- home
- Search
- Energy Research
- 12. Responsible consumption
- 1. No poverty
- RU
- UZ
- Energies
- Energy Research
- 12. Responsible consumption
- 1. No poverty
- RU
- UZ
- Energies
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Yulia F. Chirkova; Ulukbek Zh. Mirzakimov; Matvei E. Semenov; Roman S. Pavelyev; +1 AuthorsYulia F. Chirkova; Ulukbek Zh. Mirzakimov; Matvei E. Semenov; Roman S. Pavelyev; Mikhail A. Varfolomeev;doi: 10.3390/en16010359
The use of natural gas as an energy source is increasing significantly due to its low greenhouse gas emissions. However, the common methods of natural gas storage and transportation, such as liquefied or compressed natural gas, are limited in their applications because they require extreme conditions. Gas hydrate technology can be a promising alternative to conventional approaches, as artificially synthesized hydrates provide an economical, environmentally friendly, and safe medium to store energy. Nevertheless, the low rate of hydrate formation is a critical problem that hinders the industrial application of this technology. Therefore, chemical promoters are being developed to accelerate the kinetics of gas hydrate formation. In this paper, the effect of new sodium sulfosuccinate compounds, synthesized based on glycerol and pentaerythritol, on methane hydrate formation was studied. Experiments under dynamic conditions using high-pressure autoclaves demonstrated that the conversion of water-to-hydrate forms increased from 62 ± 5% in pure water to 86 ± 4% for the best promoter at concentration 500 ppm. In addition, the rate of hydrate formation increases 2–4 times for different concentrations. Moreover, none of the synthesized reagents formed foam, compared to sodium dodecyl sulfate, in which the foam rate was 3.7 ± 0.2. The obtained reagents showed good promotional properties and did not form foam, which makes them promising promoters for gas hydrate technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Sergey Zhironkin; Michal Cehlár;doi: 10.3390/en14165029
The modern paradigm of sustainable development is based on concepts and theories in which the needs of individuals and society, the limits of economic growth and the balance of industrial and natural systems are close to consistency [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 PortugalPublisher:MDPI AG Funded by:FCT | Laboratory for Process En..., FCT | Associated Laboratory for...FCT| Laboratory for Process Engineering, Environment, Biotechnology and Energy ,FCT| Associated Laboratory for Green Chemistry - Clean Technologies and ProcessesAuthors: Florinda Martins; Carlos Felgueiras; Miroslava Smitkova; Nídia Caetano;doi: 10.3390/en12060964
The use of fossil fuels as the main source of energy for most countries has caused several negative environmental impacts, such as global warming and air pollution. Air pollution causes many health problems, causing social and economic negative effects. Worldwide efforts are being made to avoid global warming consequences through the establishment of international agreements that then lead to local policies adapted to the development of each signing nation. In addition, there is a depletion of nonrenewable resources which may be scarce or nonexistent in future generations. The preservation of resources, which is a common goal of the Circular Economy strategy and of sustainable development, is not being accomplished nowadays. In this work, the calculation of indicators and mathematical and statistical analysis were applied to clarify and evidence the trends, provide information for the decision-making process, and increase public awareness. The fact that European countries do not possess abundant reserves of fossil fuels will not change, but the results of this analysis can evolve in the future. In this work, fossil fuel energy consumption, fossil fuel depletion, and their relationship with other variables, such as energy dependence and share of renewable energy in gross final energy consumption, were analyzed for 29 European countries. Furthermore, it was possible to conclude that many European countries still depend heavily on fossil fuels. Significant differences were not found in what concerns gross inland consumption per capita when the Kruskal–Wallis test was applied. It was possible to estimate that by 2050 (considering Jazz scenario) it will only remain approximately 14% of oil proven reserves, 72% of coal proven reserves and 18% of gas proven reserves. Given the small reserves of European countries on fossil fuels, if they need to use them, they will fast disappear.
Energies arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2019Data sources: Repositório Aberto da Universidade do Portoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12060964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 573 citations 573 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 69visibility views 69 download downloads 66 Powered bymore_vert Energies arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2019Data sources: Repositório Aberto da Universidade do Portoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12060964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Iliya Iliev; Andrey Chichirov; Antonina Filimonova; Natalia Chichirova; Alexander Pechenkin; Ivan Beloev;doi: 10.3390/en16176166
In the context of limited water resources and the deterioration of natural water bodies’ state, and with the increase in the regulatory requirements for the quality of effluents, assessing the impact of the industrial and energy complex on water bodies is a task of increasingly greater significance to the whole energy sector. “zero discharge” is considered the most effective strategy for creating environmentally friendly thermal power plants. Hybrid reverse osmosis electrodialysis systems make it possible to obtain solutions with a higher concentration of components compared to single electrodialysis treatment, i.e., more efficient separation of brine and pure water. This article proposes experimental and pilot-industrial studies of a hybrid membrane system operation using industrial wastewater for the disposal of liquid waste from an ion-exchange chemical-desalting water treatment plant of a thermal power plant, followed by a calculation of economic efficiency and an analysis of the environmental feasibility of its use. The developed technological scheme offers separate processing of acidic and alkaline waste regeneration solutions using calcium carbonate reagent and desalination on baromembrane and electromembrane units to obtain clean water and dry residue. The hybrid system includes a booster filter press and an evaporator. The hybrid system makes it possible to provide a thermal power plant with a “zero discharge” with a minimum consumption of reagents and electricity, as well as return all wastewater back to the power plant cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16176166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16176166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:MDPI AG Authors: Dimitrios Koutsonikolas; George Karagiannakis; Konstantinos Plakas; Vasileios Chatzis; +6 AuthorsDimitrios Koutsonikolas; George Karagiannakis; Konstantinos Plakas; Vasileios Chatzis; George Skevis; Paola Giudicianni; Davide Amato; Pino Sabia; Nikolaos Boukis; Katharina Stoll;Phytoremediation is an emerging concept for contaminated soil restoration via the use of resilient plants that can absorb soil contaminants. The harvested contaminated biomass can be thermochemically converted to energy carriers/chemicals, linking soil decontamination with biomass-to-energy and aligning with circular economy principles. Two thermochemical conversion steps of contaminated biomass, both used for contaminated biomass treatment/exploitation, are considered: Supercritical Water Gasification and Fast Pyrolysis. For the former, the vast majority of contaminants are transferred into liquid and gaseous effluents, and thus the application of purification steps is necessary prior to further processing. In Fast Pyrolysis, contaminants are mainly retained in the solid phase, but a part appears in the liquid phase due to fine solids entrainment. Contaminants include heavy metals, particulate matter, and hydrogen sulfide. The purified streams allow the in-process re-use of water for the Super Critical Water Gasification, the sulfur-free catalytic conversion of the fuel-rich gaseous stream of the same process into liquid fuels and recovery of an exploitable bio-oil rich stream from the Fast Pyrolysis. Considering the fundamental importance of purification/decontamination to exploit the aforementioned streams in an integrated context, a review of available such technologies is conducted, and options are shortlisted. Technologies of choice include polymeric-based membrane gas absorption for desulfurization, electrooxidation/electrocoagulation for the liquid product of Supercritical Water Gasification and microfiltration via ceramic membranes for fine solids removal from the Fast Pyrolysis bio-oil. Challenges, risks, and suitable strategies to implement these options in the context of biomass-to-energy conversion are discussed and recommendations are made.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:MDPI AG Mami, M. A.; Mätzing, H.; Gehrmann, H.-J.; Stapf, D.; Bolduan, R.; Lajili, M.;Combustion tests and gaseous emissions of olive mill solid wastes pellets (olive pomace (OP), and olive pits (OPi)) were carried out in an updraft counter-current fixed bed reactor. Along the combustion chamber axis and under a constant primary air flow rate, the bed temperatures and the mass loss rate were measured as functions of time. Moreover, the gas mixture components such as O2, organic carbon (Corg), CO, CO2, H2O, H2, SO2, and NOx (NO + NO2) were analyzed and measured. The reaction front positions were determined as well as the ignition rate and the reaction front velocity. We have found that the exhaust gases are emitted in acceptable concentrations compared to the combustion of standard wood pellets reported in the literature (EN 303-5). It is shown that the bed temperature increased from the ambient value to a maximum value ranging from 750 to 1000 °C as previously reported in the literature. The results demonstrate the promise of using olive mill solid waste pellets as an alternative biofuel for heat and/or electricity production.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11081965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11081965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Anna Tsybina; Christoph Wünsch; Irina Glushankova; Anna Arduanova;doi: 10.3390/en16155698
A widespread method of sewage sludge disposal is still simple storage in sludge lagoons. Subsequent thermal utilization is hardly possible because sludge properties change over time and energy content is reduced. Use as a soil conditioner in agriculture or landscaping is usually not possible due to high heavy metal contents. This paper describes a method in which a 10-year-old accumulated sewage sludge can be utilized as technical soil by mixing it with pyrolized fresh sewage sludge. For this purpose, physicochemical and toxicological characteristics of sewage sludge of different storage periods were identified, processes of thermal destruction of sewage sludge analyzed, toxicological characteristics of solid products of thermal sludge treatment determined, and the possibility of using the sewage sludge–pyrolysate mixture as technical soil was assessed. Results show that the gross calorific value of fresh and one-year stored sewage sludge is with approx. 15,000 kJ/kg dry basis sufficient to produce pyrolysate autothermally. It is also shown that when the pyrolysis residue is mixed with fresh or 1-year old sewage sludge, heavy metals can be immobilized and thus the leaching of heavy metals significantly reduced by up to 75%. The method described can thus be a possible option for recycling accumulated sewage sludge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Oksana Marinina; Marina Nevskaya; Izabela Jonek-Kowalska; Radosław Wolniak; Mikhail Marinin;doi: 10.3390/en14123597
The scale of waste formation from coal-fired generation is significant and tends to grow steadily in the context of the global use of coal for power production. This paper covers the problems and current opportunities for recycling coal fly ash waste from coal generation from the position of a stakeholder approach, namely, identification of the main participants and determination of the effects for economic agents in coal fly ash recycling projects. Based on the method of economic modeling and the empirical assessment of project efficiency, this paper presents alternative patterns of stakeholder interaction in the process of implementing coal fly ash recycling projects, estimates the effects of using coal fly ash, and identifies conflicting interests between stakeholders. It is shown that the reason behind the low interest of the Russian private sector in the processing of coal fly ash is the lack of stimulating market mechanisms for manufacturers and consumers of ash products, the high risks of implementing recycling projects based on clean coal technologies, and low environmental payments for commercial companies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Olha Prokopenko; Tetiana Kurbatova; Marina Khalilova; Anastasiia Zerkal; Gunnar Prause; Jacek Binda; Temur Berdiyorov; Yuriy Klapkiv; Sabina Sanetra-Półgrabi; Igor Komarnitskyi;doi: 10.3390/en16031021
Renewable energy technologies play a crucial role in solving global energy and environmental issues, and the pace of the energy transition directly depends on improving their efficiency. Presently, the development and implementation of renewable energy systems are ensured mainly through state funding, the possibilities of which are limited. The potential of attracting private investments depends directly on their impact on companies’ profitability indicators, and the uncertainty regarding the return on investments is one of the main barriers affecting investors’ decision-making. Based on a vector autoregressive model for analysing the stationary time series, the paper explores the impact of long-term investments and research and development costs in renewable energy technologies on the financial performance of ten of the largest companies operating in this field. The study’s results showed that investments and spending on research and development positively affect such companies’ profitability indicators as earnings before interest, taxes, depreciation and amortisation, earnings before interest and tax, net income, and return on investment. The obtained results can be used to substantiate the economic effectiveness of investments in developing and improving renewable energy technologies when forming the companies’ financial policies to support them.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Anna Komarova;doi: 10.3390/en15124304
Government regulation with respect to the reduction of greenhouse gas emissions has been actively developing in the world in the past three decades, mainly in form of carbon taxation and emission trading systems with a carbon price as their basic representation. With more than 50 countries already applying such regulation and many others looking in that direction due to their obligations under the Paris Agreement, the question of suitable carbon price is still open. The aim of this paper is to form groups of countries according to the chosen economic, environmental and regulation factors to facilitate decision-making regarding the formation of energy transition regulation policies. Clustering analysis was carried out to identify countries with similar features in the research area. Five clusters with average carbon price ranging from USD 5.3 to 49.2 per t were obtained. The hypothesis of the study regarding direct connection between the level of economic development and state regulation was partially confirmed. It was revealed that most of the countries with active carbon regulation depend on the external supply of fossil energy sources. The results of the clustering could serve as a benchmark for the countries with similar indicators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Yulia F. Chirkova; Ulukbek Zh. Mirzakimov; Matvei E. Semenov; Roman S. Pavelyev; +1 AuthorsYulia F. Chirkova; Ulukbek Zh. Mirzakimov; Matvei E. Semenov; Roman S. Pavelyev; Mikhail A. Varfolomeev;doi: 10.3390/en16010359
The use of natural gas as an energy source is increasing significantly due to its low greenhouse gas emissions. However, the common methods of natural gas storage and transportation, such as liquefied or compressed natural gas, are limited in their applications because they require extreme conditions. Gas hydrate technology can be a promising alternative to conventional approaches, as artificially synthesized hydrates provide an economical, environmentally friendly, and safe medium to store energy. Nevertheless, the low rate of hydrate formation is a critical problem that hinders the industrial application of this technology. Therefore, chemical promoters are being developed to accelerate the kinetics of gas hydrate formation. In this paper, the effect of new sodium sulfosuccinate compounds, synthesized based on glycerol and pentaerythritol, on methane hydrate formation was studied. Experiments under dynamic conditions using high-pressure autoclaves demonstrated that the conversion of water-to-hydrate forms increased from 62 ± 5% in pure water to 86 ± 4% for the best promoter at concentration 500 ppm. In addition, the rate of hydrate formation increases 2–4 times for different concentrations. Moreover, none of the synthesized reagents formed foam, compared to sodium dodecyl sulfate, in which the foam rate was 3.7 ± 0.2. The obtained reagents showed good promotional properties and did not form foam, which makes them promising promoters for gas hydrate technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Sergey Zhironkin; Michal Cehlár;doi: 10.3390/en14165029
The modern paradigm of sustainable development is based on concepts and theories in which the needs of individuals and society, the limits of economic growth and the balance of industrial and natural systems are close to consistency [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14165029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 PortugalPublisher:MDPI AG Funded by:FCT | Laboratory for Process En..., FCT | Associated Laboratory for...FCT| Laboratory for Process Engineering, Environment, Biotechnology and Energy ,FCT| Associated Laboratory for Green Chemistry - Clean Technologies and ProcessesAuthors: Florinda Martins; Carlos Felgueiras; Miroslava Smitkova; Nídia Caetano;doi: 10.3390/en12060964
The use of fossil fuels as the main source of energy for most countries has caused several negative environmental impacts, such as global warming and air pollution. Air pollution causes many health problems, causing social and economic negative effects. Worldwide efforts are being made to avoid global warming consequences through the establishment of international agreements that then lead to local policies adapted to the development of each signing nation. In addition, there is a depletion of nonrenewable resources which may be scarce or nonexistent in future generations. The preservation of resources, which is a common goal of the Circular Economy strategy and of sustainable development, is not being accomplished nowadays. In this work, the calculation of indicators and mathematical and statistical analysis were applied to clarify and evidence the trends, provide information for the decision-making process, and increase public awareness. The fact that European countries do not possess abundant reserves of fossil fuels will not change, but the results of this analysis can evolve in the future. In this work, fossil fuel energy consumption, fossil fuel depletion, and their relationship with other variables, such as energy dependence and share of renewable energy in gross final energy consumption, were analyzed for 29 European countries. Furthermore, it was possible to conclude that many European countries still depend heavily on fossil fuels. Significant differences were not found in what concerns gross inland consumption per capita when the Kruskal–Wallis test was applied. It was possible to estimate that by 2050 (considering Jazz scenario) it will only remain approximately 14% of oil proven reserves, 72% of coal proven reserves and 18% of gas proven reserves. Given the small reserves of European countries on fossil fuels, if they need to use them, they will fast disappear.
Energies arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2019Data sources: Repositório Aberto da Universidade do Portoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12060964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 573 citations 573 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 69visibility views 69 download downloads 66 Powered bymore_vert Energies arrow_drop_down Repositório Aberto da Universidade do PortoArticle . 2019Data sources: Repositório Aberto da Universidade do Portoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12060964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Iliya Iliev; Andrey Chichirov; Antonina Filimonova; Natalia Chichirova; Alexander Pechenkin; Ivan Beloev;doi: 10.3390/en16176166
In the context of limited water resources and the deterioration of natural water bodies’ state, and with the increase in the regulatory requirements for the quality of effluents, assessing the impact of the industrial and energy complex on water bodies is a task of increasingly greater significance to the whole energy sector. “zero discharge” is considered the most effective strategy for creating environmentally friendly thermal power plants. Hybrid reverse osmosis electrodialysis systems make it possible to obtain solutions with a higher concentration of components compared to single electrodialysis treatment, i.e., more efficient separation of brine and pure water. This article proposes experimental and pilot-industrial studies of a hybrid membrane system operation using industrial wastewater for the disposal of liquid waste from an ion-exchange chemical-desalting water treatment plant of a thermal power plant, followed by a calculation of economic efficiency and an analysis of the environmental feasibility of its use. The developed technological scheme offers separate processing of acidic and alkaline waste regeneration solutions using calcium carbonate reagent and desalination on baromembrane and electromembrane units to obtain clean water and dry residue. The hybrid system includes a booster filter press and an evaporator. The hybrid system makes it possible to provide a thermal power plant with a “zero discharge” with a minimum consumption of reagents and electricity, as well as return all wastewater back to the power plant cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16176166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16176166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:MDPI AG Authors: Dimitrios Koutsonikolas; George Karagiannakis; Konstantinos Plakas; Vasileios Chatzis; +6 AuthorsDimitrios Koutsonikolas; George Karagiannakis; Konstantinos Plakas; Vasileios Chatzis; George Skevis; Paola Giudicianni; Davide Amato; Pino Sabia; Nikolaos Boukis; Katharina Stoll;Phytoremediation is an emerging concept for contaminated soil restoration via the use of resilient plants that can absorb soil contaminants. The harvested contaminated biomass can be thermochemically converted to energy carriers/chemicals, linking soil decontamination with biomass-to-energy and aligning with circular economy principles. Two thermochemical conversion steps of contaminated biomass, both used for contaminated biomass treatment/exploitation, are considered: Supercritical Water Gasification and Fast Pyrolysis. For the former, the vast majority of contaminants are transferred into liquid and gaseous effluents, and thus the application of purification steps is necessary prior to further processing. In Fast Pyrolysis, contaminants are mainly retained in the solid phase, but a part appears in the liquid phase due to fine solids entrainment. Contaminants include heavy metals, particulate matter, and hydrogen sulfide. The purified streams allow the in-process re-use of water for the Super Critical Water Gasification, the sulfur-free catalytic conversion of the fuel-rich gaseous stream of the same process into liquid fuels and recovery of an exploitable bio-oil rich stream from the Fast Pyrolysis. Considering the fundamental importance of purification/decontamination to exploit the aforementioned streams in an integrated context, a review of available such technologies is conducted, and options are shortlisted. Technologies of choice include polymeric-based membrane gas absorption for desulfurization, electrooxidation/electrocoagulation for the liquid product of Supercritical Water Gasification and microfiltration via ceramic membranes for fine solids removal from the Fast Pyrolysis bio-oil. Challenges, risks, and suitable strategies to implement these options in the context of biomass-to-energy conversion are discussed and recommendations are made.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:MDPI AG Mami, M. A.; Mätzing, H.; Gehrmann, H.-J.; Stapf, D.; Bolduan, R.; Lajili, M.;Combustion tests and gaseous emissions of olive mill solid wastes pellets (olive pomace (OP), and olive pits (OPi)) were carried out in an updraft counter-current fixed bed reactor. Along the combustion chamber axis and under a constant primary air flow rate, the bed temperatures and the mass loss rate were measured as functions of time. Moreover, the gas mixture components such as O2, organic carbon (Corg), CO, CO2, H2O, H2, SO2, and NOx (NO + NO2) were analyzed and measured. The reaction front positions were determined as well as the ignition rate and the reaction front velocity. We have found that the exhaust gases are emitted in acceptable concentrations compared to the combustion of standard wood pellets reported in the literature (EN 303-5). It is shown that the bed temperature increased from the ambient value to a maximum value ranging from 750 to 1000 °C as previously reported in the literature. The results demonstrate the promise of using olive mill solid waste pellets as an alternative biofuel for heat and/or electricity production.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11081965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11081965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Anna Tsybina; Christoph Wünsch; Irina Glushankova; Anna Arduanova;doi: 10.3390/en16155698
A widespread method of sewage sludge disposal is still simple storage in sludge lagoons. Subsequent thermal utilization is hardly possible because sludge properties change over time and energy content is reduced. Use as a soil conditioner in agriculture or landscaping is usually not possible due to high heavy metal contents. This paper describes a method in which a 10-year-old accumulated sewage sludge can be utilized as technical soil by mixing it with pyrolized fresh sewage sludge. For this purpose, physicochemical and toxicological characteristics of sewage sludge of different storage periods were identified, processes of thermal destruction of sewage sludge analyzed, toxicological characteristics of solid products of thermal sludge treatment determined, and the possibility of using the sewage sludge–pyrolysate mixture as technical soil was assessed. Results show that the gross calorific value of fresh and one-year stored sewage sludge is with approx. 15,000 kJ/kg dry basis sufficient to produce pyrolysate autothermally. It is also shown that when the pyrolysis residue is mixed with fresh or 1-year old sewage sludge, heavy metals can be immobilized and thus the leaching of heavy metals significantly reduced by up to 75%. The method described can thus be a possible option for recycling accumulated sewage sludge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Oksana Marinina; Marina Nevskaya; Izabela Jonek-Kowalska; Radosław Wolniak; Mikhail Marinin;doi: 10.3390/en14123597
The scale of waste formation from coal-fired generation is significant and tends to grow steadily in the context of the global use of coal for power production. This paper covers the problems and current opportunities for recycling coal fly ash waste from coal generation from the position of a stakeholder approach, namely, identification of the main participants and determination of the effects for economic agents in coal fly ash recycling projects. Based on the method of economic modeling and the empirical assessment of project efficiency, this paper presents alternative patterns of stakeholder interaction in the process of implementing coal fly ash recycling projects, estimates the effects of using coal fly ash, and identifies conflicting interests between stakeholders. It is shown that the reason behind the low interest of the Russian private sector in the processing of coal fly ash is the lack of stimulating market mechanisms for manufacturers and consumers of ash products, the high risks of implementing recycling projects based on clean coal technologies, and low environmental payments for commercial companies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Olha Prokopenko; Tetiana Kurbatova; Marina Khalilova; Anastasiia Zerkal; Gunnar Prause; Jacek Binda; Temur Berdiyorov; Yuriy Klapkiv; Sabina Sanetra-Półgrabi; Igor Komarnitskyi;doi: 10.3390/en16031021
Renewable energy technologies play a crucial role in solving global energy and environmental issues, and the pace of the energy transition directly depends on improving their efficiency. Presently, the development and implementation of renewable energy systems are ensured mainly through state funding, the possibilities of which are limited. The potential of attracting private investments depends directly on their impact on companies’ profitability indicators, and the uncertainty regarding the return on investments is one of the main barriers affecting investors’ decision-making. Based on a vector autoregressive model for analysing the stationary time series, the paper explores the impact of long-term investments and research and development costs in renewable energy technologies on the financial performance of ten of the largest companies operating in this field. The study’s results showed that investments and spending on research and development positively affect such companies’ profitability indicators as earnings before interest, taxes, depreciation and amortisation, earnings before interest and tax, net income, and return on investment. The obtained results can be used to substantiate the economic effectiveness of investments in developing and improving renewable energy technologies when forming the companies’ financial policies to support them.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Anna Komarova;doi: 10.3390/en15124304
Government regulation with respect to the reduction of greenhouse gas emissions has been actively developing in the world in the past three decades, mainly in form of carbon taxation and emission trading systems with a carbon price as their basic representation. With more than 50 countries already applying such regulation and many others looking in that direction due to their obligations under the Paris Agreement, the question of suitable carbon price is still open. The aim of this paper is to form groups of countries according to the chosen economic, environmental and regulation factors to facilitate decision-making regarding the formation of energy transition regulation policies. Clustering analysis was carried out to identify countries with similar features in the research area. Five clusters with average carbon price ranging from USD 5.3 to 49.2 per t were obtained. The hypothesis of the study regarding direct connection between the level of economic development and state regulation was partially confirmed. It was revealed that most of the countries with active carbon regulation depend on the external supply of fossil energy sources. The results of the clustering could serve as a benchmark for the countries with similar indicators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu