- home
- Search
- Energy Research
- Closed Access
- Restricted
- US
- ZENODO
- Energy Research
- Closed Access
- Restricted
- US
- ZENODO
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Joachim Claudet; Jessica Blythe; David A. Gill; Nathan J. Bennett; Georgina G. Gurney; Louisa Evans; Shauna L. Mahajan; Rachel A. Turner; Gabby N. Ahmadia; Natalie C. Ban; Graham Epstein; Stacy D. Jupiter; Jacqueline Lau; Sangeeta Mangubhai; Noelia Zafra-Calvo; Natali Lazzari; Jacopo A. Baggio; Miranda L. Bernard; Victor Brun; Stephanie D’Agata; Antonio Di Franco; Rebecca Horan; Josheena Naggea;pmid: 38744940
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41559-024-02417-5. Deposited by shareyourpaper.org and openaccessbutton.org. We've taken reasonable steps to ensure this content doesn't violate copyright. However, if you think it does you can request a takedown by emailing help@openaccessbutton.org.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: Mihályi, Péter; Szelenyi, Ivan;Moral panic, our predisposition to exaggerate threats against our livelihood and start blaming ourselves, is as old as human history. We always feared “others”, people with skin colors or ethnicity other than ours, people coming from other corners of the globe, and the infectious diseases the strangers might bring along. This paper deals with a new version of such moral panics which is arguably even more intense than the previous ones, but which relates to a new dimension of human experience, namely globalization. The health, economic and environmental challenges we are now faced with are posed globally. The moral panic today stems from this triple challenge. Our central thesis is that these three emergencies are interrelated, but there is no simple causal relationship between them. They can only be addressed in a global manner, while we still live in a world which is segmented into sovereign nation-states.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6774446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6774446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Publisher:Book Publisher International (a part of SCIENCEDOMAIN International) Authors: Kalu Uduma; Tomasz Arciszewski;This paper proposes the use of sustainable energy systems based on solar and biomass technologies to provide solutions to utility challenges in Nigeria and acute water shortage both in rural and urban areas of that country. The paper highlights the paradoxes of oil-rich Nigeria and the stark reality of social infrastructure deprivations in that country. Perennial power outages over many years have translated to the absence of or poorly-developed basic social infrastructures in Nigeria. The consequences of this lack have been an increase in abject poverty in rural and urban communities as well as the erosion of social order and threats to citizen and their property. This paper proposes the adaptation of two emerging technologies for building sustainable energy systems and the development of decentralized and sustainable energy sources as catalyst for much-needed social infrastructure development through the creation of Renewable Energy Business Incubators, creative lending strategies, NGO partnerships and shifting energy-distribution responsibilities. These changes will stimulate grassroots economies in the country, develop large quantities of much needed clean water, maintain acceptable standards of sanitation and improve the health and wellbeing of Nigerian communities. The proposed strategies are specific to the Nigerian context; however, the authors suggest that the same or similar strategies may provide energy and social infrastructure development solutions to other developing countries as well. The economic and social opportunities that sustainable energy systems can bring are significant attractions for various private and federal organizations in Nigeria to invest aggressively in the new systems.
ZENODO arrow_drop_down https://doi.org/10.9734/bpi/aa...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/aaer/v7/7706d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 1 Powered bymore_vert ZENODO arrow_drop_down https://doi.org/10.9734/bpi/aa...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/aaer/v7/7706d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A..., NSF | BII-Design: Exploring the...NSF| Collaborative Research: ABI Development: Creating a generic workflow for scaling up the production of species ranges ,NSF| BII-Design: Exploring the ecology and evolution of the global virome with big data and machine learningColin J. Carlson; Gregory F. Albery; Cory Merow; Christopher H. Trisos; Casey M. Zipfel; Evan A. Eskew; Kevin J. Olival; Noam Ross; Shweta Bansal;(Uploaded by Plazi for the Bat Literature Project) No abstract provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04788-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 474 citations 474 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04788-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Authors: Stephen R. Keller; Cortney L. Pylant; Cortney L. Pylant; Matthew C. Fitzpatrick; +2 AuthorsStephen R. Keller; Cortney L. Pylant; Cortney L. Pylant; Matthew C. Fitzpatrick; J. Edward Gates; David M. Nelson;pmid: 27755755
AbstractAn unanticipated impact of wind‐energy development has been large‐scale mortality of insectivorous bats. In eastern North America, where mortality rates are among the highest in the world, the hoary bat (Lasiurus cinereus) and the eastern red bat (L. borealis) comprise the majority of turbine‐associated bat mortality. Both species are migratory tree bats with widespread distributions; however, little is known regarding the geographic origins of bats killed at wind‐energy facilities or the diversity and population structure of affected species. We addressed these unknowns by measuring stable hydrogen isotope ratios (δ2H) and conducting population genetic analyses of bats killed at wind‐energy facilities in the central Appalachian Mountains (USA) to determine the summering origins, effective size, structure, and temporal stability of populations. Our results indicate that ~1% of hoary bat mortalities and ~57% of red bat mortalities derive from non‐local sources, with no relationship between the proportion of non‐local bats and sex, location of mortality, or month of mortality. Additionally, our data indicate that hoary bats in our sample consist of an unstructured population with a small effective size (Ne) and either a stable or declining history. Red bats also showed no evidence of population genetic structure, but in contrast to hoary bats, the diversity contained in our red bat samples is consistent with a much larger Ne that reflects a demographic expansion after a bottleneck. These results suggest that the impacts of mortality associated with intensive wind‐energy development may affect bat species dissimilarly, with red bats potentially better able to absorb sustained mortality than hoary bats because of their larger Ne. Our results provide important baseline data and also illustrate the utility of stable isotopes and population genetics for monitoring bat populations affected by wind‐energy development.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Rick A. Adams;pmid: 20836465
Climate change models predict that much of western North America is becoming significantly warmer and drier, resulting in overall reductions in availability of water for ecosystems. Herein, I demonstrate that significant declines in the reproductive success of female insectivorous bats occur in years when annual environmental conditions mimic the long‐term predictions of regional climate change models. Using a data set gathered on bat populations from 1996 through 2008 along the Front Range of Colorado, I compare trends in population numbers and reproductive outcomes of six species of vespertilionid bats with data on mean annual high temperature, precipitation, snow pack, and stream discharge rates. I show that levels of precipitation and flow rates of small streams near maternity colonies is fundamentally tied to successful reproduction in female bats, particularly during the lactation phase. Across years that experienced greater than average mean temperatures with less than average precipitation and stream flow, bat populations responded by slight to profound reductions in reproductive output depending on the severity of drought conditions. In particular, reproductive outputs showed profound declines (32–51%) when discharge rates of the largest stream in the field area dropped below 7 m3/s, indicating a threshold response. Such sensitivity to environmental change portends severe impacts to regional bat populations if current scenarios for climate change in western North America are accurate. In addition, bats act as early‐warning indicators of large‐scale ecological effects resulting from further regional warming and drying trends currently at play in western North America.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-0091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-0091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:[no funder available]Sharon M. Swartz; Pedro Beja; Pedro Beja; Martina Scacco; Martina Scacco; Hugo Rebelo; Hugo Rebelo; Kamran Safi; Kamran Safi; Ricardo Tomé; Gary F. McCracken; Martin Wikelski; Martin Wikelski; Dina K. N. Dechmann; Dina K. N. Dechmann; Francisco Amorim; Vanessa A. Mata; M. Teague O'Mara; M. Teague O'Mara; M. Teague O'Mara;(Uploaded by Plazi for the Bat Literature Project) During the day, flying animals exploit the environmental energy landscape by seeking out thermal or orographic uplift, or extracting energy from wind gradients.1, 2, 3, 4, 5, 6 However, most of these energy sources are not thought to be available at night because of the lower thermal potential in the nocturnal atmosphere, as well as the difficulty of locating features that generate uplift. Despite this, several bat species have been observed hundreds to thousands of meters above the ground.7, 8, 9 Individuals make repeated, energetically costly high-altitude ascents,10, 11, 12, 13 and others fly at some of the fastest speeds observed for powered vertebrate flight.14 We hypothesized that bats use orographic uplift to reach high altitudes,9,15, 16, 17 and that both this uplift and bat high-altitude ascents would be highly predictable.18 By superimposing detailed three-dimensional GPS tracking of European free-tailed bats (Tadarida teniotis) on high-resolution regional wind data, we show that bats do indeed use the energy of orographic uplift to climb to over 1,600 m, and also that they reach maximum sustained self-powered airspeeds of 135 km h−1. We show that wind and topography can predict areas of the landscape able to support high-altitude ascents, and that bats use these locations to reach high altitudes while reducing airspeeds. Bats then integrate wind conditions to guide high-altitude ascents, deftly exploiting vertical wind energy in the nocturnal landscape.
Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 94visibility views 94 download downloads 47 Powered bymore_vert Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Catherine A. Lindell; Emily B. Morrison;Both birds and bats are important insect predators in tropical systems. However, the relative influence of birds and bats on insect populations and their indirect effects on leaf damage have not previously been investigated in tropical forest restoration sites. Leaf damage by herbivorous insects can negatively affect the growth and survival of tropical plants and thus can influence the success of tropical forest restoration efforts. We used an exclosure experiment to examine the top‐down effects of birds and bats on insects and leaf damage in a large‐scale forest restoration experiment. Given the potential influence of tree planting design on bird and bat abundances, we also investigated planting design effects on bird and bat insectivory and leaf damage. The experiment included two planting treatment plots: islands, where trees were planted in patches, and plantations, where trees were planted in rows to create continuous cover. In both types of plots, insect biomass was highest on tree branches where both birds and bats were excluded from foraging and lowest on branches without exclosures where both birds and bats were present. In the island plots, birds and bats had approximately equal impacts on insect populations, while in plantations bats appeared to have a slightly stronger effect on insects than did birds. In plantations, the levels of leaf damage were higher on branches where birds and bats were excluded than on branches where both had access. In island plots, no significant differences in leaf damage were found between exclosure treatments although potential patterns were in the same direction as in the plantations. Our results suggest that both birds and bats play important roles as top predators in restoration systems by reducing herbivorous insects and their damage to planted trees. Tropical restoration projects should include efforts to attract and provide suitable habitat for birds and bats, given their demonstrated ecological importance.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/1051-0761-22.5.1526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/1051-0761-22.5.1526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:Magnolia Press Chen, Weicai; Liao, Xiaowen; Zhou, Shichu; Mo, Yunming; Huang, Yong;pmid: 29689961
Rhacophorus yaoshanensis Liu & Hu, 1962 and Theloderma kwangsiensis Liu & Hu, 1962 were described by Liu & Hu (1962) based on two specimens and one specimen, respectively, from the Dayaoshan Ranges, Guangxi, China. Since these two species were described, no additional specimens have been collected from their type localities, presenting an issue for phylogenetic studies of the genera. Five decades later, we have rediscovered R. yaoshanensis and T. kwangsiensis from their type localities. In this paper, we re-describe the two species and conduct a preliminary assessment of their phylogenetic relationships using two mitochondrial DNA genes (12S and 16S rRNA). The results indicate with high support that R. yaoshanensis is closely related to Rhacophorus pinglongensis. Theloderma kwangsiensis is nested within Theloderma corticale, with only 0.0–0.6% pairwise divergence, a level typical of intraspecific variation. Based on both molecular and morphological analyses, we further confirm that T. kwangsiensis is a synonym of T. corticale. Shiwandashan National Nature Reserve, Guangxi Province, China, is a new record for T. corticale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11646/zootaxa.4379.4.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11646/zootaxa.4379.4.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type 2022Publisher:Zenodo Daniel M. Gilford; Andrew Pershing; Benjamin H. Strauss; Karsten Haustein; Friederike E. L. Otto;Slides presented at the 102 Annual American Meteorological Society Meeting, as part of the session "Major Weather Events and Impacts of 2021" (paper 6.3 - It's Getting Hot in Here: Real-Time Climate Fingerprints Applied to the 2021 Extreme Heat Season) For more information, please reach out to Daniel Gilford at dgilford@climatecentral.org. Presentation Abstract: Extreme heat was observed and experienced across large portions of the United States in 2021, including during notable record-breaking events in the Pacific Northwest, the Southwest, and along the East coast. The contiguous US experienced its hottest June on record, and excess heat related deaths stretched into the thousands. While more frequent and intense periods of extreme heat are expected consequences of anthropogenic climate change, rapidly and continuously assessing the degree to which human emissions of greenhouse gases increase the likelihood of a specific event remains a challenging technical process. In this study we introduce the Realtime Climate attribution framework and illustrate its application through an analysis of observed 2021 extreme heat events. The framework implements one model-based and two observation-based approaches to produce three distinct attribution assessments, including best estimates and uncertainties. The framework is designed to be flexible across a range of variables and scales, computationally lightweight, and adaptable for impact studies. Using a suite of global climate models, observed global mean temperatures, and local observed daily temperatures, we quantify the extent to which human-driven climate change made 2021 maximum and minimum daily temperature extremes more likely across the United States. Results confirm the continued and growing influence of human-driven climate change in local weather extremes. For instance, we find that the record-breaking high temperatures in June near Phoenix, AZ, were at least 3.25 times more likely because of human activity. Through this framework, we are building the capacity to produce attribution estimates while an event is unfolding. Furthermore, the ability to estimate attribution levels continuously will enhance studies of extreme heat impacts on human health, along with other socioeconomic or influences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5903543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 15visibility views 15 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5903543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Joachim Claudet; Jessica Blythe; David A. Gill; Nathan J. Bennett; Georgina G. Gurney; Louisa Evans; Shauna L. Mahajan; Rachel A. Turner; Gabby N. Ahmadia; Natalie C. Ban; Graham Epstein; Stacy D. Jupiter; Jacqueline Lau; Sangeeta Mangubhai; Noelia Zafra-Calvo; Natali Lazzari; Jacopo A. Baggio; Miranda L. Bernard; Victor Brun; Stephanie D’Agata; Antonio Di Franco; Rebecca Horan; Josheena Naggea;pmid: 38744940
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1038/s41559-024-02417-5. Deposited by shareyourpaper.org and openaccessbutton.org. We've taken reasonable steps to ensure this content doesn't violate copyright. However, if you think it does you can request a takedown by emailing help@openaccessbutton.org.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02417-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: Mihályi, Péter; Szelenyi, Ivan;Moral panic, our predisposition to exaggerate threats against our livelihood and start blaming ourselves, is as old as human history. We always feared “others”, people with skin colors or ethnicity other than ours, people coming from other corners of the globe, and the infectious diseases the strangers might bring along. This paper deals with a new version of such moral panics which is arguably even more intense than the previous ones, but which relates to a new dimension of human experience, namely globalization. The health, economic and environmental challenges we are now faced with are posed globally. The moral panic today stems from this triple challenge. Our central thesis is that these three emergencies are interrelated, but there is no simple causal relationship between them. They can only be addressed in a global manner, while we still live in a world which is segmented into sovereign nation-states.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6774446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6774446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Publisher:Book Publisher International (a part of SCIENCEDOMAIN International) Authors: Kalu Uduma; Tomasz Arciszewski;This paper proposes the use of sustainable energy systems based on solar and biomass technologies to provide solutions to utility challenges in Nigeria and acute water shortage both in rural and urban areas of that country. The paper highlights the paradoxes of oil-rich Nigeria and the stark reality of social infrastructure deprivations in that country. Perennial power outages over many years have translated to the absence of or poorly-developed basic social infrastructures in Nigeria. The consequences of this lack have been an increase in abject poverty in rural and urban communities as well as the erosion of social order and threats to citizen and their property. This paper proposes the adaptation of two emerging technologies for building sustainable energy systems and the development of decentralized and sustainable energy sources as catalyst for much-needed social infrastructure development through the creation of Renewable Energy Business Incubators, creative lending strategies, NGO partnerships and shifting energy-distribution responsibilities. These changes will stimulate grassroots economies in the country, develop large quantities of much needed clean water, maintain acceptable standards of sanitation and improve the health and wellbeing of Nigerian communities. The proposed strategies are specific to the Nigerian context; however, the authors suggest that the same or similar strategies may provide energy and social infrastructure development solutions to other developing countries as well. The economic and social opportunities that sustainable energy systems can bring are significant attractions for various private and federal organizations in Nigeria to invest aggressively in the new systems.
ZENODO arrow_drop_down https://doi.org/10.9734/bpi/aa...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/aaer/v7/7706d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 1 Powered bymore_vert ZENODO arrow_drop_down https://doi.org/10.9734/bpi/aa...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/aaer/v7/7706d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A..., NSF | BII-Design: Exploring the...NSF| Collaborative Research: ABI Development: Creating a generic workflow for scaling up the production of species ranges ,NSF| BII-Design: Exploring the ecology and evolution of the global virome with big data and machine learningColin J. Carlson; Gregory F. Albery; Cory Merow; Christopher H. Trisos; Casey M. Zipfel; Evan A. Eskew; Kevin J. Olival; Noam Ross; Shweta Bansal;(Uploaded by Plazi for the Bat Literature Project) No abstract provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04788-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 474 citations 474 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04788-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Authors: Stephen R. Keller; Cortney L. Pylant; Cortney L. Pylant; Matthew C. Fitzpatrick; +2 AuthorsStephen R. Keller; Cortney L. Pylant; Cortney L. Pylant; Matthew C. Fitzpatrick; J. Edward Gates; David M. Nelson;pmid: 27755755
AbstractAn unanticipated impact of wind‐energy development has been large‐scale mortality of insectivorous bats. In eastern North America, where mortality rates are among the highest in the world, the hoary bat (Lasiurus cinereus) and the eastern red bat (L. borealis) comprise the majority of turbine‐associated bat mortality. Both species are migratory tree bats with widespread distributions; however, little is known regarding the geographic origins of bats killed at wind‐energy facilities or the diversity and population structure of affected species. We addressed these unknowns by measuring stable hydrogen isotope ratios (δ2H) and conducting population genetic analyses of bats killed at wind‐energy facilities in the central Appalachian Mountains (USA) to determine the summering origins, effective size, structure, and temporal stability of populations. Our results indicate that ~1% of hoary bat mortalities and ~57% of red bat mortalities derive from non‐local sources, with no relationship between the proportion of non‐local bats and sex, location of mortality, or month of mortality. Additionally, our data indicate that hoary bats in our sample consist of an unstructured population with a small effective size (Ne) and either a stable or declining history. Red bats also showed no evidence of population genetic structure, but in contrast to hoary bats, the diversity contained in our red bat samples is consistent with a much larger Ne that reflects a demographic expansion after a bottleneck. These results suggest that the impacts of mortality associated with intensive wind‐energy development may affect bat species dissimilarly, with red bats potentially better able to absorb sustained mortality than hoary bats because of their larger Ne. Our results provide important baseline data and also illustrate the utility of stable isotopes and population genetics for monitoring bat populations affected by wind‐energy development.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Rick A. Adams;pmid: 20836465
Climate change models predict that much of western North America is becoming significantly warmer and drier, resulting in overall reductions in availability of water for ecosystems. Herein, I demonstrate that significant declines in the reproductive success of female insectivorous bats occur in years when annual environmental conditions mimic the long‐term predictions of regional climate change models. Using a data set gathered on bat populations from 1996 through 2008 along the Front Range of Colorado, I compare trends in population numbers and reproductive outcomes of six species of vespertilionid bats with data on mean annual high temperature, precipitation, snow pack, and stream discharge rates. I show that levels of precipitation and flow rates of small streams near maternity colonies is fundamentally tied to successful reproduction in female bats, particularly during the lactation phase. Across years that experienced greater than average mean temperatures with less than average precipitation and stream flow, bat populations responded by slight to profound reductions in reproductive output depending on the severity of drought conditions. In particular, reproductive outputs showed profound declines (32–51%) when discharge rates of the largest stream in the field area dropped below 7 m3/s, indicating a threshold response. Such sensitivity to environmental change portends severe impacts to regional bat populations if current scenarios for climate change in western North America are accurate. In addition, bats act as early‐warning indicators of large‐scale ecological effects resulting from further regional warming and drying trends currently at play in western North America.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-0091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-0091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:[no funder available]Sharon M. Swartz; Pedro Beja; Pedro Beja; Martina Scacco; Martina Scacco; Hugo Rebelo; Hugo Rebelo; Kamran Safi; Kamran Safi; Ricardo Tomé; Gary F. McCracken; Martin Wikelski; Martin Wikelski; Dina K. N. Dechmann; Dina K. N. Dechmann; Francisco Amorim; Vanessa A. Mata; M. Teague O'Mara; M. Teague O'Mara; M. Teague O'Mara;(Uploaded by Plazi for the Bat Literature Project) During the day, flying animals exploit the environmental energy landscape by seeking out thermal or orographic uplift, or extracting energy from wind gradients.1, 2, 3, 4, 5, 6 However, most of these energy sources are not thought to be available at night because of the lower thermal potential in the nocturnal atmosphere, as well as the difficulty of locating features that generate uplift. Despite this, several bat species have been observed hundreds to thousands of meters above the ground.7, 8, 9 Individuals make repeated, energetically costly high-altitude ascents,10, 11, 12, 13 and others fly at some of the fastest speeds observed for powered vertebrate flight.14 We hypothesized that bats use orographic uplift to reach high altitudes,9,15, 16, 17 and that both this uplift and bat high-altitude ascents would be highly predictable.18 By superimposing detailed three-dimensional GPS tracking of European free-tailed bats (Tadarida teniotis) on high-resolution regional wind data, we show that bats do indeed use the energy of orographic uplift to climb to over 1,600 m, and also that they reach maximum sustained self-powered airspeeds of 135 km h−1. We show that wind and topography can predict areas of the landscape able to support high-altitude ascents, and that bats use these locations to reach high altitudes while reducing airspeeds. Bats then integrate wind conditions to guide high-altitude ascents, deftly exploiting vertical wind energy in the nocturnal landscape.
Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 94visibility views 94 download downloads 47 Powered bymore_vert Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2020.12.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Catherine A. Lindell; Emily B. Morrison;Both birds and bats are important insect predators in tropical systems. However, the relative influence of birds and bats on insect populations and their indirect effects on leaf damage have not previously been investigated in tropical forest restoration sites. Leaf damage by herbivorous insects can negatively affect the growth and survival of tropical plants and thus can influence the success of tropical forest restoration efforts. We used an exclosure experiment to examine the top‐down effects of birds and bats on insects and leaf damage in a large‐scale forest restoration experiment. Given the potential influence of tree planting design on bird and bat abundances, we also investigated planting design effects on bird and bat insectivory and leaf damage. The experiment included two planting treatment plots: islands, where trees were planted in patches, and plantations, where trees were planted in rows to create continuous cover. In both types of plots, insect biomass was highest on tree branches where both birds and bats were excluded from foraging and lowest on branches without exclosures where both birds and bats were present. In the island plots, birds and bats had approximately equal impacts on insect populations, while in plantations bats appeared to have a slightly stronger effect on insects than did birds. In plantations, the levels of leaf damage were higher on branches where birds and bats were excluded than on branches where both had access. In island plots, no significant differences in leaf damage were found between exclosure treatments although potential patterns were in the same direction as in the plantations. Our results suggest that both birds and bats play important roles as top predators in restoration systems by reducing herbivorous insects and their damage to planted trees. Tropical restoration projects should include efforts to attract and provide suitable habitat for birds and bats, given their demonstrated ecological importance.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/1051-0761-22.5.1526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/1051-0761-22.5.1526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:Magnolia Press Chen, Weicai; Liao, Xiaowen; Zhou, Shichu; Mo, Yunming; Huang, Yong;pmid: 29689961
Rhacophorus yaoshanensis Liu & Hu, 1962 and Theloderma kwangsiensis Liu & Hu, 1962 were described by Liu & Hu (1962) based on two specimens and one specimen, respectively, from the Dayaoshan Ranges, Guangxi, China. Since these two species were described, no additional specimens have been collected from their type localities, presenting an issue for phylogenetic studies of the genera. Five decades later, we have rediscovered R. yaoshanensis and T. kwangsiensis from their type localities. In this paper, we re-describe the two species and conduct a preliminary assessment of their phylogenetic relationships using two mitochondrial DNA genes (12S and 16S rRNA). The results indicate with high support that R. yaoshanensis is closely related to Rhacophorus pinglongensis. Theloderma kwangsiensis is nested within Theloderma corticale, with only 0.0–0.6% pairwise divergence, a level typical of intraspecific variation. Based on both molecular and morphological analyses, we further confirm that T. kwangsiensis is a synonym of T. corticale. Shiwandashan National Nature Reserve, Guangxi Province, China, is a new record for T. corticale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11646/zootaxa.4379.4.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11646/zootaxa.4379.4.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type 2022Publisher:Zenodo Daniel M. Gilford; Andrew Pershing; Benjamin H. Strauss; Karsten Haustein; Friederike E. L. Otto;Slides presented at the 102 Annual American Meteorological Society Meeting, as part of the session "Major Weather Events and Impacts of 2021" (paper 6.3 - It's Getting Hot in Here: Real-Time Climate Fingerprints Applied to the 2021 Extreme Heat Season) For more information, please reach out to Daniel Gilford at dgilford@climatecentral.org. Presentation Abstract: Extreme heat was observed and experienced across large portions of the United States in 2021, including during notable record-breaking events in the Pacific Northwest, the Southwest, and along the East coast. The contiguous US experienced its hottest June on record, and excess heat related deaths stretched into the thousands. While more frequent and intense periods of extreme heat are expected consequences of anthropogenic climate change, rapidly and continuously assessing the degree to which human emissions of greenhouse gases increase the likelihood of a specific event remains a challenging technical process. In this study we introduce the Realtime Climate attribution framework and illustrate its application through an analysis of observed 2021 extreme heat events. The framework implements one model-based and two observation-based approaches to produce three distinct attribution assessments, including best estimates and uncertainties. The framework is designed to be flexible across a range of variables and scales, computationally lightweight, and adaptable for impact studies. Using a suite of global climate models, observed global mean temperatures, and local observed daily temperatures, we quantify the extent to which human-driven climate change made 2021 maximum and minimum daily temperature extremes more likely across the United States. Results confirm the continued and growing influence of human-driven climate change in local weather extremes. For instance, we find that the record-breaking high temperatures in June near Phoenix, AZ, were at least 3.25 times more likely because of human activity. Through this framework, we are building the capacity to produce attribution estimates while an event is unfolding. Furthermore, the ability to estimate attribution levels continuously will enhance studies of extreme heat impacts on human health, along with other socioeconomic or influences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5903543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 15visibility views 15 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5903543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu