), Singapore.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.2c01582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Authors: Yinpeng Liu; Yaling Chen;With the increasing share of renewable energy resources in the microgrid, the microgrid faces more and more challenges in its reliable operation. One major challenge is the potential congestion caused by the uncoordinated operation of flexible demands such as heat pumps and the high penetration of renewable energy resources such as photovoltaics. Therefore, it is important to conduct microgrid energy management to ensure its reliable operation. The energy storage system (ESS) scheduling as an efficient means to alleviate congestion has been widely used. However, in the existing literature, the ESSs are usually scheduled by the microgrid system operator (MSO) in a direct control manner, which is impractical in the case where customers own ESSs and are willing to schedule ESSs by themselves. To resolve this issue, this study proposes a network reconfiguration integrated dynamic tariff–subsidy (DTS) congestion management method to utilize ESSs and network reconfiguration to alleviate congestion in microgrids caused by renewable energy resources and flexible demands. In the proposed method, the MSO controls sectionalization switches while customers or aggregators schedule ESSs in response to DTS to alleviate congestion. The DTS calculation model is formulated as a mixed-integer linear programming model, considering heat pumps (HPs), ESSs, and reconfigurable microgrid topology. The numerical results demonstrate that the proposed method can effectively use ESSs and network topology to alleviate congestion and the MSO does not need to take over the scheduling of the ESS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.708087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 South AfricaPublisher:Elsevier BV Authors: Luo, Jiawen; Demirer, Riza; Gupta, Rangan; Ji, Qiang;handle: 2263/84434
This paper contributes to the literature on forecasting the realized volatility of oil and gold by (i) utilizing the Infinite Hidden Markov (IHM) switching model within the Heterogeneous Autoregressive (HAR) framework to accommodate structural breaks in the data and (ii) incorporating, for the first time in the literature, various sentiment indicators that proxy for the speculative and hedging tendencies of investors in these markets as predictors in the forecasting models. We show that accounting for structural breaks and incorporating sentiment-related indicators in the forecasting model does not only improve the out-of-sample forecasting performance of volatility models but also has significant economic implications, offering improved risk-adjusted returns for investors, particularly for short-term and mid-term forecasts. We also find evidence of significant cross-market information spilling over across the oil, gold, and stock markets that also contributes to the predictability of short-term market fluctuations due to sentiment-related factors. The results highlight the predictive role of investor sentiment-related factors in improving the forecast accuracy of volatility dynamics in commodities with the potential to also yield economic gains for investors in these markets. ; The National Natural Science Foundation of China; Guangzhou Philosophy and Social Sciences Fund and Fundamental Research Fund for Central University. ; http://www.elsevier.com/locate/eneco ; 2023-06-09 ; hj2022 ; Economics
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105751&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105751&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:NSF | NRT-HDR: Convergent Gradu...NSF| NRT-HDR: Convergent Graduate Training and EmPOWERment for a Sustainable Energy Futurenull Rozina; Okezie Emmanuel; Mushtaq Ahmad; Shaista Jabeen; Shabeer Ahmad; Ahamefula A. Ahuchaogu;The production of bioenergy and bioproducts from streams of biowaste has ignited interest in fostering a circular economy worldwide. This study investigates the potential of transforming Grewia asiatica L. waste seed oil into sustainable biodiesel using green-synthesized niobium oxide nanoparticle. Niobium oxide nanocatalyst was synthesized using aqueous leaf extract of Fumaria indica L. Advanced characterization techniques were employed to confirm the pure and nano-scale nature of the synthesized niobium oxide nanocatalyst. The synthesized nanocatalyst exhibited an average particle size of 31 nm, resulting in efficient catalytic activity that persited through the fifth cycle of transesterification. An optimum biodiesel yield of 90% was achieved under reaction conditions of a methanol to oil molar ratio of 9:1, a reaction time of 180 min, a temperature of 60 °C and a catalyst load of 0.32 (wt. %). Results of Gas chromatography mass spectrometry (GC–MS) analysis of G. asiatica-derived biodiesel revealed 5, 8-Octadecadienoic acid methyl ester as the primary fatty acid methyl ester, with the highest concentration. The fuel properties of G. asiatica-derived biodiesel complied with international standards. The minimal sulphur content of 0.0001% highlights the clean, environmentally benign and cost-effective nature of biodiesel synthesized from G. asiatica waste seed oil. This study contributes to the renewable alternative effort toward transitioning from a linear economy to a circular bioeconomy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wmb.2024.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wmb.2024.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Yuanyuan Jing; Jun Luo; Xue Han; Jiawei Yang; Qiulin Liu; Yuanyuan Zheng; Xinyi Chen; Fuli Huang; Jiawen Chen; Qinliang Zhuang; Yanan Shen; Haisheng Chen; Huaizhou Zhao; G. Jeffrey Snyder; Guodong Li; Ting Zhang; Kun Zhang;doi: 10.1039/d3ee90044d
Correction for ‘Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system’ by Yuanyuan Jing et al., Energy Environ. Sci., 2023, https://doi.org/10.1039/d3ee01031g.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee90044d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee90044d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu