

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
It's Getting Hot in Here: Real-Time Climate Fingerprints Applied to the 2021 Extreme Heat Season (Slides from Oral Presentation)
Slides presented at the 102 Annual American Meteorological Society Meeting, as part of the session "Major Weather Events and Impacts of 2021" (paper 6.3 - It's Getting Hot in Here: Real-Time Climate Fingerprints Applied to the 2021 Extreme Heat Season) For more information, please reach out to Daniel Gilford at dgilford@climatecentral.org. Presentation Abstract: Extreme heat was observed and experienced across large portions of the United States in 2021, including during notable record-breaking events in the Pacific Northwest, the Southwest, and along the East coast. The contiguous US experienced its hottest June on record, and excess heat related deaths stretched into the thousands. While more frequent and intense periods of extreme heat are expected consequences of anthropogenic climate change, rapidly and continuously assessing the degree to which human emissions of greenhouse gases increase the likelihood of a specific event remains a challenging technical process. In this study we introduce the Realtime Climate attribution framework and illustrate its application through an analysis of observed 2021 extreme heat events. The framework implements one model-based and two observation-based approaches to produce three distinct attribution assessments, including best estimates and uncertainties. The framework is designed to be flexible across a range of variables and scales, computationally lightweight, and adaptable for impact studies. Using a suite of global climate models, observed global mean temperatures, and local observed daily temperatures, we quantify the extent to which human-driven climate change made 2021 maximum and minimum daily temperature extremes more likely across the United States. Results confirm the continued and growing influence of human-driven climate change in local weather extremes. For instance, we find that the record-breaking high temperatures in June near Phoenix, AZ, were at least 3.25 times more likely because of human activity. Through this framework, we are building the capacity to produce attribution estimates while an event is unfolding. Furthermore, the ability to estimate attribution levels continuously will enhance studies of extreme heat impacts on human health, along with other socioeconomic or influences.
- University of Oxford United Kingdom
- Climate Central United States
- Climate Central United States
Heat Wave, Climate Change, 2021 Weather, Extreme Weather, Climate Attribution
Heat Wave, Climate Change, 2021 Weather, Extreme Weather, Climate Attribution
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 15 download downloads 3 - 15views3downloads
Data source Views Downloads ZENODO 15 3


