Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of Hybrid Membrane Systems for Highly Mineralized Waste Utilization in the Power Industry

Authors: Iliya Iliev; Andrey Chichirov; Antonina Filimonova; Natalia Chichirova; Alexander Pechenkin; Ivan Beloev;

Development of Hybrid Membrane Systems for Highly Mineralized Waste Utilization in the Power Industry

Abstract

In the context of limited water resources and the deterioration of natural water bodies’ state, and with the increase in the regulatory requirements for the quality of effluents, assessing the impact of the industrial and energy complex on water bodies is a task of increasingly greater significance to the whole energy sector. “zero discharge” is considered the most effective strategy for creating environmentally friendly thermal power plants. Hybrid reverse osmosis electrodialysis systems make it possible to obtain solutions with a higher concentration of components compared to single electrodialysis treatment, i.e., more efficient separation of brine and pure water. This article proposes experimental and pilot-industrial studies of a hybrid membrane system operation using industrial wastewater for the disposal of liquid waste from an ion-exchange chemical-desalting water treatment plant of a thermal power plant, followed by a calculation of economic efficiency and an analysis of the environmental feasibility of its use. The developed technological scheme offers separate processing of acidic and alkaline waste regeneration solutions using calcium carbonate reagent and desalination on baromembrane and electromembrane units to obtain clean water and dry residue. The hybrid system includes a booster filter press and an evaporator. The hybrid system makes it possible to provide a thermal power plant with a “zero discharge” with a minimum consumption of reagents and electricity, as well as return all wastewater back to the power plant cycle.

Keywords

zero liquid discharge, Technology, T, reverse osmosis, hybrid process, energy consumption, brine management, electrodialysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold