- home
- Search
- Energy Research
- Open Access
- Restricted
- Embargo
- chemical engineering
- 7. Clean energy
- Energy Research
- Open Access
- Restricted
- Embargo
- chemical engineering
- 7. Clean energy
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Gary T. Rochelle; Yu-Jeng Lin; Junyuan Ding;AbstractMembrane Technology and Research, Inc. has proposed a hybrid system combining amine scrubbing with membrane technology to reduce energy cost. Previous studies of CO2 absorption mainly focused on coal-fired flue gas with 12% CO2. However, in the hybrid process, the CO2 in the flue gas can be enriched to 20%. Natural gas turbines will have flue gas with as little as 3% CO2。 Based on the arrangement, the hybrid amine/membrane system provides a gas to the system that has double the CO2 concentration of normal flue gas, reduces the volume of gas sent to the capture unit, or reduces the removal requirements for the capture unit.The objective of this work is to minimize the total energy use of stripping concentrated piperazine (PZ) at rich loading when treating flue gas from 3 to 20% inlet CO2. The base-case stripping configuration is the advanced flash stripper with warm rich bypass and cold rich exchanger bypass. . This configuration includes two split cross-exchangers in series, a convective steam heater, a smaller stripper column, a low residence time flash tank, and stripping at high temperature to produce CO2 at 5 to 17bar. Rich loading in 5 and 8m PZ was varied from 0.37 to 0.43mol CO2/mol N. For each rich loading, lean loading was optimized to minimize the total equivalent work. The “Independence” model for PZ in Aspen Plus® was used to simulate the stripping performance.Because 5m PZ has a lower viscosity than 8m PZ, it can achieve a reduced approach temperature in the cross exchanger. The total energy performance for 5m PZ is practically the same as 8m PZ, even though the capacity of 5m PZ is lower. Significantly more energy is required to regenerate solvents with lower rich loading. As CO2 rich loading increases, the equivalent work requirement decreases for the same loading difference between rich and lean.Stripping data for 24 cases, including heat duty, equivalent work, CO2 output pressure, and optimal cold and warm rich bypass were used to build a correlation with CO2 rich and lean loading. The Second Law efficiency based on the ratio of stripping minimum work and total ideal work was introduced to make the most of stripping work. The Second Law efficiency has a maximum value at a specific CO2 loading.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Authors: Lara, Y.; Martínez, A.; Lisbona, P.; Romeo, L.M.;It is crucial to reduce the energy penalties related to CO2 capture processes if CCS is to be implemented at industrial scale. In this context, gas-solid sorption has become a relevant technology. The absence of large amounts of water when using dry solid sorbents and their high heat capacity reduce the energy requirements in the gas-solid sorption CO2 capture process. Depending on the sorbent composition, the gas-solid sorption process carries out at high or low temperatures. High temperature sorbents allow the utilization of waste energy while energy requirements in low temperature processes will be less demanding. This study is focused on the assessment and comparison of the final energy penalty of low-temperature (amine impregnated alumina-based solid particles) and high-temperature solid sorbents capture process (calcium oxide).
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2017License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/69727Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2017License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/69727Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Sophie Thiebaud-Roux; Sophie Thiebaud-Roux; Laurent E. Prat; Laurent E. Prat; Brigitte Dubreuil; Brigitte Dubreuil; Romain Richard;Biodiesel can be produced from vegetable oils, animal fats, and waste cooking oils by transesterification with ethanol (also called ethanolysis) in order to substitute fossil fuels. In this work, the batch ethanolysis of high oleic sunflower oil was transferred into a continuous microstructured device, which induces a better control of heat and mass transfers. Various parameters were studied, notably the initial ethanol to oil molar ratio. An innovative method using NIR spectroscopy was also developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol in microreactors (circular PFA tube 1/1600 OD, 0.0200 ID). The reactions were monitored directly in the microreactors through sequential scans of the reaction medium by the means of an adequate probe. The asset of the method is that no sample collection or preparation is necessary. Partial Least Squares regression was used to develop calibration and prediction models between NIR spectral data and analytical data obtained by a reference method (gas chromatography with flame ionization detection, GC–FID). This method is fast, safe, reliable, nondestructive and inexpensive contrary to conventional procedures, such as gas chromatography and high performance liquid chromatography generally used to determine the composition of crude transesterification medium.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2013 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 70 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2013 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, CanadaPublisher:Elsevier BV Authors: Haitham Saad Mohamed Ramadan; Haitham Saad Mohamed Ramadan; F. Claude; M. Becherif; +1 AuthorsHaitham Saad Mohamed Ramadan; Haitham Saad Mohamed Ramadan; F. Claude; M. Becherif; Loic Boulon;The transportation impact on pollution and global climate change, has forced the automotive sector to search for more ecological solutions. Owing to the different properties of Fuel Cell (FC), real potential for reducing vehicles’ emissions has been witnessed. The optimization of FC integration within Electric Vehicles (EVs) is one of the original solutions. This paper presents an innovating solution of multi-stack Fuel Cell Electrical Vehicle (FCEV) in terms of efficiency, durability and ecological impact on environment. The main objective is to illustrate the interest of using the multi-stack FC system on the global autonomy, cycling, and efficiency enhancement, besides optimizing its operation performance.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2017.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2017.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Research Square Platform LLC Authors: Shella M. Santos; Maria Regina Wolf Maciel; Leonardo Vasconcelos Fregolente;Abstract Experimental analysis of viscosity can be a straightforward and inexpensive analysis for few samples. However, in industrial processes that have high demands of properties measurements, the determination of viscosity and other properties involves time-consuming with sampling, analysis and availability of results. Also in refineries, the sampling routines for experimental determination of the viscosity of streams are not enough to represent variations that occur in the process, such as the shift of an oil tank in distillation units. In addition, besides requiring cost of operating personnel and laboratory analyst, all of these steps can take up to one shift until the result is available. Therefore, as an alternative, the use of predictive methods of kinematic viscosity are essential. Empirical methods have been used in simulations and design calculations of streams and mixture at industries regarding kinematic viscosity (KV) of petroleum fractions and fuels at different temperatures. However, there are uncertainties about the most accurate method to use at specific condition (temperature, feedstock, volume fraction) which might affect the KV prediction of fuels with unknown composition. Therefore, we assembled and evaluated several methods to predict KV of different diesel systems. In addition, new methods for predicting KV of diesel fractions at several temperatures were also developed for improving the estimation accuracy. As a result, we developed a guide with suggestions of the most accurate models to be applied for diesel fraction from assays, diesel fractions S500 from blend system at several temperatures, and biodiesel-diesel blends at different temperatures, volume fractions and feedstock.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of ThermophysicsArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-312015/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of ThermophysicsArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-312015/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Mohammed Al-Faham; Ali Safa Alsaegh; Ali Safa Alsaegh; Agustin Valera-Medina; Fares Hatem; Fares Hatem;Swirl combustors have proven as effective flame stabilisers over a wide range of operation conditions thanks to the formation of well-known swirl coherent structures. However, employment of swirl combustors to work on lean premixed combustion modes while introducing alternative fuels such as high hydrogen blends result in many combustion instabilities. Under these conditions, flame flashback has been considered as one of the major instability problems that have the potential of causing considerable damages of the combustion systems hardware in addition to the significant increase in pollutant levels. Combustion Induced Vortex Breakdown (CIVB) is considered a very particular mode of flashback mechanism in swirling flows as this type of flashback occurs even when the fresh mixture’s velocity is higher than the flame speed, consequence of the interaction between swirl structures and swirl burner geometries. Improvements of burner geometries and manipulation of swirl flows can produce good resistance against this type of flashback. However, increase flame flashback resistance against CIVB can lead to an increase in the propensity of another flashback mechanism, Boundary Layer Flashback (BLF). Thus this paper presents an experimental and numerical approach that allows the increase in CIVB resistance by using diffusive air injection and simultaneously avoid BLF by changing the wall boundary layer characteristics using microsurface grids as a liner for the nozzle wall. Results show that using those two techniques together has promising potentials regarding wider stable operation for swirl combustors, enabling them to burn a great variety of fuel blends safely.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
download 13download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Hasan, SH; Abbas, AJ; Nasr, GG;doi: 10.3390/su13010072
Environmental concern for our planet has changed significantly over time due to climate change, caused by an increasing population and the subsequent demand for electricity, and thus increased power generation. Considering that natural gas is regarded as a promising fuel for such a purpose, the need to integrate carbon capture technologies in such plants is becoming a necessity, if gas power plants are to be aligned with the reduction of CO2 in the atmosphere, through understanding the capturing efficacy of different absorbents under different operating conditions. Therefore, this study provided for the first time the comparison of available absorbents in relation to amine solvents (MEA, DEA, and DEA) CO2 removal efficiency, cost, and recirculation rate to achieve Climate change action through caron capture without causing absorbent disintegration. The study analyzed Flue under different amine-based solvent solutions (monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA)), in order to compare their potential for CO2 reduction under different operating conditions and costs. This was simulated using ProMax 5.0 software modeled as a simple absorber tower to absorb CO2 from flue gas. Furthermore, MEA, DEA, and MDEA adsorbents were used with a temperature of 38 °C and their concentration varied from 10 to 15%. Circulation rates of 200–300 m3/h were used for each concentration and solvent. The findings deduced that MEA is a promising solvent compared to DEA and MDEA in terms of the highest CO2 captured; however, it is limited at the top outlet for clean flue gas, which contained 3.6295% of CO2 and less than half a percent of DEA and MDEA, but this can be addressed either by increasing the concentration to 15% or increasing the MEA circulation rate to 300 m3/h.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 96 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Lei Li; Zhigang Zhang; Peng Liu; Kequan Wang; Jun Zhang; Xuelong Li;doi: 10.1002/ese3.652
AbstractLow‐concentration gas is one of the most realistic and reliable supplementary or alternative energy sources of conventional natural gas, which has a wide range of applications. However, this gas is flammable and explosive during pipeline transportation and easily causes an explosion. In order to achieve safe transmission, the explosion characteristics and propagation law of low‐concentration gas are systematically studied through a large‐scale pipeline experimental system. We found that the peak pressure of low‐concentration gas explosion in pipeline has a quadratic function relationship with the propagation distance. Moreover, the peak pressure of gas explosion initially decreases from the explosion source, and then a turning point appears after a certain distance of propagation, which is followed by a sharp increase of peak pressure of gas explosion. The explosion pressure becomes maximum at the outlets of a pipeline. The arrival time of explosion flame is logarithmically relevant to propagation distance, while the speed of flame propagation gradually increases along with the increase of propagation distance. The flame propagation is faster at the exit point. In addition, the diameter of pipeline has also an important influence on the explosion propagation process of low‐concentration gas. So, the larger the diameter, the higher the explosion pressure. The explosion pressure of DN700 pipeline is obviously higher than that of DN500, and the explosion pressure rises faster; the speed of flame propagation of gas explosion in DN700 pipeline is also higher than that in DN500 pipeline. This study provides a theoretical reference for the prevention and control of explosion accidents in low‐concentration gas pipelines.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Publicly fundedAuthors: Fumin Ma; Gregory O’Hare; Tengfei Zhang; Michael O’Grady;doi: 10.3390/en81012283
Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry energy transfer system is developed based on model property. Firstly, a reconfigurable energy transfer process model, which is independent of energy types and energy-consuming equipment, is presented from the viewpoint of the cross-coupling effect of energy flow, material flow and information flow. Thereafter the material balance determination is proposed based on both a dynamic incidence matrix and dynamic balance quantity. Moreover, the model-weighted conservation determination theorem is proved, and the energy efficiency analysis method is also discussed. Results confirmed the efficacy of the proposed methods, confirming its potential for use by process industry in energy efficiency analyses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81012283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81012283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Jiqin Zhu; Shengli Liu; Zhigang Lei; Zhenhang Wang; Zhu Ruisong;The ionic liquid (IL) 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) was selected as an appropriate entrainer for the extractive distillation of the methanol–ethanol-water mixture. The COSMO-RS model was applied to screen out the appropriate solvents considering selectivity and solvent capacity together. Isobaric vapor–liquid equilibrium (VLE) experiments for the two systems of methanol–water and ethanol–water with different amounts of [EMIM][DCA] added were conducted at 101.3 kPa. The experimental data showed that [EMIM][DCA] exhibits an obvious salting effect for the methanol (or ethanol)-water mixture and eliminates the azeotropic point of ethanol–water. Moreover, the predicted values by UNIFAC-Lei model coincide well with experimental data. The separation mechanism was further explained in combination with surface charge density distribution (σ-profiles), excess enthalpy (HE), and binding energy. In addition, the flow charts were designed to evaluate the improvement of energy consumption with [EMIM][DCA] as the entrainer when compared to ethylene glycol (EG). The simulation results demonstrated that [EMIM][DCA] is more energy efficient than EG.
Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2020.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2020.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Gary T. Rochelle; Yu-Jeng Lin; Junyuan Ding;AbstractMembrane Technology and Research, Inc. has proposed a hybrid system combining amine scrubbing with membrane technology to reduce energy cost. Previous studies of CO2 absorption mainly focused on coal-fired flue gas with 12% CO2. However, in the hybrid process, the CO2 in the flue gas can be enriched to 20%. Natural gas turbines will have flue gas with as little as 3% CO2。 Based on the arrangement, the hybrid amine/membrane system provides a gas to the system that has double the CO2 concentration of normal flue gas, reduces the volume of gas sent to the capture unit, or reduces the removal requirements for the capture unit.The objective of this work is to minimize the total energy use of stripping concentrated piperazine (PZ) at rich loading when treating flue gas from 3 to 20% inlet CO2. The base-case stripping configuration is the advanced flash stripper with warm rich bypass and cold rich exchanger bypass. . This configuration includes two split cross-exchangers in series, a convective steam heater, a smaller stripper column, a low residence time flash tank, and stripping at high temperature to produce CO2 at 5 to 17bar. Rich loading in 5 and 8m PZ was varied from 0.37 to 0.43mol CO2/mol N. For each rich loading, lean loading was optimized to minimize the total equivalent work. The “Independence” model for PZ in Aspen Plus® was used to simulate the stripping performance.Because 5m PZ has a lower viscosity than 8m PZ, it can achieve a reduced approach temperature in the cross exchanger. The total energy performance for 5m PZ is practically the same as 8m PZ, even though the capacity of 5m PZ is lower. Significantly more energy is required to regenerate solvents with lower rich loading. As CO2 rich loading increases, the equivalent work requirement decreases for the same loading difference between rich and lean.Stripping data for 24 cases, including heat duty, equivalent work, CO2 output pressure, and optimal cold and warm rich bypass were used to build a correlation with CO2 rich and lean loading. The Second Law efficiency based on the ratio of stripping minimum work and total ideal work was introduced to make the most of stripping work. The Second Law efficiency has a maximum value at a specific CO2 loading.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Authors: Lara, Y.; Martínez, A.; Lisbona, P.; Romeo, L.M.;It is crucial to reduce the energy penalties related to CO2 capture processes if CCS is to be implemented at industrial scale. In this context, gas-solid sorption has become a relevant technology. The absence of large amounts of water when using dry solid sorbents and their high heat capacity reduce the energy requirements in the gas-solid sorption CO2 capture process. Depending on the sorbent composition, the gas-solid sorption process carries out at high or low temperatures. High temperature sorbents allow the utilization of waste energy while energy requirements in low temperature processes will be less demanding. This study is focused on the assessment and comparison of the final energy penalty of low-temperature (amine impregnated alumina-based solid particles) and high-temperature solid sorbents capture process (calcium oxide).
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2017License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/69727Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2017License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/69727Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Sophie Thiebaud-Roux; Sophie Thiebaud-Roux; Laurent E. Prat; Laurent E. Prat; Brigitte Dubreuil; Brigitte Dubreuil; Romain Richard;Biodiesel can be produced from vegetable oils, animal fats, and waste cooking oils by transesterification with ethanol (also called ethanolysis) in order to substitute fossil fuels. In this work, the batch ethanolysis of high oleic sunflower oil was transferred into a continuous microstructured device, which induces a better control of heat and mass transfers. Various parameters were studied, notably the initial ethanol to oil molar ratio. An innovative method using NIR spectroscopy was also developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol in microreactors (circular PFA tube 1/1600 OD, 0.0200 ID). The reactions were monitored directly in the microreactors through sequential scans of the reaction medium by the means of an adequate probe. The asset of the method is that no sample collection or preparation is necessary. Partial Least Squares regression was used to develop calibration and prediction models between NIR spectral data and analytical data obtained by a reference method (gas chromatography with flame ionization detection, GC–FID). This method is fast, safe, reliable, nondestructive and inexpensive contrary to conventional procedures, such as gas chromatography and high performance liquid chromatography generally used to determine the composition of crude transesterification medium.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2013 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 70 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2013 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, CanadaPublisher:Elsevier BV Authors: Haitham Saad Mohamed Ramadan; Haitham Saad Mohamed Ramadan; F. Claude; M. Becherif; +1 AuthorsHaitham Saad Mohamed Ramadan; Haitham Saad Mohamed Ramadan; F. Claude; M. Becherif; Loic Boulon;The transportation impact on pollution and global climate change, has forced the automotive sector to search for more ecological solutions. Owing to the different properties of Fuel Cell (FC), real potential for reducing vehicles’ emissions has been witnessed. The optimization of FC integration within Electric Vehicles (EVs) is one of the original solutions. This paper presents an innovating solution of multi-stack Fuel Cell Electrical Vehicle (FCEV) in terms of efficiency, durability and ecological impact on environment. The main objective is to illustrate the interest of using the multi-stack FC system on the global autonomy, cycling, and efficiency enhancement, besides optimizing its operation performance.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2017.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Franche-Comté (UFC): HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2017.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Research Square Platform LLC Authors: Shella M. Santos; Maria Regina Wolf Maciel; Leonardo Vasconcelos Fregolente;Abstract Experimental analysis of viscosity can be a straightforward and inexpensive analysis for few samples. However, in industrial processes that have high demands of properties measurements, the determination of viscosity and other properties involves time-consuming with sampling, analysis and availability of results. Also in refineries, the sampling routines for experimental determination of the viscosity of streams are not enough to represent variations that occur in the process, such as the shift of an oil tank in distillation units. In addition, besides requiring cost of operating personnel and laboratory analyst, all of these steps can take up to one shift until the result is available. Therefore, as an alternative, the use of predictive methods of kinematic viscosity are essential. Empirical methods have been used in simulations and design calculations of streams and mixture at industries regarding kinematic viscosity (KV) of petroleum fractions and fuels at different temperatures. However, there are uncertainties about the most accurate method to use at specific condition (temperature, feedstock, volume fraction) which might affect the KV prediction of fuels with unknown composition. Therefore, we assembled and evaluated several methods to predict KV of different diesel systems. In addition, new methods for predicting KV of diesel fractions at several temperatures were also developed for improving the estimation accuracy. As a result, we developed a guide with suggestions of the most accurate models to be applied for diesel fraction from assays, diesel fractions S500 from blend system at several temperatures, and biodiesel-diesel blends at different temperatures, volume fractions and feedstock.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of ThermophysicsArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-312015/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of ThermophysicsArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-312015/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Mohammed Al-Faham; Ali Safa Alsaegh; Ali Safa Alsaegh; Agustin Valera-Medina; Fares Hatem; Fares Hatem;Swirl combustors have proven as effective flame stabilisers over a wide range of operation conditions thanks to the formation of well-known swirl coherent structures. However, employment of swirl combustors to work on lean premixed combustion modes while introducing alternative fuels such as high hydrogen blends result in many combustion instabilities. Under these conditions, flame flashback has been considered as one of the major instability problems that have the potential of causing considerable damages of the combustion systems hardware in addition to the significant increase in pollutant levels. Combustion Induced Vortex Breakdown (CIVB) is considered a very particular mode of flashback mechanism in swirling flows as this type of flashback occurs even when the fresh mixture’s velocity is higher than the flame speed, consequence of the interaction between swirl structures and swirl burner geometries. Improvements of burner geometries and manipulation of swirl flows can produce good resistance against this type of flashback. However, increase flame flashback resistance against CIVB can lead to an increase in the propensity of another flashback mechanism, Boundary Layer Flashback (BLF). Thus this paper presents an experimental and numerical approach that allows the increase in CIVB resistance by using diffusive air injection and simultaneously avoid BLF by changing the wall boundary layer characteristics using microsurface grids as a liner for the nozzle wall. Results show that using those two techniques together has promising potentials regarding wider stable operation for swirl combustors, enabling them to burn a great variety of fuel blends safely.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
download 13download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Hasan, SH; Abbas, AJ; Nasr, GG;doi: 10.3390/su13010072
Environmental concern for our planet has changed significantly over time due to climate change, caused by an increasing population and the subsequent demand for electricity, and thus increased power generation. Considering that natural gas is regarded as a promising fuel for such a purpose, the need to integrate carbon capture technologies in such plants is becoming a necessity, if gas power plants are to be aligned with the reduction of CO2 in the atmosphere, through understanding the capturing efficacy of different absorbents under different operating conditions. Therefore, this study provided for the first time the comparison of available absorbents in relation to amine solvents (MEA, DEA, and DEA) CO2 removal efficiency, cost, and recirculation rate to achieve Climate change action through caron capture without causing absorbent disintegration. The study analyzed Flue under different amine-based solvent solutions (monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA)), in order to compare their potential for CO2 reduction under different operating conditions and costs. This was simulated using ProMax 5.0 software modeled as a simple absorber tower to absorb CO2 from flue gas. Furthermore, MEA, DEA, and MDEA adsorbents were used with a temperature of 38 °C and their concentration varied from 10 to 15%. Circulation rates of 200–300 m3/h were used for each concentration and solvent. The findings deduced that MEA is a promising solvent compared to DEA and MDEA in terms of the highest CO2 captured; however, it is limited at the top outlet for clean flue gas, which contained 3.6295% of CO2 and less than half a percent of DEA and MDEA, but this can be addressed either by increasing the concentration to 15% or increasing the MEA circulation rate to 300 m3/h.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 96 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Lei Li; Zhigang Zhang; Peng Liu; Kequan Wang; Jun Zhang; Xuelong Li;doi: 10.1002/ese3.652
AbstractLow‐concentration gas is one of the most realistic and reliable supplementary or alternative energy sources of conventional natural gas, which has a wide range of applications. However, this gas is flammable and explosive during pipeline transportation and easily causes an explosion. In order to achieve safe transmission, the explosion characteristics and propagation law of low‐concentration gas are systematically studied through a large‐scale pipeline experimental system. We found that the peak pressure of low‐concentration gas explosion in pipeline has a quadratic function relationship with the propagation distance. Moreover, the peak pressure of gas explosion initially decreases from the explosion source, and then a turning point appears after a certain distance of propagation, which is followed by a sharp increase of peak pressure of gas explosion. The explosion pressure becomes maximum at the outlets of a pipeline. The arrival time of explosion flame is logarithmically relevant to propagation distance, while the speed of flame propagation gradually increases along with the increase of propagation distance. The flame propagation is faster at the exit point. In addition, the diameter of pipeline has also an important influence on the explosion propagation process of low‐concentration gas. So, the larger the diameter, the higher the explosion pressure. The explosion pressure of DN700 pipeline is obviously higher than that of DN500, and the explosion pressure rises faster; the speed of flame propagation of gas explosion in DN700 pipeline is also higher than that in DN500 pipeline. This study provides a theoretical reference for the prevention and control of explosion accidents in low‐concentration gas pipelines.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Publicly fundedAuthors: Fumin Ma; Gregory O’Hare; Tengfei Zhang; Michael O’Grady;doi: 10.3390/en81012283
Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry energy transfer system is developed based on model property. Firstly, a reconfigurable energy transfer process model, which is independent of energy types and energy-consuming equipment, is presented from the viewpoint of the cross-coupling effect of energy flow, material flow and information flow. Thereafter the material balance determination is proposed based on both a dynamic incidence matrix and dynamic balance quantity. Moreover, the model-weighted conservation determination theorem is proved, and the energy efficiency analysis method is also discussed. Results confirmed the efficacy of the proposed methods, confirming its potential for use by process industry in energy efficiency analyses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81012283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81012283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Jiqin Zhu; Shengli Liu; Zhigang Lei; Zhenhang Wang; Zhu Ruisong;The ionic liquid (IL) 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) was selected as an appropriate entrainer for the extractive distillation of the methanol–ethanol-water mixture. The COSMO-RS model was applied to screen out the appropriate solvents considering selectivity and solvent capacity together. Isobaric vapor–liquid equilibrium (VLE) experiments for the two systems of methanol–water and ethanol–water with different amounts of [EMIM][DCA] added were conducted at 101.3 kPa. The experimental data showed that [EMIM][DCA] exhibits an obvious salting effect for the methanol (or ethanol)-water mixture and eliminates the azeotropic point of ethanol–water. Moreover, the predicted values by UNIFAC-Lei model coincide well with experimental data. The separation mechanism was further explained in combination with surface charge density distribution (σ-profiles), excess enthalpy (HE), and binding energy. In addition, the flow charts were designed to evaluate the improvement of energy consumption with [EMIM][DCA] as the entrainer when compared to ethylene glycol (EG). The simulation results demonstrated that [EMIM][DCA] is more energy efficient than EG.
Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2020.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Green Energy & E... arrow_drop_down Green Energy & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gee.2020.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu