- home
- Search
- Energy Research
- 7. Clean energy
- 1. No poverty
- TR
- Energy Conversion and Management
- Energy Research
- 7. Clean energy
- 1. No poverty
- TR
- Energy Conversion and Management
description Publicationkeyboard_double_arrow_right Article , Journal 2003 TurkeyPublisher:Elsevier BV Authors: Ubeyli, M; Ipek, O; Yapici, H;Abstract The neutronic performance parameters, fissile breeding and temperature distribution in the fuel rod are investigated for different coolants (‘He, CO 2 ’, ‘Li 2 BeF 4 ’, ‘Li’, and ‘Li 17 Pb 83 ’) in the fissile fuel breeding zone with volume ratios of V coolant / V fuel , e , (0.5,1,2) under various first wall loads ( P w =2–10 MW m −2 ) in a fusion–fission reactor fueled with ThO 2 . Depending on the type of coolant in the fission zone, first wall loads and volume ratios, fusion power plant operation periods between 1 and 4 years are evaluated to achieve a fissile fuel enrichment quality between 1.2274% and 13.7305% in the above mentioned situation for intervals of half month and by plant factor of 75%. A fusion reactor with (D,T) reaction acts as an external high energetic neutron source. The fissile fuel zone, containing 10 fuel rod rows in the radial direction, covers the cylindrical fusion plasma chamber with 300 cm chamber dimension. At the end of four years, the cumulative fissile fuel enrichment (CFFE) values, indicating rejuvenation performance, increased to 10.184%, 12.218%, 9.650% and 11.089% from 0% in gas, flibe, natural lithium and eutectic lithium coolant blankets with e =0.5 for 10 MW m −2 , respectively, without reaching the melting point of the fuel material. However, for e =1, the CFFE values increased to 10.59% (the best CFFE value for gas coolant), 11.372%, 10.414% (the best CFFE value for natural lithium coolant) and 10.963% from 0% in the above mentioned coolants for 10 MW m −2 , respectively. In the same way, for e =2, the CFFE increased to 10.181%, 13.7305% (the best CFFE value for all coolants), 9.1369% and 11.4809% (the best CFFE value for eutectic lithium coolant) for 10 MW m −2 , respectively. At the beginning of the operation period, for e =0.5, the tritium breeding ratio (TBR) values, being about 0.9092, 0.7075, 0.7921 and 0.9512 for the above mentioned coolants, respectively, at the end of four years increased to 1.2924, 1.1475, 1.0724 and 1.441 (the highest TBR value for all blankets) for 10 MW m −2 . For e =1, these increments are 1.3067, 1.2303, 1.1653 and 1.4033 for 10 MW m −2 . However, for e =2, these values are 1.2256, 0.9993, 0.9341 and 1.4069 for 10 MW m −2 without reaching the melting point of the fuel material. For e =0.5, the blanket energy multiplication ( M ) increases to 2.7349, 2.8045, 2.5685 and 2.8183 (the highest M value for all blankets) for 10 MW m −2 from 2.1534, 2.0251, 2.0918 and 2.0793 in the blankets cooled with gas, flibe, natural lithium and eutectic lithium coolants, respectively, at the end of four years. These increments become 2.6707, 2.7301, 2.4332 and 2.7812 for 10 MW m −2 from 2.1037, 1.8985, 2.004 and 1.9874, respectively, for e =1. However, the blanket energy multiplication ( M ) increases to 2.4122, 2.4573, 2.1413 and 2.3800 for 10 MW m −2 from 2.0196, 1.7323, 1.8658 and 1.8303, respectively, for e =2. The maximum temperatures in the centerline of the fuel rods have not exceeded the melting point of the fuel material for all coolants and e under changing first wall loads between 2 and 10 MW m −2 during the operation periods. While the maximum CFFE values have been obtained in fuel rod row#10 in the gas, natural lithium and eutectic lithium coolant blankets, it has been obtained in fuel rod row#1 in the flibe coolant blanket for all e and P w . Therefore, the investigated hybrid blankets are self-sufficient for all coolant and volume fractions and P w =10 MW m −2 . The best neutron economy has been shown by flibe.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSuleyman Demirel University: DSpace RepositoryArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00070-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSuleyman Demirel University: DSpace RepositoryArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00070-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996 China (People's Republic of)Publisher:Elsevier BV Authors: Jincan, Chen; Chih, Wu;The optimal performance of a two-stage refrigeration system affected by the irreversibility of finite-rate heat transfer is analyzed by using an endoreversible combined cycle model with continuous flow. It is proven that the optimal coefficient of performance is a monotonically decreasing function of the specific cooling rate for a two-stage endoreversible combined refrigeration system. The optimal temperatures of the working fluid in the isothermal processes of a cycle are determined. The optimal distribution of the heat transfer areas are also discussed. The results obtained can provide a tool for practising engineers for designing two-stage refrigeration systems.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1996 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFuel and Energy AbstractsArticle . 1996 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00178-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1996 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFuel and Energy AbstractsArticle . 1996 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00178-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:George A. Xydis;
Aspasia Efthimiadou;George A. Xydis
George A. Xydis in OpenAIREMeltem Ucal;
Meltem Ucal
Meltem Ucal in OpenAIREEnergy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.115850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Ayhan Demirbas;Abstract Three processes have been proposed for dissociation of methane hydrates: thermal stimulation, depressurization, and inhibitor injection. The obvious production approaches involve depressurization, heating and their combinations. The depressurization method is lowering the pressure inside the well and encouraging the methane hydrate to dissociate. Its objective is to lower the pressure in the free-gas zone immediately beneath the hydrate stability zone, causing the hydrate at the base of the hydrate stability zone to decompose. The thermal stimulation method is applied to the hydrate stability zone to raise its temperature, causing the hydrate to decompose. In this method, a source of heat provided directly in the form of injected steam or hot water or another heated liquid, or indirectly via electric or sonic means. This causes methane hydrate to decompose and generates methane gas. The methane gas mixes with the hot water and returns to the surface, where the gas and hot water are separated. The chemical inhibition method seeks to displace the natural-gas hydrate equilibrium condition beyond the hydrate stability zone’s thermo-dynamic conditions through injection of a liquid inhibitor chemical adjacent to the hydrate. In this method, inhibitor such as methanol is injected from surface down to methane hydrate-bearing layers. The thermal stimulation method is quite expensive. The chemical inhibitor injection method is also expensive. The depressurization method may prove useful to apply more than one production.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 141 citations 141 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 Powered bymore_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Ayhan Albostan; Metin Kıyan; Ekin Bingöl; Mehmet Melikoglu;Solar energy is a major renewable energy source and hybrid solar systems are gaining increased academic and industrial attention due to the unique advantages they offer. In this paper, a mathematical model has been developed to investigate the thermal behavior of a greenhouse heated by a hybrid solar collector system. This hybrid system contains an evacuated tube solar heat collector unit, an auxiliary fossil fuel heating unit, a hot water storage unit, control and piping units. A Matlab/Simulink based model and software has been developed to predict the storage water temperature, greenhouse indoor temperature and the amount of auxiliary fuel, as a function of various design parameters of the greenhouse such as location, dimensions, and meteorological data of the region. As a case study, a greenhouse located in Sanliurfa/Turkey has been simulated based on recent meteorological data and aforementioned hybrid system. The results of simulations performed on an annual basis indicate that revising the existing fossil fuel system with the proposed hybrid system, is economically feasible for most cases, however it requires a slightly longer payback period than expected. On the other hand, by reducing the greenhouse gas emissions significantly, it has a considerable positive environmental impact. The developed dynamic simulation method can be further used for designing heating systems for various solar greenhouses and optimizing the solar collector and thermal storage sizes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2012.09.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2012.09.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Fatih Bayrak;
Fatih Bayrak
Fatih Bayrak in OpenAIREHakan F. Oztop;
Hakan F. Oztop
Hakan F. Oztop in OpenAIREFatih Selimefendigil;
Fatih Selimefendigil
Fatih Selimefendigil in OpenAIREAbstract This article contains the experimental investigations of different cooling methods used for photovoltaic (PV) panels. Phase change material (PCM), thermoelectric (TE) and aluminum fins were chosen as the cooling methods. The CaCl2·6H2O is chosen as one of the PCM which is widely used in the cooling of PVs and the other is the PCM with melting temperature above the surface temperature of the PV panel. By using TE material in different numbers (6, 8 and 12) and aluminum fins in different layouts, surface temperatures and output powers of PV panels were compared. It is observed that the PCM which is not chosen appropriately has insulation feature in the PV panel and enhances the temperature of the panel and decreases the output power. When the most successful cooling methods were tested under the same environmental conditions, PV with fin system produced the highest power generation of 47.88 W while PV with PCM and TEM produced the lowest power generation of 44.26 W.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 166 citations 166 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Authors: Erdemir Gundogmus;Abstract The aim of this study was to compare the energy use in apricot production on organic and conventional farms in Turkey in terms of energy ratio, benefit/cost ratio and amount of renewable energy use. The total energy requirement under organic apricot farming was 13,779.35 MJ ha −1 , whereas 22,811.68 MJ ha −1 was consumed under conventional apricot farming, i.e. 38% higher energy input was used on conventional apricot farming than the use on organic farms. The energy ratios of 2.22 and 1.45 were achieved under the organic and conventional farming systems, respectively.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2006.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 121 citations 121 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2006.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Emrullah Kocaman; Cuma Karakuş;Hüseyin Yağlı;
Yıldız Koç; +2 AuthorsHüseyin Yağlı
Hüseyin Yağlı in OpenAIREEmrullah Kocaman; Cuma Karakuş;Hüseyin Yağlı;
Yıldız Koç; Recep Yumrutaş; Ali Koç;Hüseyin Yağlı
Hüseyin Yağlı in OpenAIREEnergy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 TurkeyPublisher:Elsevier BV Authors: ACIR, ADEM; ŞAHİN, SÜMER; Sahin, Haci Mehmet;Abstract The early version of the conceptual modified design of the Laser Inertial Confinement Fusion Fission Energy (LIFE) engine consists of a spherical fusion chamber of 5 m diameter, surrounded by a multi-layered blanket. The first wall is made of 2 cm thick ODS and followed by a Li17Pb83 zone (2 cm), acting as neutron multiplier, tritium breeding and front coolant zone. It is separated by an ODS layer (2 cm) from the FLIBE molten salt zone (50 cm), containing fissionable fuel. A 3rd ODS layer (2 cm) separates the molten salt zone on the right side from the graphite reflector (30 cm). Calculations have been conducted for a constant fusion driver power of 500 MWth in S8-P3 approximation using 238-neutron groups. Reactor grade (RG) plutonium carbide fuel in form of TRISO particles with volume fractions of 2%, 3%, 4%, 5% and 6% have been dispersed homogenously in the FLIBE coolant. Tritium breeding ratio (TBR) values per incident fusion neutron for the above cited cases start with TBR = 1.35, 1.52, 1.73, 2.02 and 2.47, respectively. With the depletion of fissionable RG-Pu isotopes, TBR decreases gradually. At startup, higher fissionable fuel content in the molten salt leads to higher blanket energy multiplication, namely M0 = 3.8, 5.5, 7.7, 10.8 and 15.4 with 2%, 3%, 4%, 5% and 6% TRISO volume fraction, respectively. Calculations have led to very high burn up values (>400,000 MD.D/MT). TRISO particles can withstand such high burn ups. Such high burn ups would lead to drastic reduction of final nuclear waste per unit energy production.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.12.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 TurkeyPublisher:Elsevier BV Authors: Usta, Nazım; Aydo?an, Bilal; U?uzdoğan, Erdal;Çon, Ahmet Hilmi;
+1 AuthorsÇon, Ahmet Hilmi
Çon, Ahmet Hilmi in OpenAIREUsta, Nazım; Aydo?an, Bilal; U?uzdoğan, Erdal;Çon, Ahmet Hilmi;
Çon, Ahmet Hilmi
Çon, Ahmet Hilmi in OpenAIREÖzkal, Sami Gökhan;
Özkal, Sami Gökhan
Özkal, Sami Gökhan in OpenAIREhandle: 11499/6019
Abstract Tobacco seed oil has been evaluated as a feedstock for biodiesel production. In this study, all properties of the biodiesel that was produced from tobacco seed oil were examined and some solutions were derived to bring all properties of the biodiesel within European Biodiesel Standard EN14214 to verify biodiesel quality. Among the properties, only oxidation stability and iodine number of the biodiesel, which mainly depend on fatty acid composition of the oil, were not within the limits of the standard. Six different antioxidants that are tert-butylhydroquinone, butylated hydroxytoluene, propyl gallate, pyrogallol, α-tocopherol and butylated hydroxyanisole were used to improve the oxidation stability. Among them, pyrogallol was found to be the most effective antioxidant. The iodine number was improved with blending the biodiesel produced from tobacco seed oil with a biodiesel that contains more saturated fatty acids. However, the blending caused increasing the cold filter plugging point. Therefore, four different cold flow improvers, which are ethylene–vinyl acetate copolymer, octadecene-1-maleic anhydride copolymer and two commercial cold flow improvers, were used to decrease cold filter plugging point of the biodiesel and the blends. Among the improvers, the best improver is said to be octadecene-1-maleic anhydride copolymer. In addition, effects of temperature on the density and the viscosity of the biodiesel were investigated.
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2011Full-Text: https://hdl.handle.net/11499/6019Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 117 citations 117 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2011Full-Text: https://hdl.handle.net/11499/6019Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu