
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Pinch point determination and Multi-Objective optimization for working parameters of an ORC by using numerical analyses optimization method

In parallel with Kyoto, Paris and the green production agreements, the nowadays crucial subject is minimising energy consumption, increasing renewable energy usage and recovering waste heat. When it comes to waste heat, the organic Rankine cycle (ORC) technology comes fore. However, although the presence of many studies on the ORC in the literature, there is still an intense gap related to information on ORC working conditions, pinch point detection and numerical design and analysis methods. In this respect, the present paper suggests a multi-objective optimization model for an ORC by considering many parameters that affect the performance of the ORC like fluid type, thermodynamic properties of the organic fluids, pinch point temperature etc. For the analyses, experimentally recorded exhaust gas parameters for a reheat furnace located in the iron and steel plant were used. By considering all these, all performance-affecting parameters were included through the development of the multi-objective model. For the analyses, two wet types (ethanol, methanol), two isentropic (acetone, butene), and two dry types (cyclohexane, benzene) working fluids were selected to develop the multi-objective design and optimising method. After comprehensive analyses, it was seen that the developed mathematical model was valid for the designing and analysing of the ORC. In addition, it was observed that the system performance increases as the pinch point temperature difference decreases. In addition, it was seen that isentropic fluids have low efficiency in medium-temperature heat sources. Considering the system performance, initial investment cost and payback periods, it was seen that a waste heat recovery plant using Benzene, Methanol and Ethanol as working fluids is more feasible.
- Gaziantep University Turkey
- Gaziantep University Turkey
- İskenderun Technical University Turkey
- İskenderun Technical University Turkey
Energy utilization, Thermoeconomic analysis, Performance, Organic rankine cycle, Point temperature, Waste heat recovery, Rankine cycle, Multi-objectives optimization, Waste heat-recovery, Temperature, Rankine Cycle, Thermodynamics, Waste heat, Gas emissions reduction, Energy & Fuels, Waste heat utilization, Steel-industry, Steelmaking, Mechanics, Solid-waste, Acetone, Organics, Electric-arc furnace, Investments, Multiobjective optimization, Energy-efficiency, Ethanol, Working fluid, Methanol, Pinch points, Waste-heat recovery, Benzene, Pinch point temperature, Organic rankine-cycle, Isentropic, Multi-objective optimization, Exergy analysis, Waste Heat Utilization, Working Fluids, Numerical methods, Health co-benefits
Energy utilization, Thermoeconomic analysis, Performance, Organic rankine cycle, Point temperature, Waste heat recovery, Rankine cycle, Multi-objectives optimization, Waste heat-recovery, Temperature, Rankine Cycle, Thermodynamics, Waste heat, Gas emissions reduction, Energy & Fuels, Waste heat utilization, Steel-industry, Steelmaking, Mechanics, Solid-waste, Acetone, Organics, Electric-arc furnace, Investments, Multiobjective optimization, Energy-efficiency, Ethanol, Working fluid, Methanol, Pinch points, Waste-heat recovery, Benzene, Pinch point temperature, Organic rankine-cycle, Isentropic, Multi-objective optimization, Exergy analysis, Waste Heat Utilization, Working Fluids, Numerical methods, Health co-benefits
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
