- home
- Search
- Energy Research
- medical and health sciences
- ZENODO
- Energy Research
- medical and health sciences
- ZENODO
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, United Kingdom, DenmarkPublisher:Wiley Funded by:UKRI | Developing an integrated ...UKRI| Developing an integrated framework for investigating biodiversity responses to global environmental changeCarlos F. Ibáñez; Stéphanie Manel; John B. Taggart; Gareth Jones; Kirsty J. Park; Javier Juste; Hugo Rebelo; Hugo Rebelo; Orly Razgour; Orly Razgour; Orly Razgour; Antton Alberdi;pmid: 28649779
pmc: PMC6849758
AbstractClimate change is a major threat to global biodiversity that will produce a range of new selection pressures. Understanding species responses to climate change requires an interdisciplinary perspective, combining ecological, molecular and environmental approaches. We propose an applied integrated framework to identify populations under threat from climate change based on their extent of exposure, inherent sensitivity due to adaptive and neutral genetic variation and range shift potential. We consider intraspecific vulnerability and population‐level responses, an important but often neglected conservation research priority. We demonstrate how this framework can be applied to vertebrates with limited dispersal abilities using empirical data for the bat Plecotus austriacus. We use ecological niche modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to future changes. Combining outlier tests with genotype–environment association analysis, we identify potential climate‐adaptive SNPs in our genomic data set and differences in the frequency of adaptive and neutral variation between populations. We assess landscape connectivity and show that changing environmental suitability may limit the future movement of individuals, thus affecting both the ability of populations to shift their distribution to climatically suitable areas and the probability of evolutionary rescue through the spread of adaptive genetic variation among populations. Therefore, a better understanding of movement ecology and landscape connectivity is needed for predicting population persistence under climate change. Our study highlights the importance of incorporating genomic data to determine sensitivity, adaptive potential and range shift potential, instead of relying solely on exposure to guide species vulnerability assessments and conservation planning.
CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: http://dspace.stir.ac.uk/bitstream/1893/25785/1/Razgour_et_al-2018-Molecular_Ecology_Resources.pdfData sources: COREHyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/25785Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1755-0998.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 21visibility views 21 download downloads 213 Powered bymore_vert CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: http://dspace.stir.ac.uk/bitstream/1893/25785/1/Razgour_et_al-2018-Molecular_Ecology_Resources.pdfData sources: COREHyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/25785Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1755-0998.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Pensoft Publishers Authors: Wilian Costa; Tereza Giannini; Antonio Saraiva;doi: 10.3897/biss.4.59241
Ecosystem services provided by biodiversity are associated with supporting life on the planet. Climate change has negatively impacted biodiversity, altering the phenology and geographical distribution of species and the interaction between them. In megadiverse areas, such as tropical forests, studies of species interactions that consider all the species of flora and fauna are not feasible due to our limited knowledge of biodiversity and the necessity of extensive and costly fieldwork. Instead, Species Distribution Modelling (SDM) techniques can be used, together with other species information (e.g., pollination syndrome) as a proxy for these interactions to estimate spatial patterns of potential distribution dynamics. In this study, we modeled our process steps to obtain the estimated future climate shifts and identification of climatically stable areas over time. These areas may represent climatic refuges and future actions to increase the connectivity between them are strategies that could help mitigate potential future damage for biodiversity conservation. Our resulting evaluation data processing flow originated from our group process analysis applied to the Carajás region (Brazil) in which we identified the probable losses of nectarivorous bat species (pollinators), on the order of 66% (Costa et al. 2018); nectarivorous birds, on the order of 60% (Miranda et al. 2019); and bees, on the order of 85% (Giannini et al. 2020) until 2050. Our process, described using the Business Process Model and Notation (BPMN) is represented in Fig. 1. Our group is preparing a data paper with all of our generated data and programs/libraries to be released as soon as possible.
Biodiversity Informa... arrow_drop_down Biodiversity Information Science and StandardsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/biss.4.59241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 30 Powered bymore_vert Biodiversity Informa... arrow_drop_down Biodiversity Information Science and StandardsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/biss.4.59241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016 AustraliaPublisher:Springer Science and Business Media LLC Authors: Narayan, Edward J. (R18852); Williams, Michelle;(Uploaded by Plazi for the Bat Literature Project) Since European settlement more than 10 % of Australia's native fauna have become extinct and the current picture reflects 46 % are at various vulnerability stages. Australia's iconic marsupial species, koala (Phascolarctos cinereus) is listed as vulnerable under national environmental law. Human population growth, road expansion and extensive land clearance have fragmented their eucalyptus habitat and reduced the ability of koalas to move across the tree canopy; making the species most vulnerable on the ground. Disease-principally chlamydia, road death, dog-attack and loss of habitat are key environmental pressures and the reasons why koalas are admitted for veterinary care. It is important to understand the dynamics of the physiological impacts that the koala faces from anthropogenic induced environmental challenges, especially on its essential biological functions (e.g. reproduction and immune system function). This review explores published literature and clinical data to identify key environmental stressors that are operating in mainland koala habitats, and while the focus is mostly on the koala, much of the information is analogous to other wildlife; the review may provide the impetus for future investigations involving other vulnerable native wildlife species (e.g. frogs). Oxalate nephrosis associated renal failure appears to be the most prevalent disease in koala populations from South Australia. Other key environmental stressors included heat stress, car impacts and dog attacks. It is possible that maternal stress, nutritional deprivation, dehydration and possible accumulation of oxalate in eucalyptus leaf increase mostly during drought periods impacting on fetal development. We hypothesize that chronic stress, particularly in urban and fringe zones, is creating very large barriers for conservation and recovery programs. Chronic stress in koalas is a result of the synergistic interplay between proximate environmental stressor/s (e.g. heat stress and fringe effects) acting on the already compromised kidney function, immune- and reproductive suppression. Furthermore, the effects of environmental pollutants in the aggravation of diseases such as kidney failure, reproductive suppression and suppression of the unique marsupial immune system should be researched. Environmental policies should be strengthened to increase human awareness of the threats facing the koala, increased funding support towards scientific research and the protection and creation of reserve habitats in urban areas and fringe zones. Global climate change, nutritional deprivation (loss of food sources), inappropriate fire management, invasive species and the loss of genetic diversity represent the complexities of environmental challenges impacting the koala biology.
BMC Zoology arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40850-016-0004-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert BMC Zoology arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40850-016-0004-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University Authors: Zhukov, Anatoliy; Gushcha, Sergey; Bobro, Elena;In this article, the author made an attempt to present and analyze issues related to global environmental problems, and in particular, the role of carbon dioxide in global warming. Well-known facts and unexpected findings are intended to awaken in the reader a critical attitude towards the prevailing beliefs in these matters. From the point of view of a chemist, the reality of extracting CO2 from air and converting it back into fuel is assessed. Simple energy calculations make it possible to assess the ability of "green" energy to replace carbon and influence the climate warming process. And finally, the key proposals are presented from the point of view of a technologist, since it is technologists who make real and implement the most daring discoveries and projects of scientists and inventors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12775/pps.2021.07.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 49visibility views 49 download downloads 37 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12775/pps.2021.07.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2017 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Targeted Infusion Project...NSF| Targeted Infusion Project: Developing Quantitative Expertise in the Undergraduate Biology Curriculum (QEUBiC)Authors: Wollenberg Valero, Katharina C.; Isokpehi, Raphael D.; Douglas, Noah E.; Sivasundaram, Seenith; +3 AuthorsWollenberg Valero, Katharina C.; Isokpehi, Raphael D.; Douglas, Noah E.; Sivasundaram, Seenith; Johnson, Brianna; Wootson, Kiara; McGill, Ayana;pmid: 29134435
pmc: PMC6245028
AbstractEbola virus disease outbreaks in animals (including humans and great apes) start with sporadic host switches from unknown reservoir species. The factors leading to such spillover events are little explored. Filoviridae viruses have a wide range of natural hosts and are unstable once outside hosts. Spillover events, which involve the physical transfer of viral particles across species, could therefore be directly promoted by conditions of host ecology and environment. In this report we outline a proof of concept that temporal fluctuations of a set of ecological and environmental variables describing the dynamics of the host ecosystem are able to predict such events of Ebola virus spillover to humans and animals. We compiled a dataset of climate and plant phenology variables and Ebola virus disease spillovers in humans and animals. We identified critical biotic and abiotic conditions for spillovers via multiple regression and neural networks based time series regression. Phenology variables proved to be overall better predictors than climate variables. African phenology variables are not yet available as a comprehensive online resource. Given the likely importance of phenology for forecasting the likelihood of future Ebola spillover events, our results highlight the need for cost-effective transect surveys to supply phenology data for predictive modelling efforts.
bioRxiv arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10393-017-1288-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert bioRxiv arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10393-017-1288-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Farname, Inc. Authors: Yazdinezhad, Amirhossein; Askarpour, Moslem; Aboushamsia, Mohammad Mehdi; Asadi, Maryam; +1 AuthorsYazdinezhad, Amirhossein; Askarpour, Moslem; Aboushamsia, Mohammad Mehdi; Asadi, Maryam; Mansoori, Anahita;Background and Objective: Recent studies have shown a relationship between energy regulation and the circadian rhythm at behavioral, molecular, and physiological levels. The present study investigated the effect of chronotype on meal timing and obesity in Iranian housewives. Materials and Methods: This cross-sectional study was carried out using a convenience-sampling method through the participation of housewives living in Ahvaz in 2018. Anthropometric information was collected. To assess food intake timing, energy intake and sleep patterns during seven days of normal living were recorded by the researchers. Dietary information was obtained by using a 24-hour recall questionnaire and analyzed by NUT IV software. The morningness-eveningness questionnaire (MEQ) was used to determine chronotypes. Results: There was a significant difference between the morning and evening groups in terms of the timing of lunch (P=0.004) and mid-afternoon snacks (P=0.04). There was no significant difference between mean energy intake in the morning and evening chronotypes in women who were overweight or obese (P=0.31). There was also no significant difference between morning and evening chronotypes in terms of the percentage of energy intake of meals and snacks (P>0.05). The only significant difference, detected between morning and evening chronotypes in normal-weight women, was for the percentage of energy intake after 3:00 PM. (P=0.008). Conclusion: The present study showed no effect of chronotype on obesity. However, energy intake calculations were based on self-reports, which could lead to information bias. Therefore, in future studies, researchers should carry out clinical trials while controlling food intake and considering meal timing. Keywords: Chronotype, Energy regulation, Obesity, Meal timing, Sleep patterns
Journal of Advances ... arrow_drop_down Journal of Advances in Medical and Biomedical ResearchArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30699/jambs.27.124.31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 38 Powered bymore_vert Journal of Advances ... arrow_drop_down Journal of Advances in Medical and Biomedical ResearchArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30699/jambs.27.124.31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A..., NSF | BII-Design: Exploring the...NSF| Collaborative Research: ABI Development: Creating a generic workflow for scaling up the production of species ranges ,NSF| BII-Design: Exploring the ecology and evolution of the global virome with big data and machine learningColin J. Carlson; Gregory F. Albery; Cory Merow; Christopher H. Trisos; Casey M. Zipfel; Evan A. Eskew; Kevin J. Olival; Noam Ross; Shweta Bansal;(Uploaded by Plazi for the Bat Literature Project) No abstract provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04788-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 474 citations 474 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04788-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | BIOWEB, EC | MERCESEC| BIOWEB ,EC| MERCESX. Corrales; M. Coll; E. Ofir; J. J. Heymans; J. Steenbeek; M. Goren; D. Edelist; G. Gal;AbstractUsing a temporal-dynamic calibrated Ecosim food web model, we assess the effects of future changes on marine resources and ecosystem conditions of the Israeli Mediterranean continental shelf. This region has been intensely invaded by Indo-Pacific species. The region is exposed to extreme environmental conditions, is subjected to high rates of climate change and has experienced intense fishing pressure. We test the impacts of a new set of fishing regulations currently being implemented, a continued increase in sea temperatures following IPCC projections, and a continued increase in alien species biomass. We first investigate the impacts of the stressors separately, and then we combine them to evaluate their cumulative effects. Our results show overall potential future benefits of fishing effort reductions, and detrimental impacts of increasing sea temperature and increasing biomass of alien species. Cumulative scenarios suggest that the beneficial effects of fisheries reduction may be dampened by the impact of increasing sea temperature and alien species when acting together. These results illustrate the importance of including stressors other than fisheries, such as climate change and biological invasions, in an ecosystem-based management approach. These results support the need for reducing local and regional stressors, such as fishing and biological invasions, in order to promote resilience to sea warming.
Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-32666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 93visibility views 93 download downloads 129 Powered bymore_vert Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-32666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2021Embargo end date: 01 Jan 2020 Germany, Colombia, ColombiaPublisher:Elsevier BV Jürgen Kurths; Jürgen Kurths; Xiaosong Chen; Hans Joachim Schellnhuber; Hans Joachim Schellnhuber; Josef Ludescher; Jingfang Fan; Jingfang Fan; Jun Meng; Jun Meng; Yosef Ashkenazy; Shlomo Havlin;Global climate change, extreme climate events, earthquakes and their accompanying natural disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks, strategic interactions and complex structure of the Earth system, the understanding and in particular the predicting of such disruptive events represent formidable challenges for both scientific and policy communities. During the past years, the emergence and evolution of Earth system science has attracted much attention and produced new concepts and frameworks. Especially, novel statistical physics and complex networks-based techniques have been developed and implemented to substantially advance our knowledge for a better understanding of the Earth system, including climate extreme events, earthquakes and Earth geometric relief features, leading to substantially improved predictive performances. We present here a comprehensive review on the recent scientific progress in the development and application of how combined statistical physics and complex systems science approaches such as, critical phenomena, network theory, percolation, tipping points analysis, as well as entropy can be applied to complex Earth systems (climate, earthquakes, etc.). Notably, these integrating tools and approaches provide new insights and perspectives for understanding the dynamics of the Earth systems. The overall aim of this review is to offer readers the knowledge on how statistical physics approaches can be useful in the field of Earth system science.
Publication Database... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physrep.2020.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 25visibility views 25 download downloads 90 Powered bymore_vert Publication Database... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physrep.2020.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2013 Germany, United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | EID: Effects of Deforesta..., NIH | NIH Directors Pioneer Awa..., NIH | EID - Effects of avian mi...NSF| EID: Effects of Deforestation on the Prevalence of Blood-Borne Pathogens in African Rainforest Birds. ,NIH| NIH Directors Pioneer Award ,NIH| EID - Effects of avian migration &anthropogenic change on the distribution &traTrevon Fuller; Anne W. Rimoin; Nathan D. Wolfe; Nathan D. Wolfe; Julia A. G. Shiplacoff; Wolfgang Buermann; James O. Lloyd-Smith; James O. Lloyd-Smith; Henri A. Thomassen; Henri A. Thomassen; Lisa E. Hensley; Matthew LeBreton; Emile Okitolonda; Hermann Meyer; Prime Mulembakani; Timothee L. Kinkela; Neville K. Kisalu; Robert L. Shongo; Sara C. Johnston; Jean-Jacques Muyembe; Seth Blumberg; Seth Blumberg; Linda L. Wright; Salvi Asefi-Najafabady; Salvi Asefi-Najafabady; Joseph N. Fair; Thomas B. Smith;(Uploaded by Plazi for the Bat Literature Project) Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4(th) Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts.
PLoS ONE arrow_drop_down eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaEberhard Karls University Tübingen: Publication SystemArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0066071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert PLoS ONE arrow_drop_down eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaEberhard Karls University Tübingen: Publication SystemArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0066071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, United Kingdom, DenmarkPublisher:Wiley Funded by:UKRI | Developing an integrated ...UKRI| Developing an integrated framework for investigating biodiversity responses to global environmental changeCarlos F. Ibáñez; Stéphanie Manel; John B. Taggart; Gareth Jones; Kirsty J. Park; Javier Juste; Hugo Rebelo; Hugo Rebelo; Orly Razgour; Orly Razgour; Orly Razgour; Antton Alberdi;pmid: 28649779
pmc: PMC6849758
AbstractClimate change is a major threat to global biodiversity that will produce a range of new selection pressures. Understanding species responses to climate change requires an interdisciplinary perspective, combining ecological, molecular and environmental approaches. We propose an applied integrated framework to identify populations under threat from climate change based on their extent of exposure, inherent sensitivity due to adaptive and neutral genetic variation and range shift potential. We consider intraspecific vulnerability and population‐level responses, an important but often neglected conservation research priority. We demonstrate how this framework can be applied to vertebrates with limited dispersal abilities using empirical data for the bat Plecotus austriacus. We use ecological niche modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to future changes. Combining outlier tests with genotype–environment association analysis, we identify potential climate‐adaptive SNPs in our genomic data set and differences in the frequency of adaptive and neutral variation between populations. We assess landscape connectivity and show that changing environmental suitability may limit the future movement of individuals, thus affecting both the ability of populations to shift their distribution to climatically suitable areas and the probability of evolutionary rescue through the spread of adaptive genetic variation among populations. Therefore, a better understanding of movement ecology and landscape connectivity is needed for predicting population persistence under climate change. Our study highlights the importance of incorporating genomic data to determine sensitivity, adaptive potential and range shift potential, instead of relying solely on exposure to guide species vulnerability assessments and conservation planning.
CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: http://dspace.stir.ac.uk/bitstream/1893/25785/1/Razgour_et_al-2018-Molecular_Ecology_Resources.pdfData sources: COREHyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/25785Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1755-0998.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 21visibility views 21 download downloads 213 Powered bymore_vert CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: http://dspace.stir.ac.uk/bitstream/1893/25785/1/Razgour_et_al-2018-Molecular_Ecology_Resources.pdfData sources: COREHyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/25785Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1755-0998.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Pensoft Publishers Authors: Wilian Costa; Tereza Giannini; Antonio Saraiva;doi: 10.3897/biss.4.59241
Ecosystem services provided by biodiversity are associated with supporting life on the planet. Climate change has negatively impacted biodiversity, altering the phenology and geographical distribution of species and the interaction between them. In megadiverse areas, such as tropical forests, studies of species interactions that consider all the species of flora and fauna are not feasible due to our limited knowledge of biodiversity and the necessity of extensive and costly fieldwork. Instead, Species Distribution Modelling (SDM) techniques can be used, together with other species information (e.g., pollination syndrome) as a proxy for these interactions to estimate spatial patterns of potential distribution dynamics. In this study, we modeled our process steps to obtain the estimated future climate shifts and identification of climatically stable areas over time. These areas may represent climatic refuges and future actions to increase the connectivity between them are strategies that could help mitigate potential future damage for biodiversity conservation. Our resulting evaluation data processing flow originated from our group process analysis applied to the Carajás region (Brazil) in which we identified the probable losses of nectarivorous bat species (pollinators), on the order of 66% (Costa et al. 2018); nectarivorous birds, on the order of 60% (Miranda et al. 2019); and bees, on the order of 85% (Giannini et al. 2020) until 2050. Our process, described using the Business Process Model and Notation (BPMN) is represented in Fig. 1. Our group is preparing a data paper with all of our generated data and programs/libraries to be released as soon as possible.
Biodiversity Informa... arrow_drop_down Biodiversity Information Science and StandardsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/biss.4.59241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 30 Powered bymore_vert Biodiversity Informa... arrow_drop_down Biodiversity Information Science and StandardsArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/biss.4.59241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016 AustraliaPublisher:Springer Science and Business Media LLC Authors: Narayan, Edward J. (R18852); Williams, Michelle;(Uploaded by Plazi for the Bat Literature Project) Since European settlement more than 10 % of Australia's native fauna have become extinct and the current picture reflects 46 % are at various vulnerability stages. Australia's iconic marsupial species, koala (Phascolarctos cinereus) is listed as vulnerable under national environmental law. Human population growth, road expansion and extensive land clearance have fragmented their eucalyptus habitat and reduced the ability of koalas to move across the tree canopy; making the species most vulnerable on the ground. Disease-principally chlamydia, road death, dog-attack and loss of habitat are key environmental pressures and the reasons why koalas are admitted for veterinary care. It is important to understand the dynamics of the physiological impacts that the koala faces from anthropogenic induced environmental challenges, especially on its essential biological functions (e.g. reproduction and immune system function). This review explores published literature and clinical data to identify key environmental stressors that are operating in mainland koala habitats, and while the focus is mostly on the koala, much of the information is analogous to other wildlife; the review may provide the impetus for future investigations involving other vulnerable native wildlife species (e.g. frogs). Oxalate nephrosis associated renal failure appears to be the most prevalent disease in koala populations from South Australia. Other key environmental stressors included heat stress, car impacts and dog attacks. It is possible that maternal stress, nutritional deprivation, dehydration and possible accumulation of oxalate in eucalyptus leaf increase mostly during drought periods impacting on fetal development. We hypothesize that chronic stress, particularly in urban and fringe zones, is creating very large barriers for conservation and recovery programs. Chronic stress in koalas is a result of the synergistic interplay between proximate environmental stressor/s (e.g. heat stress and fringe effects) acting on the already compromised kidney function, immune- and reproductive suppression. Furthermore, the effects of environmental pollutants in the aggravation of diseases such as kidney failure, reproductive suppression and suppression of the unique marsupial immune system should be researched. Environmental policies should be strengthened to increase human awareness of the threats facing the koala, increased funding support towards scientific research and the protection and creation of reserve habitats in urban areas and fringe zones. Global climate change, nutritional deprivation (loss of food sources), inappropriate fire management, invasive species and the loss of genetic diversity represent the complexities of environmental challenges impacting the koala biology.
BMC Zoology arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40850-016-0004-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert BMC Zoology arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40850-016-0004-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University Authors: Zhukov, Anatoliy; Gushcha, Sergey; Bobro, Elena;In this article, the author made an attempt to present and analyze issues related to global environmental problems, and in particular, the role of carbon dioxide in global warming. Well-known facts and unexpected findings are intended to awaken in the reader a critical attitude towards the prevailing beliefs in these matters. From the point of view of a chemist, the reality of extracting CO2 from air and converting it back into fuel is assessed. Simple energy calculations make it possible to assess the ability of "green" energy to replace carbon and influence the climate warming process. And finally, the key proposals are presented from the point of view of a technologist, since it is technologists who make real and implement the most daring discoveries and projects of scientists and inventors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12775/pps.2021.07.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 49visibility views 49 download downloads 37 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12775/pps.2021.07.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2017 United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Targeted Infusion Project...NSF| Targeted Infusion Project: Developing Quantitative Expertise in the Undergraduate Biology Curriculum (QEUBiC)Authors: Wollenberg Valero, Katharina C.; Isokpehi, Raphael D.; Douglas, Noah E.; Sivasundaram, Seenith; +3 AuthorsWollenberg Valero, Katharina C.; Isokpehi, Raphael D.; Douglas, Noah E.; Sivasundaram, Seenith; Johnson, Brianna; Wootson, Kiara; McGill, Ayana;pmid: 29134435
pmc: PMC6245028
AbstractEbola virus disease outbreaks in animals (including humans and great apes) start with sporadic host switches from unknown reservoir species. The factors leading to such spillover events are little explored. Filoviridae viruses have a wide range of natural hosts and are unstable once outside hosts. Spillover events, which involve the physical transfer of viral particles across species, could therefore be directly promoted by conditions of host ecology and environment. In this report we outline a proof of concept that temporal fluctuations of a set of ecological and environmental variables describing the dynamics of the host ecosystem are able to predict such events of Ebola virus spillover to humans and animals. We compiled a dataset of climate and plant phenology variables and Ebola virus disease spillovers in humans and animals. We identified critical biotic and abiotic conditions for spillovers via multiple regression and neural networks based time series regression. Phenology variables proved to be overall better predictors than climate variables. African phenology variables are not yet available as a comprehensive online resource. Given the likely importance of phenology for forecasting the likelihood of future Ebola spillover events, our results highlight the need for cost-effective transect surveys to supply phenology data for predictive modelling efforts.
bioRxiv arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10393-017-1288-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert bioRxiv arrow_drop_down University of Hull: Repository@HullArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10393-017-1288-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Farname, Inc. Authors: Yazdinezhad, Amirhossein; Askarpour, Moslem; Aboushamsia, Mohammad Mehdi; Asadi, Maryam; +1 AuthorsYazdinezhad, Amirhossein; Askarpour, Moslem; Aboushamsia, Mohammad Mehdi; Asadi, Maryam; Mansoori, Anahita;Background and Objective: Recent studies have shown a relationship between energy regulation and the circadian rhythm at behavioral, molecular, and physiological levels. The present study investigated the effect of chronotype on meal timing and obesity in Iranian housewives. Materials and Methods: This cross-sectional study was carried out using a convenience-sampling method through the participation of housewives living in Ahvaz in 2018. Anthropometric information was collected. To assess food intake timing, energy intake and sleep patterns during seven days of normal living were recorded by the researchers. Dietary information was obtained by using a 24-hour recall questionnaire and analyzed by NUT IV software. The morningness-eveningness questionnaire (MEQ) was used to determine chronotypes. Results: There was a significant difference between the morning and evening groups in terms of the timing of lunch (P=0.004) and mid-afternoon snacks (P=0.04). There was no significant difference between mean energy intake in the morning and evening chronotypes in women who were overweight or obese (P=0.31). There was also no significant difference between morning and evening chronotypes in terms of the percentage of energy intake of meals and snacks (P>0.05). The only significant difference, detected between morning and evening chronotypes in normal-weight women, was for the percentage of energy intake after 3:00 PM. (P=0.008). Conclusion: The present study showed no effect of chronotype on obesity. However, energy intake calculations were based on self-reports, which could lead to information bias. Therefore, in future studies, researchers should carry out clinical trials while controlling food intake and considering meal timing. Keywords: Chronotype, Energy regulation, Obesity, Meal timing, Sleep patterns
Journal of Advances ... arrow_drop_down Journal of Advances in Medical and Biomedical ResearchArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30699/jambs.27.124.31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 29visibility views 29 download downloads 38 Powered bymore_vert Journal of Advances ... arrow_drop_down Journal of Advances in Medical and Biomedical ResearchArticle . 2019 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30699/jambs.27.124.31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A..., NSF | BII-Design: Exploring the...NSF| Collaborative Research: ABI Development: Creating a generic workflow for scaling up the production of species ranges ,NSF| BII-Design: Exploring the ecology and evolution of the global virome with big data and machine learningColin J. Carlson; Gregory F. Albery; Cory Merow; Christopher H. Trisos; Casey M. Zipfel; Evan A. Eskew; Kevin J. Olival; Noam Ross; Shweta Bansal;(Uploaded by Plazi for the Bat Literature Project) No abstract provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04788-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 474 citations 474 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-022-04788-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | BIOWEB, EC | MERCESEC| BIOWEB ,EC| MERCESX. Corrales; M. Coll; E. Ofir; J. J. Heymans; J. Steenbeek; M. Goren; D. Edelist; G. Gal;AbstractUsing a temporal-dynamic calibrated Ecosim food web model, we assess the effects of future changes on marine resources and ecosystem conditions of the Israeli Mediterranean continental shelf. This region has been intensely invaded by Indo-Pacific species. The region is exposed to extreme environmental conditions, is subjected to high rates of climate change and has experienced intense fishing pressure. We test the impacts of a new set of fishing regulations currently being implemented, a continued increase in sea temperatures following IPCC projections, and a continued increase in alien species biomass. We first investigate the impacts of the stressors separately, and then we combine them to evaluate their cumulative effects. Our results show overall potential future benefits of fishing effort reductions, and detrimental impacts of increasing sea temperature and increasing biomass of alien species. Cumulative scenarios suggest that the beneficial effects of fisheries reduction may be dampened by the impact of increasing sea temperature and alien species when acting together. These results illustrate the importance of including stressors other than fisheries, such as climate change and biological invasions, in an ecosystem-based management approach. These results support the need for reducing local and regional stressors, such as fishing and biological invasions, in order to promote resilience to sea warming.
Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-32666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 93visibility views 93 download downloads 129 Powered bymore_vert Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-32666-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2021Embargo end date: 01 Jan 2020 Germany, Colombia, ColombiaPublisher:Elsevier BV Jürgen Kurths; Jürgen Kurths; Xiaosong Chen; Hans Joachim Schellnhuber; Hans Joachim Schellnhuber; Josef Ludescher; Jingfang Fan; Jingfang Fan; Jun Meng; Jun Meng; Yosef Ashkenazy; Shlomo Havlin;Global climate change, extreme climate events, earthquakes and their accompanying natural disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks, strategic interactions and complex structure of the Earth system, the understanding and in particular the predicting of such disruptive events represent formidable challenges for both scientific and policy communities. During the past years, the emergence and evolution of Earth system science has attracted much attention and produced new concepts and frameworks. Especially, novel statistical physics and complex networks-based techniques have been developed and implemented to substantially advance our knowledge for a better understanding of the Earth system, including climate extreme events, earthquakes and Earth geometric relief features, leading to substantially improved predictive performances. We present here a comprehensive review on the recent scientific progress in the development and application of how combined statistical physics and complex systems science approaches such as, critical phenomena, network theory, percolation, tipping points analysis, as well as entropy can be applied to complex Earth systems (climate, earthquakes, etc.). Notably, these integrating tools and approaches provide new insights and perspectives for understanding the dynamics of the Earth systems. The overall aim of this review is to offer readers the knowledge on how statistical physics approaches can be useful in the field of Earth system science.
Publication Database... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physrep.2020.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 25visibility views 25 download downloads 90 Powered bymore_vert Publication Database... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physrep.2020.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2013 Germany, United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | EID: Effects of Deforesta..., NIH | NIH Directors Pioneer Awa..., NIH | EID - Effects of avian mi...NSF| EID: Effects of Deforestation on the Prevalence of Blood-Borne Pathogens in African Rainforest Birds. ,NIH| NIH Directors Pioneer Award ,NIH| EID - Effects of avian migration &anthropogenic change on the distribution &traTrevon Fuller; Anne W. Rimoin; Nathan D. Wolfe; Nathan D. Wolfe; Julia A. G. Shiplacoff; Wolfgang Buermann; James O. Lloyd-Smith; James O. Lloyd-Smith; Henri A. Thomassen; Henri A. Thomassen; Lisa E. Hensley; Matthew LeBreton; Emile Okitolonda; Hermann Meyer; Prime Mulembakani; Timothee L. Kinkela; Neville K. Kisalu; Robert L. Shongo; Sara C. Johnston; Jean-Jacques Muyembe; Seth Blumberg; Seth Blumberg; Linda L. Wright; Salvi Asefi-Najafabady; Salvi Asefi-Najafabady; Joseph N. Fair; Thomas B. Smith;(Uploaded by Plazi for the Bat Literature Project) Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4(th) Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts.
PLoS ONE arrow_drop_down eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaEberhard Karls University Tübingen: Publication SystemArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0066071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert PLoS ONE arrow_drop_down eScholarship - University of CaliforniaArticle . 2013Data sources: eScholarship - University of CaliforniaEberhard Karls University Tübingen: Publication SystemArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0066071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu