- home
- Search
- Energy Research
- engineering and technology
- European Commission
- Energy Research
- engineering and technology
- European Commission
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:EC | ADAPTEC| ADAPTAuthors: João Soares; Fernando Lezama; Tiago Pinto; Hugo Morais;doi: 10.1155/2018/6562876
Editorial Complex Optimization and Simulation in Power Systems
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2018/6562876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 57 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2018/6562876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | IS-ENES2, ANR | L-IPSLEC| IS-ENES2 ,ANR| L-IPSLAmadou Thierno Gaye; Xavier Capet; Juliette Mignot; Adama Sylla; Adama Sylla;Upwelling processes bring nutrient-rich waters from the deep ocean to the surface. Areas of upwelling are often associated with high productivity, offering great economic value in terms of fisheries. The sensitivity of spring/summer-time coastal upwelling systems to climate change has recently received a lot of attention. Several studies have suggested that their intensity may increase in the future while other authors have shown decreasing intensity in their equatorward portions. Yet, recent observations do not show robust evidence of this intensification. The Senegalo-Mauritanian upwelling system (SMUS) located at the southern edge of the north Atlantic system (12°N–20°N) and most active in winter/spring has been largely excluded from these studies. Here, the seasonal cycle of the SMUS and its response to climate change is investigated in the database of the Coupled Models Inter comparison Project Phase 5 (CMIP5). Upwelling magnitude and surface signature are characterized by several sea surface temperature and wind stress indices. We highlight the ability of the climate models to reproduce the system, as well as their biases. The simulations suggest that the intensity of the SMUS winter/spring upwelling will moderately decrease in the future, primarily because of a reduction of the wind forcing linked to a northward shift of Azores anticyclone and a more regional modulation of the low pressures found over Northwest Africa. The implications of such an upwelling reduction on the ecosystems and local communities exploiting them remains very uncertain.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | ASCLEPIOSEC| ASCLEPIOSEvgenia Psarra; Dimitris Apostolou; Yiannis Verginadis; Ioannis Patiniotakis; Gregoris Mentzas;Effective access control techniques are in demand, as electronically assisted healthcare services require the patient’s sensitive health records. In emergency situations, where the patient’s well-being is jeopardized, different healthcare actors associated with emergency cases should be granted permission to access Electronic Health Records (EHRs) of patients. The research objective of our study is to develop machine learning techniques based on patients’ time sequential health metrics and integrate them with an Attribute Based Access Control (ABAC) mechanism. We propose an ABAC mechanism that can yield access to sensitive EHRs systems by applying prognostic context handlers where contextual information, is used to identify emergency conditions and permit access to medical records. Specifically, we use patients’ recent health history to predict the health metrics for the next two hours by leveraging Long Short Term Memory (LSTM) Neural Networks (NNs). These predicted health metrics values are evaluated by our personalized fuzzy context handlers, to predict the criticality of patients’ status. The developed access control method provides secure access for emergency clinicians to sensitive information and simultaneously safeguards the patient’s well-being. Integrating this predictive mechanism with personalized context handlers proved to be a robust tool to enhance the performance of the access control mechanism to modern EHRs System.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics11193040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics11193040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:EC | REMOURBANEC| REMOURBANAuthors: Ashfaq, A; Ianakiev, A;The hydraulic balance of heating network is considered as a pre-condition for the implementation of low temperature district heating (LTDH). Its imbalance result into high energy consumption and heat-losses in the network. In this study, a novel hydraulic model is presented which investigates hydraulic imbalance in the LTDH network, using real weather and hourly monitored operational heating data from an existing boiler based building. Analysis of delta t in space-heating system shows that the delta t is maximum when the outside air temperature is lowest and it decreases with increase in outside air temperature. Furthermore, the hydraulic imbalance is analysed for four different control scenarios with the aim to find an optimum scenario with minimum pumping power, energy consumption and heat-losses in the LTDH network. Results show that the hydraulic imbalance is due to the absence of flow-limiters and balancing valves on the return pipe and thermostatic radiator valves (TRVs) alone are unable to maintain hydraulic balance in the space-heating system of buildings. Moreover, the control scenario with variable flow-rate and fixed supply water temperature from the sub-station is found to be optimum. Compared to the constant flow-rate scenario, the pumping power, energy consumption and heat-losses in the LTDH network are reduced by approximately 2%, 63% and 14%, respectively.
CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 60 Powered bymore_vert CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | DTA3EC| DTA3Muhammad Aamer Hayat; Yong Chen; Mose Bevilacqua; Liang Li; Yongzhen Yang;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Schweizerbart Funded by:EC | MACC II, EC | MACC-IIIEC| MACC II ,EC| MACC-IIIAuthors: Angela Benedetti; Marion Schroedter-Homscheidt; Niels Killius;The successful electricity grid integration of solar energy into day-ahead markets requires at least hourly resolved 48 h forecasts. Technologies as photovoltaics and non-concentrating solar thermal technologies make use of global horizontal irradiance (GHI) forecasts, while all concentrating technologies both from the photovoltaic and the thermal sector require direct normal irradiances (DNI). The European Centre for Medium-Range Weather Forecasts (ECMWF) has recently changed towards providing direct as well as global irradiances. Additionally, the MACC (Monitoring Atmospheric Composition & Climate) near-real time services provide daily analysis and forecasts of aerosol properties in preparation of the upcoming European Copernicus programme. The operational ECMWF/IFS (Integrated Forecast System) forecast system will in the medium term profit from the Copernicus service aerosol forecasts. Therefore, within the MACC‑II project specific experiment runs were performed allowing for the assessment of the performance gain of these potential future capabilities. Also the potential impact of providing forecasts with hourly output resolution compared to three-hourly resolved forecasts is investigated. The inclusion of the new aerosol climatology in October 2003 improved both the GHI and DNI forecasts remarkably, while the change towards a new radiation scheme in 2007 only had minor and partly even unfavourable impacts on the performance indicators. For GHI, larger RMSE (root mean square error) values are found for broken/overcast conditions than for scattered cloud fields. For DNI, the findings are opposite with larger RMSE values for scattered clouds compared to overcast/broken cloud situations. The introduction of direct irradiances as an output parameter in the operational IFS version has not resulted in a general performance improvement with respect to biases and RMSE compared to the widely used Skartveit et al. (1998) global to direct irradiance conversion scheme. Cloudy situations and especially thin ice cloud cases are forecasted much better with respect to biases and RMSE, but large biases are introduced in clear sky cases. When applying the MACC aerosol scheme to include aerosol direct effects, an improvement especially in DNI biases is found for cloud free cases as expected. However, a performance decrease is found for water cloud cases. It is assumed that this is caused by the lack of an explicit modelling of cloud-aerosol interactions, while other meteorological forcings for cloud processes like the temperature field are modified by the aerosols.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2016/0676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2016/0676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United States, SpainPublisher:American Chemical Society (ACS) Funded by:EC | PLASMIONICO, EC | ENLIGHTMENT, EC | SHINEEC| PLASMIONICO ,EC| ENLIGHTMENT ,EC| SHINENaihao Chiang; Leonardo Scarabelli; Gail A. Vinnacombe-Willson; Luis A. Pérez; Camilla Dore; Agustín Mihi; Steven J. Jonas; Paul S. Weiss;Micro- and nanoscale patterned monolayers of plasmonic nanoparticles were fabricated by combining concepts from colloidal chemistry, self-assembly, and subtractive soft lithography. Leveraging chemical interactions between the capping ligands of pre-synthesized gold colloids and a polydimethylsiloxane stamp, we demonstrated patterning gold nanoparticles over centimeter-scale areas with a variety of micro- and nanoscale geometries, including islands, lines, and chiral structures (e.g., square spirals). By successfully achieving nanoscale manipulation over a wide range of substrates and patterns, we establish a powerful and straightforward strategy, nanoparticle chemical lift-off lithography (NP-CLL), for the economical and scalable fabrication of functional plasmonic materials with colloidal nanoparticles as building blocks, offering a transformative solution for designing next-generation plasmonic technologies.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmaterialslett.0c00535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 56 Powered bymore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmaterialslett.0c00535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:MDPI AG Funded by:EC | HeLLo, EC | 20-20 3D MEDIAEC| HeLLo ,EC| 20-20 3D MEDIAMirco Andreotti; Dario Bottino-Leone; Marta Calzolari; Pietromaria Davoli; Luisa Dias Pereira; Elena Lucchi; Alexandra Troi;doi: 10.3390/en13133362
handle: 11381/2883000
The hygrothermal behaviour of an internally insulated historic wall is still hard to predict, mainly because the physical characteristics of the materials composing the historic wall are unknown. In this study, the hygrothermal assessment of an internally thermal insulated masonry wall of an historic palace located in Ferrara, in Italy, is shown. In situ non-destructive monitoring method is combined with a hygrothermal simulation tool, aiming to better analyse and discuss future refurbishment scenarios. In this context, the original U-value of the wall (not refurbished) is decreased from 1.44 W/m2K to 0.26 W/m2K (10 cm stone wool). Under the site specific conditions of this wall, not reached by the sun or rain, it was verified that even in the absence of vapour barrier, no frost damage is likely to occur and the condensation risk is very limited. Authors proposed further discussion based on simulation. The results showed that the introduction of a second gypsum board to the studied technology compensated such absence, while the reduction of the insulation material thickness provides a reduction of RH peaks in the interstitial area by 1%; this second solution proved to be more efficient, providing a 3% RH reduction and the avoidance of further thermal losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Heat supply through Solar..., EC | H-DisNetUKRI| Heat supply through Solar Thermochemical Residential Seasonal Storage (Heat-STRESS) ,EC| H-DisNetAuthors: Giampieri, Alessandro; Ma, Zhiwei; Smallbone, Andrew; Roskilly, Anthony Paul;Abstract In an effort to minimise electricity consumption and greenhouse gases emissions, the heating, ventilation and air-conditioning sector has focused its attention on developing alternative solutions to electrically-driven vapour-compression cooling. Liquid desiccant air-conditioning systems represent an energy-efficient and more environmentally friendly alternative technology for dehumidification and cooling, particularly in those cases with high latent loads to maintain indoor air quality and comfort conditions. This technology is considered particularly efficient in hot and humid climates. As a matter of fact, the choice of the desiccant solution influences the overall performance of the system. The current paper reviews the working principle of liquid desiccant systems, focusing on the thermodynamic properties of the desiccant solutions and describes an evaluation of the reference thermodynamic properties of different desiccant solutions to identify which thermodynamic, physical, transport property influences the liquid desiccant process and to what extent. The comparison of these thermodynamic properties for the commonly used desiccants is conducted to estimate which fluid could perform most favourably in the system. The economic factors and the effect of different applications and climatic conditions on the system performance are also described. The paper is intended to be the first step in the evaluation of alternative desiccant fluids able to overcome the problems related to the use of the common desiccant solutions, such as crystallization and corrosion to metals. Ionic liquids seem a promising alternative working fluid in liquid desiccant air-conditioning systems and their characteristics and cost are discussed.
Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:EC | ADAPTEC| ADAPTAuthors: João Soares; Fernando Lezama; Tiago Pinto; Hugo Morais;doi: 10.1155/2018/6562876
Editorial Complex Optimization and Simulation in Power Systems
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2018/6562876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 57 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2018/6562876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | IS-ENES2, ANR | L-IPSLEC| IS-ENES2 ,ANR| L-IPSLAmadou Thierno Gaye; Xavier Capet; Juliette Mignot; Adama Sylla; Adama Sylla;Upwelling processes bring nutrient-rich waters from the deep ocean to the surface. Areas of upwelling are often associated with high productivity, offering great economic value in terms of fisheries. The sensitivity of spring/summer-time coastal upwelling systems to climate change has recently received a lot of attention. Several studies have suggested that their intensity may increase in the future while other authors have shown decreasing intensity in their equatorward portions. Yet, recent observations do not show robust evidence of this intensification. The Senegalo-Mauritanian upwelling system (SMUS) located at the southern edge of the north Atlantic system (12°N–20°N) and most active in winter/spring has been largely excluded from these studies. Here, the seasonal cycle of the SMUS and its response to climate change is investigated in the database of the Coupled Models Inter comparison Project Phase 5 (CMIP5). Upwelling magnitude and surface signature are characterized by several sea surface temperature and wind stress indices. We highlight the ability of the climate models to reproduce the system, as well as their biases. The simulations suggest that the intensity of the SMUS winter/spring upwelling will moderately decrease in the future, primarily because of a reduction of the wind forcing linked to a northward shift of Azores anticyclone and a more regional modulation of the low pressures found over Northwest Africa. The implications of such an upwelling reduction on the ecosystems and local communities exploiting them remains very uncertain.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | ASCLEPIOSEC| ASCLEPIOSEvgenia Psarra; Dimitris Apostolou; Yiannis Verginadis; Ioannis Patiniotakis; Gregoris Mentzas;Effective access control techniques are in demand, as electronically assisted healthcare services require the patient’s sensitive health records. In emergency situations, where the patient’s well-being is jeopardized, different healthcare actors associated with emergency cases should be granted permission to access Electronic Health Records (EHRs) of patients. The research objective of our study is to develop machine learning techniques based on patients’ time sequential health metrics and integrate them with an Attribute Based Access Control (ABAC) mechanism. We propose an ABAC mechanism that can yield access to sensitive EHRs systems by applying prognostic context handlers where contextual information, is used to identify emergency conditions and permit access to medical records. Specifically, we use patients’ recent health history to predict the health metrics for the next two hours by leveraging Long Short Term Memory (LSTM) Neural Networks (NNs). These predicted health metrics values are evaluated by our personalized fuzzy context handlers, to predict the criticality of patients’ status. The developed access control method provides secure access for emergency clinicians to sensitive information and simultaneously safeguards the patient’s well-being. Integrating this predictive mechanism with personalized context handlers proved to be a robust tool to enhance the performance of the access control mechanism to modern EHRs System.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics11193040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/electronics11193040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:EC | REMOURBANEC| REMOURBANAuthors: Ashfaq, A; Ianakiev, A;The hydraulic balance of heating network is considered as a pre-condition for the implementation of low temperature district heating (LTDH). Its imbalance result into high energy consumption and heat-losses in the network. In this study, a novel hydraulic model is presented which investigates hydraulic imbalance in the LTDH network, using real weather and hourly monitored operational heating data from an existing boiler based building. Analysis of delta t in space-heating system shows that the delta t is maximum when the outside air temperature is lowest and it decreases with increase in outside air temperature. Furthermore, the hydraulic imbalance is analysed for four different control scenarios with the aim to find an optimum scenario with minimum pumping power, energy consumption and heat-losses in the LTDH network. Results show that the hydraulic imbalance is due to the absence of flow-limiters and balancing valves on the return pipe and thermostatic radiator valves (TRVs) alone are unable to maintain hydraulic balance in the space-heating system of buildings. Moreover, the control scenario with variable flow-rate and fixed supply water temperature from the sub-station is found to be optimum. Compared to the constant flow-rate scenario, the pumping power, energy consumption and heat-losses in the LTDH network are reduced by approximately 2%, 63% and 14%, respectively.
CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 60 Powered bymore_vert CORE arrow_drop_down Nottingham Trent Institutional Repository (IRep)Article . 2018Data sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | DTA3EC| DTA3Muhammad Aamer Hayat; Yong Chen; Mose Bevilacqua; Liang Li; Yongzhen Yang;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Schweizerbart Funded by:EC | MACC II, EC | MACC-IIIEC| MACC II ,EC| MACC-IIIAuthors: Angela Benedetti; Marion Schroedter-Homscheidt; Niels Killius;The successful electricity grid integration of solar energy into day-ahead markets requires at least hourly resolved 48 h forecasts. Technologies as photovoltaics and non-concentrating solar thermal technologies make use of global horizontal irradiance (GHI) forecasts, while all concentrating technologies both from the photovoltaic and the thermal sector require direct normal irradiances (DNI). The European Centre for Medium-Range Weather Forecasts (ECMWF) has recently changed towards providing direct as well as global irradiances. Additionally, the MACC (Monitoring Atmospheric Composition & Climate) near-real time services provide daily analysis and forecasts of aerosol properties in preparation of the upcoming European Copernicus programme. The operational ECMWF/IFS (Integrated Forecast System) forecast system will in the medium term profit from the Copernicus service aerosol forecasts. Therefore, within the MACC‑II project specific experiment runs were performed allowing for the assessment of the performance gain of these potential future capabilities. Also the potential impact of providing forecasts with hourly output resolution compared to three-hourly resolved forecasts is investigated. The inclusion of the new aerosol climatology in October 2003 improved both the GHI and DNI forecasts remarkably, while the change towards a new radiation scheme in 2007 only had minor and partly even unfavourable impacts on the performance indicators. For GHI, larger RMSE (root mean square error) values are found for broken/overcast conditions than for scattered cloud fields. For DNI, the findings are opposite with larger RMSE values for scattered clouds compared to overcast/broken cloud situations. The introduction of direct irradiances as an output parameter in the operational IFS version has not resulted in a general performance improvement with respect to biases and RMSE compared to the widely used Skartveit et al. (1998) global to direct irradiance conversion scheme. Cloudy situations and especially thin ice cloud cases are forecasted much better with respect to biases and RMSE, but large biases are introduced in clear sky cases. When applying the MACC aerosol scheme to include aerosol direct effects, an improvement especially in DNI biases is found for cloud free cases as expected. However, a performance decrease is found for water cloud cases. It is assumed that this is caused by the lack of an explicit modelling of cloud-aerosol interactions, while other meteorological forcings for cloud processes like the temperature field are modified by the aerosols.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2016/0676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/metz/2016/0676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United States, SpainPublisher:American Chemical Society (ACS) Funded by:EC | PLASMIONICO, EC | ENLIGHTMENT, EC | SHINEEC| PLASMIONICO ,EC| ENLIGHTMENT ,EC| SHINENaihao Chiang; Leonardo Scarabelli; Gail A. Vinnacombe-Willson; Luis A. Pérez; Camilla Dore; Agustín Mihi; Steven J. Jonas; Paul S. Weiss;Micro- and nanoscale patterned monolayers of plasmonic nanoparticles were fabricated by combining concepts from colloidal chemistry, self-assembly, and subtractive soft lithography. Leveraging chemical interactions between the capping ligands of pre-synthesized gold colloids and a polydimethylsiloxane stamp, we demonstrated patterning gold nanoparticles over centimeter-scale areas with a variety of micro- and nanoscale geometries, including islands, lines, and chiral structures (e.g., square spirals). By successfully achieving nanoscale manipulation over a wide range of substrates and patterns, we establish a powerful and straightforward strategy, nanoparticle chemical lift-off lithography (NP-CLL), for the economical and scalable fabrication of functional plasmonic materials with colloidal nanoparticles as building blocks, offering a transformative solution for designing next-generation plasmonic technologies.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmaterialslett.0c00535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 56 Powered bymore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmaterialslett.0c00535&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:MDPI AG Funded by:EC | HeLLo, EC | 20-20 3D MEDIAEC| HeLLo ,EC| 20-20 3D MEDIAMirco Andreotti; Dario Bottino-Leone; Marta Calzolari; Pietromaria Davoli; Luisa Dias Pereira; Elena Lucchi; Alexandra Troi;doi: 10.3390/en13133362
handle: 11381/2883000
The hygrothermal behaviour of an internally insulated historic wall is still hard to predict, mainly because the physical characteristics of the materials composing the historic wall are unknown. In this study, the hygrothermal assessment of an internally thermal insulated masonry wall of an historic palace located in Ferrara, in Italy, is shown. In situ non-destructive monitoring method is combined with a hygrothermal simulation tool, aiming to better analyse and discuss future refurbishment scenarios. In this context, the original U-value of the wall (not refurbished) is decreased from 1.44 W/m2K to 0.26 W/m2K (10 cm stone wool). Under the site specific conditions of this wall, not reached by the sun or rain, it was verified that even in the absence of vapour barrier, no frost damage is likely to occur and the condensation risk is very limited. Authors proposed further discussion based on simulation. The results showed that the introduction of a second gypsum board to the studied technology compensated such absence, while the reduction of the insulation material thickness provides a reduction of RH peaks in the interstitial area by 1%; this second solution proved to be more efficient, providing a 3% RH reduction and the avoidance of further thermal losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Heat supply through Solar..., EC | H-DisNetUKRI| Heat supply through Solar Thermochemical Residential Seasonal Storage (Heat-STRESS) ,EC| H-DisNetAuthors: Giampieri, Alessandro; Ma, Zhiwei; Smallbone, Andrew; Roskilly, Anthony Paul;Abstract In an effort to minimise electricity consumption and greenhouse gases emissions, the heating, ventilation and air-conditioning sector has focused its attention on developing alternative solutions to electrically-driven vapour-compression cooling. Liquid desiccant air-conditioning systems represent an energy-efficient and more environmentally friendly alternative technology for dehumidification and cooling, particularly in those cases with high latent loads to maintain indoor air quality and comfort conditions. This technology is considered particularly efficient in hot and humid climates. As a matter of fact, the choice of the desiccant solution influences the overall performance of the system. The current paper reviews the working principle of liquid desiccant systems, focusing on the thermodynamic properties of the desiccant solutions and describes an evaluation of the reference thermodynamic properties of different desiccant solutions to identify which thermodynamic, physical, transport property influences the liquid desiccant process and to what extent. The comparison of these thermodynamic properties for the commonly used desiccants is conducted to estimate which fluid could perform most favourably in the system. The economic factors and the effect of different applications and climatic conditions on the system performance are also described. The paper is intended to be the first step in the evaluation of alternative desiccant fluids able to overcome the problems related to the use of the common desiccant solutions, such as crystallization and corrosion to metals. Ionic liquids seem a promising alternative working fluid in liquid desiccant air-conditioning systems and their characteristics and cost are discussed.
Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/29398/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu