- home
- Search
- Energy Research
- 7. Clean energy
- Energy Research
- 7. Clean energy
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Armando M. Leite da Silva; Jose F. da Costa Castro; Roy Billinton;This work presents a new method to evaluate generation reserve margins in systems with renewable sources. In assessing the adequacy of generation reserve amounts, besides failures in generating units, their capacity intermittencies, unavailability, and capacity limits of the transmission system are duly considered. Risk indices are evaluated using quasi-sequential Monte Carlo simulation techniques. The cross-entropy method is used to treat rare events and also to identify critical equipment for operation in each scenario. The proposed method is applied to the original IEEE RTS system and to a modified configuration with insertion of wind power plants. A subsystem of the Brazilian interconnected network is also used to illustrate the practicality of the proposed method.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Florin Ioan Bode; Titus Otniel Joldos; Gabriel Mihai Sirbu; Paul Danca; Costin Cosoiu; Ilinca Nastase;doi: 10.3390/en17122930
Thermal comfort is very important for the well-being and safety of vehicle occupants, as discomfort can elevate stress, leading to distracted attention and slower reaction times. This creates a riskier driving environment. Addressing this, high-induction air diffusers emerge as a significant innovation, enhancing indoor environmental quality (IEQ) by efficiently mixing cool air from the heating ventilation and air conditioning (HVAC) system with the cabin’s ambient air. This process ensures uniform airflow, diminishes temperature discrepancies, prevents draft sensations, and boosts overall air quality by improving air circulation. In addition to enhancing thermal comfort in vehicles, the novel air diffuser also offers significant potential for personalized ventilation systems, allowing for individualized control over airflow and temperature, thereby catering to the specific comfort needs of each occupant. This study introduces a novel air diffuser that demonstrates a 48% improvement in air entrainment compared to traditional diffusers, verified through Ansys Fluent simulations and laser Doppler velocimetry (LDV) measurements. At a fresh airflow rate of 31.79 m3/h, the total air entrainment rate at 0.6 m for the standard air diffuser is 73.36 m3/h, while for the innovative air diffuser, it is 109.26 m3/h. This solution has the potential to increase the level of thermal comfort and air quality within vehicles, and also signals potential applications across various enclosed spaces, underscoring its importance in advancing automotive safety and environmental standards.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2022Embargo end date: 01 Jan 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ana Radovanovic; Bokan Chen; Saurav Talukdar; Binz Roy; Alexandre Duarte; Mahya Shahbazi;Datacenter power demand has been continuously growing and is the key driver of its cost. An accurate mapping of compute resources (CPU, RAM, etc.) and hardware types (servers, accelerators, etc.) to power consumption has emerged as a critical requirement for major Web and cloud service providers. With the global growth in datacenter capacity and associated power consumption, such models are essential for important decisions around datacenter design and operation. In this paper, we discuss two classes of statistical power models designed and validated to be accurate, simple, interpretable and applicable to all hardware configurations and workloads across hyperscale datacenters of Google fleet. To the best of our knowledge, this is the largest scale power modeling study of this kind, in both the scope of diverse datacenter planning and real-time management use cases, as well as the variety of hardware configurations and workload types used for modeling and validation. We demonstrate that the proposed statistical modeling techniques, while simple and scalable, predict power with less than 5% Mean Absolute Percent Error (MAPE) for more than 95% diverse Power Distribution Units (more than 2000) using only 4 features. This performance matches the reported accuracy of the previous started-of-the-art methods, while using significantly less features and covering a wider range of use cases.
IEEE Transactions on... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IEEE Transactions on... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Michael Kornaros; George Grammatikopoulos; Eleni Koutra;pmid: 27866801
The aim of this study was to investigate the effectiveness of cultivating Parachlorella kessleri and Acutodesmus obliquus, in anaerobic digestion effluent (ADE) derived from the co-digestion of end-of-life dairy products with mixtures of agro-industrial wastes. To this end, their performance under sterile and non-sterile conditions and different ADE loadings was evaluated, in terms of biomass and lipid production, nutrient removal efficiency and vitality of the photosynthetic apparatus. 10% (v/v) ADE loading inhibited growth over 9-12days of cultivation, however biomass yields of 1.1 and 1gL-1, 22.7% and 19.5% (w/w) fatty acids concentration, as well as NH3-N assimilation of 49.7mgL-1 and 32.3mgL-1 and TP removal of 84.2% and 84% were recorded for P. kessleri and A. obliquus, respectively. Among all the ADE-based treatments tested, P. kessleri outperformed A. obliquus, with no differences observed between sterilized and non-sterilized ADE.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Mohammed Alktranee; Bencs Péter;A large part of incident solar radiation on photovoltaic (PV) modules is converted into heat, leading to overheating and reduction of PV modules performance. The present work investigates the impact of rectangular aluminium fins (RAFs) and evaporative cooling represented by cotton wicks immersed water (CWWs) on the performance and thermal behaviour of the PV module. Results indicate that the evaporative cooling attained better cooling potential than RAFs, in which the PV module temperature was reduced by 22.3%, and the output power was enhanced by 73% thanks to continuous cooling of the PV module. A slight improvement in the PV module performance was observed with RAFs due to the increased heat transfer area, which reduced temperature by up to 6.7% and increased the output power of the PV module by up to 21.3 %. Exergy analysis shows a gradual increment of the electrical exergy and exergy efficiency using CWWs, which reduces the entropy generation of it more than RAFs. The study concluded that PV modules without cooling in hot climate areas may deteriorate their performance significantly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object , Article , Part of book or chapter of book 2016 Malaysia, United Kingdom, MalaysiaPublisher:IEEE Authors: Freier, Daria; Muhammad Sukki, Firdaus; Abu Bakar, Siti Hawa; Ramirez Iniguez, Roberto; +4 AuthorsFreier, Daria; Muhammad Sukki, Firdaus; Abu Bakar, Siti Hawa; Ramirez Iniguez, Roberto; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Mas'ud, Abdullahi Abubakar; Bani, Nurul Aini;This paper evaluates the performance of a recently patented rotationally asymmetrical dielectric totally internally reflective concentrator (RADTIRC) under diffuse radiation. The RADTIRC has a geometrical concentration gain of 4.969 and two half acceptance angles of ± 30° and ± 40° along the x-axis and z-axis respectively. Simulation and experimental work have been carried out to determine the optical concentration gain under diffuse radiation. It was found that the RADTIRC has an optical concentration gain of 1.94 under diffuse irradiance. The experimental results for the single concentrator showed an optoelectronic gain of 2.13, giving a difference of 9.8% due to factors such as the presence of direct radiation during experiments, the increase in diffuse radiation due to the reflection from surrounded buildings as well as from the ground reflection.
https://rgu-reposito... arrow_drop_down Multimedia University, Malaysia: SHDL@MMU Digital RepositoryPart of book or chapter of book . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert https://rgu-reposito... arrow_drop_down Multimedia University, Malaysia: SHDL@MMU Digital RepositoryPart of book or chapter of book . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Mohamed Samer; Omar Hijazi; Badr A. Mohamed; Essam M. Abdelsalam; Mariam A. Amer; Ibrahim H. Yacoub; Yasser A. Attia; Heinz Bernhardt;Bioplastics are alternatives of conventional petroleum-based plastics. Bioplastics are polymers processed from renewable sources and are biodegradable. This study aims at conducting an environmental impact assessment of the bioprocessing of agricultural wastes into bioplastics compared to petro-plastics using an LCA approach. Bioplastics were produced from potato peels in laboratory. In a biochemical reaction under heating, starch was extracted from peels and glycerin, vinegar and water were added with a range of different ratios, which resulted in producing different samples of bio-based plastics. Nevertheless, the environmental impact of the bioplastics production process was evaluated and compared to petro-plastics. A life cycle analysis of bioplastics produced in laboratory and petro-plastics was conducted. The results are presented in the form of global warming potential, and other environmental impacts including acidification potential, eutrophication potential, freshwater ecotoxicity potential, human toxicity potential, and ozone layer depletion of producing bioplastics are compared to petro-plastics. The results show that the greenhouse gases (GHG) emissions, through the different experiments to produce bioplastics, range between 0.354 and 0.623 kg CO2 eq. per kg bioplastic compared to 2.37 kg CO2 eq. per kg polypropylene as a petro-plastic. The results also showed that there are no significant potential effects for the bioplastics produced from potato peels on different environmental impacts in comparison with poly-β-hydroxybutyric acid and polypropylene. Thus, the bioplastics produced from agricultural wastes can be manufactured in industrial scale to reduce the dependence on petroleum-based plastics. This in turn will mitigate GHG emissions and reduce the negative environmental impacts on climate change.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:MDPI AG Funded by:EC | CoreSenseEC| CoreSenseAuthors: Rafael Perez-Segui; Pedro Arias-Perez; Javier Melero-Deza; Miguel Fernandez-Cortizas; +2 AuthorsRafael Perez-Segui; Pedro Arias-Perez; Javier Melero-Deza; Miguel Fernandez-Cortizas; David Perez-Saura; Pascual Campoy;handle: 10261/369214
The utilization of autonomous unmanned aerial vehicles (UAVs) has increased rapidly due to their ability to perform a variety of tasks, including industrial inspection. Conducting testing with actual flights within industrial facilities proves to be both expensive and hazardous, posing risks to the system, the facilities, and their personnel. This paper presents an innovative and reliable methodology for developing such applications, ensuring safety and efficiency throughout the process. It involves a staged transition from simulation to reality, wherein various components are validated at each stage. This iterative approach facilitates error identification and resolution, enabling subsequent real flights to be conducted with enhanced safety after validating the remainder of the system. Furthermore, this article showcases two use cases: wind turbine inspection and photovoltaic plant inspection. By implementing the suggested methodology, these applications were successfully developed in an efficient and secure manner.
Aerospace arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Aerospace arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:UKRI | Retrofit PlusUKRI| Retrofit PlusAuthors: Ljubomir Jankovic;Abstract The article introduces the process of deep energy retrofit carried out on a residential building in the UK, using a ‘TCosy’ approach in which the existing building is completely surrounded by a new thermal envelope. It reports on the entire process, from establishing the characteristics of the existing building, carrying out design simulations, documenting the off- site manufacture and on-site installation, and carrying out instrumental monitoring, occupant studies and performance evaluation. Multi-objective optimisation is used throughout the process, for establishing the characteristics of the building before the retrofit, conducting the design simulations, and evaluating the success of the completed retrofit. Building physics parameters before and after retrofit are evaluated in an innovative way through simulation of dynamic heating tests with calibrated models, and the method can be used as quality control measure in future retrofit programmes. New insights are provided into retrofit economics in the context of occupants’ health and wellbeing improvements. The wide scope of the lessons learnt can be instrumental in the creation of continuing professional development programmes, university courses, and public education that raises awareness and demand. These lessons can also be valuable for development of new funding schemes that address the outstanding challenges and the need for updating technical reference material, informing policy and building regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Makiko Ukai; Hiroaki Tanaka; Hideki Tanaka; Masaya Okumiya;Abstract In hot and humid climate such as in Japan and south east Asia, dehumidification in summer is really important for air conditioning. Temperature and humidity independent control (THIC) of air conditioning system can handle sensible heat and latent heat separately, and provide good indoor environment and achieve energy conservation. Desiccant air handling unit is one of the major solution for THIC of air conditioning system. It needs hot water to regenerate sorbent which absorbs moist in the air. Combined heat and power can supply hot water at almost constant temperature for desiccant air handling system and also contribute to the business continuity plan of commercial buildings. However, there are still uncertainties about the factors which affect energy performance of desiccant air handling unit and the optimum design and operations in hot and humid climate. The objectives of this paper are to prove factors which affect energy performance of desiccant air handling unit by measurement analysis and show optimum condition of the desiccant air handling unit under various room conditions by simulation. Measurement analysis shows that energy performance of desiccant air handling unit depends not only on the inlet air condition to dehumidification wheel but also on designed supply air humidity. Furthermore, simulation results show the optimum inlet air condition entering dehumidification wheel under various supply air absolute humidity which is determined by design room conditions. These results provide useful information of desiccant air handling unit during design and operation phase of buildings in hot and humid climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Armando M. Leite da Silva; Jose F. da Costa Castro; Roy Billinton;This work presents a new method to evaluate generation reserve margins in systems with renewable sources. In assessing the adequacy of generation reserve amounts, besides failures in generating units, their capacity intermittencies, unavailability, and capacity limits of the transmission system are duly considered. Risk indices are evaluated using quasi-sequential Monte Carlo simulation techniques. The cross-entropy method is used to treat rare events and also to identify critical equipment for operation in each scenario. The proposed method is applied to the original IEEE RTS system and to a modified configuration with insertion of wind power plants. A subsystem of the Brazilian interconnected network is also used to illustrate the practicality of the proposed method.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Florin Ioan Bode; Titus Otniel Joldos; Gabriel Mihai Sirbu; Paul Danca; Costin Cosoiu; Ilinca Nastase;doi: 10.3390/en17122930
Thermal comfort is very important for the well-being and safety of vehicle occupants, as discomfort can elevate stress, leading to distracted attention and slower reaction times. This creates a riskier driving environment. Addressing this, high-induction air diffusers emerge as a significant innovation, enhancing indoor environmental quality (IEQ) by efficiently mixing cool air from the heating ventilation and air conditioning (HVAC) system with the cabin’s ambient air. This process ensures uniform airflow, diminishes temperature discrepancies, prevents draft sensations, and boosts overall air quality by improving air circulation. In addition to enhancing thermal comfort in vehicles, the novel air diffuser also offers significant potential for personalized ventilation systems, allowing for individualized control over airflow and temperature, thereby catering to the specific comfort needs of each occupant. This study introduces a novel air diffuser that demonstrates a 48% improvement in air entrainment compared to traditional diffusers, verified through Ansys Fluent simulations and laser Doppler velocimetry (LDV) measurements. At a fresh airflow rate of 31.79 m3/h, the total air entrainment rate at 0.6 m for the standard air diffuser is 73.36 m3/h, while for the innovative air diffuser, it is 109.26 m3/h. This solution has the potential to increase the level of thermal comfort and air quality within vehicles, and also signals potential applications across various enclosed spaces, underscoring its importance in advancing automotive safety and environmental standards.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2022Embargo end date: 01 Jan 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Ana Radovanovic; Bokan Chen; Saurav Talukdar; Binz Roy; Alexandre Duarte; Mahya Shahbazi;Datacenter power demand has been continuously growing and is the key driver of its cost. An accurate mapping of compute resources (CPU, RAM, etc.) and hardware types (servers, accelerators, etc.) to power consumption has emerged as a critical requirement for major Web and cloud service providers. With the global growth in datacenter capacity and associated power consumption, such models are essential for important decisions around datacenter design and operation. In this paper, we discuss two classes of statistical power models designed and validated to be accurate, simple, interpretable and applicable to all hardware configurations and workloads across hyperscale datacenters of Google fleet. To the best of our knowledge, this is the largest scale power modeling study of this kind, in both the scope of diverse datacenter planning and real-time management use cases, as well as the variety of hardware configurations and workload types used for modeling and validation. We demonstrate that the proposed statistical modeling techniques, while simple and scalable, predict power with less than 5% Mean Absolute Percent Error (MAPE) for more than 95% diverse Power Distribution Units (more than 2000) using only 4 features. This performance matches the reported accuracy of the previous started-of-the-art methods, while using significantly less features and covering a wider range of use cases.
IEEE Transactions on... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IEEE Transactions on... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Michael Kornaros; George Grammatikopoulos; Eleni Koutra;pmid: 27866801
The aim of this study was to investigate the effectiveness of cultivating Parachlorella kessleri and Acutodesmus obliquus, in anaerobic digestion effluent (ADE) derived from the co-digestion of end-of-life dairy products with mixtures of agro-industrial wastes. To this end, their performance under sterile and non-sterile conditions and different ADE loadings was evaluated, in terms of biomass and lipid production, nutrient removal efficiency and vitality of the photosynthetic apparatus. 10% (v/v) ADE loading inhibited growth over 9-12days of cultivation, however biomass yields of 1.1 and 1gL-1, 22.7% and 19.5% (w/w) fatty acids concentration, as well as NH3-N assimilation of 49.7mgL-1 and 32.3mgL-1 and TP removal of 84.2% and 84% were recorded for P. kessleri and A. obliquus, respectively. Among all the ADE-based treatments tested, P. kessleri outperformed A. obliquus, with no differences observed between sterilized and non-sterilized ADE.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Mohammed Alktranee; Bencs Péter;A large part of incident solar radiation on photovoltaic (PV) modules is converted into heat, leading to overheating and reduction of PV modules performance. The present work investigates the impact of rectangular aluminium fins (RAFs) and evaporative cooling represented by cotton wicks immersed water (CWWs) on the performance and thermal behaviour of the PV module. Results indicate that the evaporative cooling attained better cooling potential than RAFs, in which the PV module temperature was reduced by 22.3%, and the output power was enhanced by 73% thanks to continuous cooling of the PV module. A slight improvement in the PV module performance was observed with RAFs due to the increased heat transfer area, which reduced temperature by up to 6.7% and increased the output power of the PV module by up to 21.3 %. Exergy analysis shows a gradual increment of the electrical exergy and exergy efficiency using CWWs, which reduces the entropy generation of it more than RAFs. The study concluded that PV modules without cooling in hot climate areas may deteriorate their performance significantly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Conference object , Article , Part of book or chapter of book 2016 Malaysia, United Kingdom, MalaysiaPublisher:IEEE Authors: Freier, Daria; Muhammad Sukki, Firdaus; Abu Bakar, Siti Hawa; Ramirez Iniguez, Roberto; +4 AuthorsFreier, Daria; Muhammad Sukki, Firdaus; Abu Bakar, Siti Hawa; Ramirez Iniguez, Roberto; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Mas'ud, Abdullahi Abubakar; Bani, Nurul Aini;This paper evaluates the performance of a recently patented rotationally asymmetrical dielectric totally internally reflective concentrator (RADTIRC) under diffuse radiation. The RADTIRC has a geometrical concentration gain of 4.969 and two half acceptance angles of ± 30° and ± 40° along the x-axis and z-axis respectively. Simulation and experimental work have been carried out to determine the optical concentration gain under diffuse radiation. It was found that the RADTIRC has an optical concentration gain of 1.94 under diffuse irradiance. The experimental results for the single concentrator showed an optoelectronic gain of 2.13, giving a difference of 9.8% due to factors such as the presence of direct radiation during experiments, the increase in diffuse radiation due to the reflection from surrounded buildings as well as from the ground reflection.
https://rgu-reposito... arrow_drop_down Multimedia University, Malaysia: SHDL@MMU Digital RepositoryPart of book or chapter of book . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert https://rgu-reposito... arrow_drop_down Multimedia University, Malaysia: SHDL@MMU Digital RepositoryPart of book or chapter of book . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Mohamed Samer; Omar Hijazi; Badr A. Mohamed; Essam M. Abdelsalam; Mariam A. Amer; Ibrahim H. Yacoub; Yasser A. Attia; Heinz Bernhardt;Bioplastics are alternatives of conventional petroleum-based plastics. Bioplastics are polymers processed from renewable sources and are biodegradable. This study aims at conducting an environmental impact assessment of the bioprocessing of agricultural wastes into bioplastics compared to petro-plastics using an LCA approach. Bioplastics were produced from potato peels in laboratory. In a biochemical reaction under heating, starch was extracted from peels and glycerin, vinegar and water were added with a range of different ratios, which resulted in producing different samples of bio-based plastics. Nevertheless, the environmental impact of the bioplastics production process was evaluated and compared to petro-plastics. A life cycle analysis of bioplastics produced in laboratory and petro-plastics was conducted. The results are presented in the form of global warming potential, and other environmental impacts including acidification potential, eutrophication potential, freshwater ecotoxicity potential, human toxicity potential, and ozone layer depletion of producing bioplastics are compared to petro-plastics. The results show that the greenhouse gases (GHG) emissions, through the different experiments to produce bioplastics, range between 0.354 and 0.623 kg CO2 eq. per kg bioplastic compared to 2.37 kg CO2 eq. per kg polypropylene as a petro-plastic. The results also showed that there are no significant potential effects for the bioplastics produced from potato peels on different environmental impacts in comparison with poly-β-hydroxybutyric acid and polypropylene. Thus, the bioplastics produced from agricultural wastes can be manufactured in industrial scale to reduce the dependence on petroleum-based plastics. This in turn will mitigate GHG emissions and reduce the negative environmental impacts on climate change.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:MDPI AG Funded by:EC | CoreSenseEC| CoreSenseAuthors: Rafael Perez-Segui; Pedro Arias-Perez; Javier Melero-Deza; Miguel Fernandez-Cortizas; +2 AuthorsRafael Perez-Segui; Pedro Arias-Perez; Javier Melero-Deza; Miguel Fernandez-Cortizas; David Perez-Saura; Pascual Campoy;handle: 10261/369214
The utilization of autonomous unmanned aerial vehicles (UAVs) has increased rapidly due to their ability to perform a variety of tasks, including industrial inspection. Conducting testing with actual flights within industrial facilities proves to be both expensive and hazardous, posing risks to the system, the facilities, and their personnel. This paper presents an innovative and reliable methodology for developing such applications, ensuring safety and efficiency throughout the process. It involves a staged transition from simulation to reality, wherein various components are validated at each stage. This iterative approach facilitates error identification and resolution, enabling subsequent real flights to be conducted with enhanced safety after validating the remainder of the system. Furthermore, this article showcases two use cases: wind turbine inspection and photovoltaic plant inspection. By implementing the suggested methodology, these applications were successfully developed in an efficient and secure manner.
Aerospace arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Aerospace arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:UKRI | Retrofit PlusUKRI| Retrofit PlusAuthors: Ljubomir Jankovic;Abstract The article introduces the process of deep energy retrofit carried out on a residential building in the UK, using a ‘TCosy’ approach in which the existing building is completely surrounded by a new thermal envelope. It reports on the entire process, from establishing the characteristics of the existing building, carrying out design simulations, documenting the off- site manufacture and on-site installation, and carrying out instrumental monitoring, occupant studies and performance evaluation. Multi-objective optimisation is used throughout the process, for establishing the characteristics of the building before the retrofit, conducting the design simulations, and evaluating the success of the completed retrofit. Building physics parameters before and after retrofit are evaluated in an innovative way through simulation of dynamic heating tests with calibrated models, and the method can be used as quality control measure in future retrofit programmes. New insights are provided into retrofit economics in the context of occupants’ health and wellbeing improvements. The wide scope of the lessons learnt can be instrumental in the creation of continuing professional development programmes, university courses, and public education that raises awareness and demand. These lessons can also be valuable for development of new funding schemes that address the outstanding challenges and the need for updating technical reference material, informing policy and building regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Makiko Ukai; Hiroaki Tanaka; Hideki Tanaka; Masaya Okumiya;Abstract In hot and humid climate such as in Japan and south east Asia, dehumidification in summer is really important for air conditioning. Temperature and humidity independent control (THIC) of air conditioning system can handle sensible heat and latent heat separately, and provide good indoor environment and achieve energy conservation. Desiccant air handling unit is one of the major solution for THIC of air conditioning system. It needs hot water to regenerate sorbent which absorbs moist in the air. Combined heat and power can supply hot water at almost constant temperature for desiccant air handling system and also contribute to the business continuity plan of commercial buildings. However, there are still uncertainties about the factors which affect energy performance of desiccant air handling unit and the optimum design and operations in hot and humid climate. The objectives of this paper are to prove factors which affect energy performance of desiccant air handling unit by measurement analysis and show optimum condition of the desiccant air handling unit under various room conditions by simulation. Measurement analysis shows that energy performance of desiccant air handling unit depends not only on the inlet air condition to dehumidification wheel but also on designed supply air humidity. Furthermore, simulation results show the optimum inlet air condition entering dehumidification wheel under various supply air absolute humidity which is determined by design room conditions. These results provide useful information of desiccant air handling unit during design and operation phase of buildings in hot and humid climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
