- home
- Search
- Energy Research
- 13. Climate action
- 12. Responsible consumption
- University of Melbourne
- Energy Research
- 13. Climate action
- 12. Responsible consumption
- University of Melbourne
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, AustraliaPublisher:AMPCo Martina K. Linnenluecke; Arunima Malik; Peng Bi; Sinead Boylan; Ivan Hanigan; Stefan Trueck; Paul J. Beggs; Ying Zhang; Robyn Alders; Hilary Bambrick; Geoffrey G. Morgan; Elizabeth G. Hanna; Nick Watts; Helen L. Berry; Anthony Capon; Shilu Tong; Shilu Tong; Yuming Guo; Mark Stevenson; Donna Green;doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
Climate plays an important role in human health and it is well established that climate change can have very significant impacts in this regard. In partnership with The Lancet and the MJA, we present the inaugural Australian Countdown assessment of progress on climate change and health. This comprehensive assessment examines 41 indicators across five broad sections: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. These indicators and the methods used for each are largely consistent with those of the Lancet Countdown global assessment published in October 2017, but with an Australian focus. Significant developments include the addition of a new indicator on mental health. Overall, we find that Australia is vulnerable to the impacts of climate change on health, and that policy inaction in this regard threatens Australian lives. In a number of respects, Australia has gone backwards and now lags behind other high income countries such as Germany and the United Kingdom. Examples include the persistence of a very high carbon-intensive energy system in Australia, and its slow transition to renewables and low carbon electricity generation. However, we also find some examples of good progress, such as heatwave response planning. Given the overall poor state of progress on climate change and health in Australia, this country now has an enormous opportunity to take action and protect human health and lives. Australia has the technical knowhow and intellect to do this, and our annual updates of this assessment will track Australia's engagement with and progress on this vitally important issue.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustraliaPublisher:Wiley Authors: Matthew Tom Harrison; Brendan Richard Cullen; Dianne Elizabeth Mayberry; Annette Louise Cowie; +7 AuthorsMatthew Tom Harrison; Brendan Richard Cullen; Dianne Elizabeth Mayberry; Annette Louise Cowie; Franco Bilotto; Warwick Brabazon Badgery; Ke Liu; Thomas Davison; Karen Michelle Christie; Albert Muleke; Richard John Eckard;AbstractLivestock have long been integral to food production systems, often not by choice but by need. While our knowledge of livestock greenhouse gas (GHG) emissions mitigation has evolved, the prevailing focus has been—somewhat myopically—on technology applications associated with mitigation. Here, we (1) examine the global distribution of livestock GHG emissions, (2) explore social, economic and environmental co‐benefits and trade‐offs associated with mitigation interventions and (3) critique approaches for quantifying GHG emissions. This review uncovered many insights. First, while GHG emissions from ruminant livestock are greatest in low‐ and middle‐income countries (LMIC; globally, 66% of emissions are produced by Latin America and the Caribbean, East and southeast Asia and south Asia), the majority of mitigation strategies are designed for developed countries. This serious concern is heightened by the fact that 80% of growth in global meat production over the next decade will occur in LMIC. Second, few studies concurrently assess social, economic and environmental aspects of mitigation. Of the 54 interventions reviewed, only 16 had triple‐bottom line benefit with medium–high mitigation potential. Third, while efforts designed to stimulate the adoption of strategies allowing both emissions reduction (ER) and carbon sequestration (CS) would achieve the greatest net emissions mitigation, CS measures have greater potential mitigation and co‐benefits. The scientific community must shift attention away from the prevailing myopic lens on carbon, towards more holistic, systems‐based, multi‐metric approaches that carefully consider the raison d'être for livestock systems. Consequential life cycle assessments and systems‐aligned ‘socio‐economic planetary boundaries’ offer useful starting points that may uncover leverage points and cross‐scale emergent properties. The derivation of harmonized, globally reconciled sustainability metrics requires iterative dialogue between stakeholders at all levels. Greater emphasis on the simultaneous characterization of multiple sustainability dimensions would help avoid situations where progress made in one area causes maladaptive outcomes in other areas.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/289432Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/289432Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, AustraliaPublisher:American Geophysical Union (AGU) Funded by:ARC | Discovery Early Career Re..., ARC | Future Fellowships - Gran..., ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE160100092 ,ARC| Future Fellowships - Grant ID: FT170100106 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638Authors: Sophie C. Lewis; Andrew D. King; Sarah E. Perkins‐Kirkpatrick; Michael F. Wehner;doi: 10.1029/2019ef001273
handle: 11343/290355
AbstractExtreme event attribution studies attempt to quantify the role of human influences in observed weather and climate extremes. These studies are of broad scientific and public interest, although quantitative results (e.g., that a specific event was made a specific number of times more likely because of anthropogenic forcings) can be difficult to communicate accurately to a variety of audiences and difficult for audiences to interpret. Here, we focus on how results of these studies can be effectively communicated using standardized language and propose, for the first time, a set of calibrated terms to describe event attribution results. Using these terms and an accompanying visual guide, results are presented in terms of likelihood of event changes and the associated uncertainties. This standardized language will allow clearer communication and interpretation of probabilities by the public and stakeholders.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/2w54r9b2Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/290355Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/2w54r9b2Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/290355Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Funded by:NSF | SRN: Urban Water Innovati...NSF| SRN: Urban Water Innovation Network (U-WIN): Transitioning Toward Sustainable Urban Water SystemsHongshan Guo; Eric Teitelbaum; Gideon Aschwanden; Marcel Bruelisauer; Forrest Meggers; Laura Salazar;Abstract Temperatures in cities are amplified through the urban heat island effect by anthropogenic heat emissions into microclimates. The trapping of solar energy in urban canyons plays the most significant role. Our analysis, however, considers how urban air conditioning systems influence their local microclimate. Using models and simple observations we demonstrate how the heat rejected from these machines creates a direct feedback on the machine performance. Thermodynamically, the temperature of the environment directly controls the efficiency of the common refrigeration cycle found in air conditioning systems via the second law. A city, with its complex topography of urban canyons and skyscrapers, produces small microclimates with varying temperatures. This project investigates three urban settings that create microclimates that are detrimental for the efficiency of cooling in New York. First, the overall urban heat island effect, second the effect of roof temperature on rooftop package air conditioning units, and third the impact of local heat emission from agglomerations of window air conditioners. The efficiency loss is investigated by considering the range of temperature changes that can be observed in the surrounding environment of air conditioning systems, and determining the subsequent impact on the Coefficient of Performance (COP). Our COP analyses indicate a range of potential energy increases of around 7%–47% due to increases in environmental temperature around air conditioners. An analysis of the building stock of New York City showed that the annual electrical energy demand is potentially increased by these effects by nearly 10 PJ (3000 GWh) combined, which is more than 10% of the total cooling demand for the city.
Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2016.08.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2016.08.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 NetherlandsPublisher:Public Library of Science (PLoS) Kriticos, Darren J.; Brunel, Sarah; Ota, Noboru; Fried, Guillaume; Oude Lansink, A.G.J.M.; Panetta, F.D.; Prasad, T.V.R.; Shabbir, Asad; Yaacoby, Tuvia;Pest Risk Assessments (PRAs) routinely employ climatic niche models to identify endangered areas. Typically, these models consider only climatic factors, ignoring the 'Swiss Cheese' nature of species ranges due to the interplay of climatic and habitat factors. As part of a PRA conducted for the European and Mediterranean Plant Protection Organization, we developed a climatic niche model for Parthenium hysterophorus, explicitly including the effects of irrigation where it was known to be practiced. We then downscaled the climatic risk model using two different methods to identify the suitable habitat types: expert opinion (following the EPPO PRA guidelines) and inferred from the global spatial distribution. The PRA revealed a substantial risk to the EPPO region and Central and Western Africa, highlighting the desirability of avoiding an invasion by P. hysterophorus. We also consider the effects of climate change on the modelled risks. The climate change scenario indicated the risk of substantial further spread of P. hysterophorus in temperate northern hemisphere regions (North America, Europe and the northern Middle East), and also high elevation equatorial regions (Western Brazil, Central Africa, and South East Asia) if minimum temperatures increase substantially. Downscaling the climate model using habitat factors resulted in substantial (approximately 22-53%) reductions in the areas estimated to be endangered. Applying expert assessments as to suitable habitat classes resulted in the greatest reduction in the estimated endangered area, whereas inferring suitable habitats factors from distribution data identified more land use classes and a larger endangered area. Despite some scaling issues with using a globally conformal Land Use Systems dataset, the inferential downscaling method shows promise as a routine addition to the PRA toolkit, as either a direct model component, or simply as a means of better informing an expert assessment of the suitable habitat types.
PLoS ONE arrow_drop_down Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0132807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0132807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 France, Brazil, France, Australia, NorwayPublisher:Public Library of Science (PLoS) A. C. Wolfaardt; Valeria Ruoppolo; Valeria Ruoppolo; Phoebe Barnard; Lesley Hughes; Linda J. Beaumont; Marie R. Keatley; Res Altwegg; Joël M. Durant; Ralph Eric Thijl Vanstreels; Patrícia C. Morellato; Eric J. Woehler; Christophe Barbraud; Elvira S. Poloczanska; Robert J. M. Crawford; Matthew Low; Lynda E. Chambers;Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically supported.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/11343/265103Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 201 citations 201 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 37 Powered bymore_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/11343/265103Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Authors: Karen Stenner; Zim Nwokora;doi: 10.3390/en8064899
Empirical studies of public opinion on environmental protection have typically been grounded in Inglehart’s post-materialism thesis, proposing that societal affluence encourages materially-sated publics to look beyond their interests and value the environment. These studies are generally conducted within, or at best across, Western, democratic, industrialized countries. Absence of truly cross-cultural research means the theory’s limitations have gone undetected. This article draws on an exceptionally broad dataset—pooling cross-sectional survey data from 80 countries, each sampled at up to three different points over 15 years—to investigate environmental attitudes. We find that post-materialism provides little account of pro-environment attitudes across diverse cultures, and a far from adequate explanation even in the affluent West. We suggest that unique domestic interests, more than broad value systems, are driving emerging global trends in environmental attitudes. The environment’s future champions may be the far from ‘post-material’ citizens of those developing nations most at risk of real material harm from climate change and environmental degradation.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/6/4899/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8064899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/6/4899/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8064899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Oxford University Press (OUP) Li-Mei Zhang; Zhongling Yang; Ju-Pei Shen; Ji-Zheng He; Ji-Zheng He; Hongyan Han; Shiqiang Wan; Yi-Fei Sun; Cui-Jing Zhang; Jun-Tao Wang;Global climate change could have profound effects on belowground microbial communities and subsequently affect soil biogeochemical processes. The interactive effects of multiple co-occurring climate change factors on microbially mediated processes are not well understood. A four-factorial field experiment with elevated CO2, watering, nitrogen (N) addition and night warming was conducted in a temperate steppe of northern China. Real-time polymerase chain reaction and terminal-restriction fragment length polymorphism, combined with clone library techniques, were applied to examine the effects of those climate change factors on N-related microbial abundance and community composition. Only the abundance of ammonia-oxidizing bacteria significantly increased by nitrogen addition and decreased by watering. The interactions of watering × warming on the bacterial amoA community and warming × nitrogen addition on the nosZ community were found. Redundancy analysis indicated that the ammonia-oxidizing archaeal community was affected by total N and total carbon, while the community of bacterial amoA and nosZ were significantly affected by soil pH. According to a structural equation modeling analysis, climate change influenced net primary production indirectly by altering microbial abundance and activities. These results indicated that microbial responses to the combination of chronic global change tend to be smaller than expected from single-factor global change manipulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsec/fix037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsec/fix037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Nima Izadyar; Wendy Miller; Behzad Rismanchi; Veronica Garcia-Hansen;Balconies could enhance natural ventilation (NV) and reduce reliance on mechanical ventilation in cooling dominant climates. Indoor environment and thermal comfort under NV mode are usually less predictable than Mechanical Ventilation (MV), and balcony geometry's impacts on these parameters have not yet been classified. This study aims to investigate the effects of balcony depth and door opening scale on the NV performance and thermal comfort of the attached Livingroom. The present article conducted a 3D – steady-state Computational Fluid Dynamics (CFD) simulations using ANSYS Fluent. The simulation results were validated against measured data in a residential high-rise building in subtropical Brisbane, Australia. Five different openings and nine depth scenarios are defined as configuration tests. The simulation results reveal that both the opening and depth sizes affected the Indoor Air Distribution (IAD), mean Indoor Air Velocity (IAV) and temperature, while these effects are not identical in the defined scenarios and opening size had more significant effects. The smaller openings, including the case study, led to a better thermal comfort than other scenarios. Contrary, the smaller depth sizes (less than 2 m) led to a non-uniform and unstable IAD at the attached Livingroom. The best thermal comfort and the highest IAV also occurred, respectively, in the deeper balconies with 35 and 30% depth ratio. Finally, a comparison between the findings and literature reveals the balcony's depth scale effects on mean IAV significantly depends on the orientation of buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.106847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.106847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 AustraliaPublisher:BMJ Zerina Lokmic-Tomkins; Dinesh Bhandari; Jessica Watterson; Wendy E Pollock; Lindy Cochrane; Eddie Robinson; Tin Tin Su;IntroductionGrowing evidence suggests that climate change-related extreme weather events adversely impact maternal and child health (MCH) outcomes, which requires effective, sustainable and culturally appropriate interventions at individual, community and policy levels to minimise these impacts. This scoping review proposes to map the evidence available on the type, characteristics and outcomes of multilevel interventions implemented as adaptational strategies to protect MCH from the possible adverse effects of climate change.MethodsThe following databases will be searched: Embase, MEDLINE, Emcare, EPPI-Centre database of health promotion research (BiblioMap) EPPI-Centre Database for promoting Health Effectiveness Reviews (DoPHER), Global Health, CINAHL, Joanna Briggs Institute EBP Database, Maternity and Infant Care Database, Education Resource Information Center, PsycINFO, Scopus, Web of Science and Global Index Medicus, which indexes Latin America and the Caribbean, Index Medicus for the South-East Asia Region, African Index Medicus, Western Pacific Region Index Medicus. Cochrane Central Register of Controlled Trials, WHO International Clinical Trials Registry Platform, ClinicalTrials.gov, conference proceedings, thesis and dissertations, policy and guidelines and their reference lists will also be searched. Two reviewers will independently screen titles and abstracts and full text based on predefined eligibility criteria. The Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews using the Population, Concept and Context framework and the Template for Intervention Description and Replication checklist will be used to structure and report the findings.Ethics and disseminationEthics permission to conduct the scoping review is not required as the information collected is publicly available through databases. Findings will be disseminated through a peer-reviewed publication and conference presentations.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2023License: CC BY NCFull-Text: http://hdl.handle.net/11343/340241Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1136/bmjopen-2023-073960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2023License: CC BY NCFull-Text: http://hdl.handle.net/11343/340241Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1136/bmjopen-2023-073960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, AustraliaPublisher:AMPCo Martina K. Linnenluecke; Arunima Malik; Peng Bi; Sinead Boylan; Ivan Hanigan; Stefan Trueck; Paul J. Beggs; Ying Zhang; Robyn Alders; Hilary Bambrick; Geoffrey G. Morgan; Elizabeth G. Hanna; Nick Watts; Helen L. Berry; Anthony Capon; Shilu Tong; Shilu Tong; Yuming Guo; Mark Stevenson; Donna Green;doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
Climate plays an important role in human health and it is well established that climate change can have very significant impacts in this regard. In partnership with The Lancet and the MJA, we present the inaugural Australian Countdown assessment of progress on climate change and health. This comprehensive assessment examines 41 indicators across five broad sections: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. These indicators and the methods used for each are largely consistent with those of the Lancet Countdown global assessment published in October 2017, but with an Australian focus. Significant developments include the addition of a new indicator on mental health. Overall, we find that Australia is vulnerable to the impacts of climate change on health, and that policy inaction in this regard threatens Australian lives. In a number of respects, Australia has gone backwards and now lags behind other high income countries such as Germany and the United Kingdom. Examples include the persistence of a very high carbon-intensive energy system in Australia, and its slow transition to renewables and low carbon electricity generation. However, we also find some examples of good progress, such as heatwave response planning. Given the overall poor state of progress on climate change and health in Australia, this country now has an enormous opportunity to take action and protect human health and lives. Australia has the technical knowhow and intellect to do this, and our annual updates of this assessment will track Australia's engagement with and progress on this vitally important issue.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustraliaPublisher:Wiley Authors: Matthew Tom Harrison; Brendan Richard Cullen; Dianne Elizabeth Mayberry; Annette Louise Cowie; +7 AuthorsMatthew Tom Harrison; Brendan Richard Cullen; Dianne Elizabeth Mayberry; Annette Louise Cowie; Franco Bilotto; Warwick Brabazon Badgery; Ke Liu; Thomas Davison; Karen Michelle Christie; Albert Muleke; Richard John Eckard;AbstractLivestock have long been integral to food production systems, often not by choice but by need. While our knowledge of livestock greenhouse gas (GHG) emissions mitigation has evolved, the prevailing focus has been—somewhat myopically—on technology applications associated with mitigation. Here, we (1) examine the global distribution of livestock GHG emissions, (2) explore social, economic and environmental co‐benefits and trade‐offs associated with mitigation interventions and (3) critique approaches for quantifying GHG emissions. This review uncovered many insights. First, while GHG emissions from ruminant livestock are greatest in low‐ and middle‐income countries (LMIC; globally, 66% of emissions are produced by Latin America and the Caribbean, East and southeast Asia and south Asia), the majority of mitigation strategies are designed for developed countries. This serious concern is heightened by the fact that 80% of growth in global meat production over the next decade will occur in LMIC. Second, few studies concurrently assess social, economic and environmental aspects of mitigation. Of the 54 interventions reviewed, only 16 had triple‐bottom line benefit with medium–high mitigation potential. Third, while efforts designed to stimulate the adoption of strategies allowing both emissions reduction (ER) and carbon sequestration (CS) would achieve the greatest net emissions mitigation, CS measures have greater potential mitigation and co‐benefits. The scientific community must shift attention away from the prevailing myopic lens on carbon, towards more holistic, systems‐based, multi‐metric approaches that carefully consider the raison d'être for livestock systems. Consequential life cycle assessments and systems‐aligned ‘socio‐economic planetary boundaries’ offer useful starting points that may uncover leverage points and cross‐scale emergent properties. The derivation of harmonized, globally reconciled sustainability metrics requires iterative dialogue between stakeholders at all levels. Greater emphasis on the simultaneous characterization of multiple sustainability dimensions would help avoid situations where progress made in one area causes maladaptive outcomes in other areas.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/289432Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/289432Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, AustraliaPublisher:American Geophysical Union (AGU) Funded by:ARC | Discovery Early Career Re..., ARC | Future Fellowships - Gran..., ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE160100092 ,ARC| Future Fellowships - Grant ID: FT170100106 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100638Authors: Sophie C. Lewis; Andrew D. King; Sarah E. Perkins‐Kirkpatrick; Michael F. Wehner;doi: 10.1029/2019ef001273
handle: 11343/290355
AbstractExtreme event attribution studies attempt to quantify the role of human influences in observed weather and climate extremes. These studies are of broad scientific and public interest, although quantitative results (e.g., that a specific event was made a specific number of times more likely because of anthropogenic forcings) can be difficult to communicate accurately to a variety of audiences and difficult for audiences to interpret. Here, we focus on how results of these studies can be effectively communicated using standardized language and propose, for the first time, a set of calibrated terms to describe event attribution results. Using these terms and an accompanying visual guide, results are presented in terms of likelihood of event changes and the associated uncertainties. This standardized language will allow clearer communication and interpretation of probabilities by the public and stakeholders.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/2w54r9b2Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/290355Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/2w54r9b2Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/290355Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019ef001273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Funded by:NSF | SRN: Urban Water Innovati...NSF| SRN: Urban Water Innovation Network (U-WIN): Transitioning Toward Sustainable Urban Water SystemsHongshan Guo; Eric Teitelbaum; Gideon Aschwanden; Marcel Bruelisauer; Forrest Meggers; Laura Salazar;Abstract Temperatures in cities are amplified through the urban heat island effect by anthropogenic heat emissions into microclimates. The trapping of solar energy in urban canyons plays the most significant role. Our analysis, however, considers how urban air conditioning systems influence their local microclimate. Using models and simple observations we demonstrate how the heat rejected from these machines creates a direct feedback on the machine performance. Thermodynamically, the temperature of the environment directly controls the efficiency of the common refrigeration cycle found in air conditioning systems via the second law. A city, with its complex topography of urban canyons and skyscrapers, produces small microclimates with varying temperatures. This project investigates three urban settings that create microclimates that are detrimental for the efficiency of cooling in New York. First, the overall urban heat island effect, second the effect of roof temperature on rooftop package air conditioning units, and third the impact of local heat emission from agglomerations of window air conditioners. The efficiency loss is investigated by considering the range of temperature changes that can be observed in the surrounding environment of air conditioning systems, and determining the subsequent impact on the Coefficient of Performance (COP). Our COP analyses indicate a range of potential energy increases of around 7%–47% due to increases in environmental temperature around air conditioners. An analysis of the building stock of New York City showed that the annual electrical energy demand is potentially increased by these effects by nearly 10 PJ (3000 GWh) combined, which is more than 10% of the total cooling demand for the city.
Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2016.08.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2016.08.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 NetherlandsPublisher:Public Library of Science (PLoS) Kriticos, Darren J.; Brunel, Sarah; Ota, Noboru; Fried, Guillaume; Oude Lansink, A.G.J.M.; Panetta, F.D.; Prasad, T.V.R.; Shabbir, Asad; Yaacoby, Tuvia;Pest Risk Assessments (PRAs) routinely employ climatic niche models to identify endangered areas. Typically, these models consider only climatic factors, ignoring the 'Swiss Cheese' nature of species ranges due to the interplay of climatic and habitat factors. As part of a PRA conducted for the European and Mediterranean Plant Protection Organization, we developed a climatic niche model for Parthenium hysterophorus, explicitly including the effects of irrigation where it was known to be practiced. We then downscaled the climatic risk model using two different methods to identify the suitable habitat types: expert opinion (following the EPPO PRA guidelines) and inferred from the global spatial distribution. The PRA revealed a substantial risk to the EPPO region and Central and Western Africa, highlighting the desirability of avoiding an invasion by P. hysterophorus. We also consider the effects of climate change on the modelled risks. The climate change scenario indicated the risk of substantial further spread of P. hysterophorus in temperate northern hemisphere regions (North America, Europe and the northern Middle East), and also high elevation equatorial regions (Western Brazil, Central Africa, and South East Asia) if minimum temperatures increase substantially. Downscaling the climate model using habitat factors resulted in substantial (approximately 22-53%) reductions in the areas estimated to be endangered. Applying expert assessments as to suitable habitat classes resulted in the greatest reduction in the estimated endangered area, whereas inferring suitable habitats factors from distribution data identified more land use classes and a larger endangered area. Despite some scaling issues with using a globally conformal Land Use Systems dataset, the inferential downscaling method shows promise as a routine addition to the PRA toolkit, as either a direct model component, or simply as a means of better informing an expert assessment of the suitable habitat types.
PLoS ONE arrow_drop_down Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0132807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0132807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 France, Brazil, France, Australia, NorwayPublisher:Public Library of Science (PLoS) A. C. Wolfaardt; Valeria Ruoppolo; Valeria Ruoppolo; Phoebe Barnard; Lesley Hughes; Linda J. Beaumont; Marie R. Keatley; Res Altwegg; Joël M. Durant; Ralph Eric Thijl Vanstreels; Patrícia C. Morellato; Eric J. Woehler; Christophe Barbraud; Elvira S. Poloczanska; Robert J. M. Crawford; Matthew Low; Lynda E. Chambers;Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically supported.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/11343/265103Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 201 citations 201 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 37 Powered bymore_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/11343/265103Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Authors: Karen Stenner; Zim Nwokora;doi: 10.3390/en8064899
Empirical studies of public opinion on environmental protection have typically been grounded in Inglehart’s post-materialism thesis, proposing that societal affluence encourages materially-sated publics to look beyond their interests and value the environment. These studies are generally conducted within, or at best across, Western, democratic, industrialized countries. Absence of truly cross-cultural research means the theory’s limitations have gone undetected. This article draws on an exceptionally broad dataset—pooling cross-sectional survey data from 80 countries, each sampled at up to three different points over 15 years—to investigate environmental attitudes. We find that post-materialism provides little account of pro-environment attitudes across diverse cultures, and a far from adequate explanation even in the affluent West. We suggest that unique domestic interests, more than broad value systems, are driving emerging global trends in environmental attitudes. The environment’s future champions may be the far from ‘post-material’ citizens of those developing nations most at risk of real material harm from climate change and environmental degradation.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/6/4899/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8064899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/6/4899/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8064899&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Oxford University Press (OUP) Li-Mei Zhang; Zhongling Yang; Ju-Pei Shen; Ji-Zheng He; Ji-Zheng He; Hongyan Han; Shiqiang Wan; Yi-Fei Sun; Cui-Jing Zhang; Jun-Tao Wang;Global climate change could have profound effects on belowground microbial communities and subsequently affect soil biogeochemical processes. The interactive effects of multiple co-occurring climate change factors on microbially mediated processes are not well understood. A four-factorial field experiment with elevated CO2, watering, nitrogen (N) addition and night warming was conducted in a temperate steppe of northern China. Real-time polymerase chain reaction and terminal-restriction fragment length polymorphism, combined with clone library techniques, were applied to examine the effects of those climate change factors on N-related microbial abundance and community composition. Only the abundance of ammonia-oxidizing bacteria significantly increased by nitrogen addition and decreased by watering. The interactions of watering × warming on the bacterial amoA community and warming × nitrogen addition on the nosZ community were found. Redundancy analysis indicated that the ammonia-oxidizing archaeal community was affected by total N and total carbon, while the community of bacterial amoA and nosZ were significantly affected by soil pH. According to a structural equation modeling analysis, climate change influenced net primary production indirectly by altering microbial abundance and activities. These results indicated that microbial responses to the combination of chronic global change tend to be smaller than expected from single-factor global change manipulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsec/fix037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsec/fix037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Nima Izadyar; Wendy Miller; Behzad Rismanchi; Veronica Garcia-Hansen;Balconies could enhance natural ventilation (NV) and reduce reliance on mechanical ventilation in cooling dominant climates. Indoor environment and thermal comfort under NV mode are usually less predictable than Mechanical Ventilation (MV), and balcony geometry's impacts on these parameters have not yet been classified. This study aims to investigate the effects of balcony depth and door opening scale on the NV performance and thermal comfort of the attached Livingroom. The present article conducted a 3D – steady-state Computational Fluid Dynamics (CFD) simulations using ANSYS Fluent. The simulation results were validated against measured data in a residential high-rise building in subtropical Brisbane, Australia. Five different openings and nine depth scenarios are defined as configuration tests. The simulation results reveal that both the opening and depth sizes affected the Indoor Air Distribution (IAD), mean Indoor Air Velocity (IAV) and temperature, while these effects are not identical in the defined scenarios and opening size had more significant effects. The smaller openings, including the case study, led to a better thermal comfort than other scenarios. Contrary, the smaller depth sizes (less than 2 m) led to a non-uniform and unstable IAD at the attached Livingroom. The best thermal comfort and the highest IAV also occurred, respectively, in the deeper balconies with 35 and 30% depth ratio. Finally, a comparison between the findings and literature reveals the balcony's depth scale effects on mean IAV significantly depends on the orientation of buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.106847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.106847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 AustraliaPublisher:BMJ Zerina Lokmic-Tomkins; Dinesh Bhandari; Jessica Watterson; Wendy E Pollock; Lindy Cochrane; Eddie Robinson; Tin Tin Su;IntroductionGrowing evidence suggests that climate change-related extreme weather events adversely impact maternal and child health (MCH) outcomes, which requires effective, sustainable and culturally appropriate interventions at individual, community and policy levels to minimise these impacts. This scoping review proposes to map the evidence available on the type, characteristics and outcomes of multilevel interventions implemented as adaptational strategies to protect MCH from the possible adverse effects of climate change.MethodsThe following databases will be searched: Embase, MEDLINE, Emcare, EPPI-Centre database of health promotion research (BiblioMap) EPPI-Centre Database for promoting Health Effectiveness Reviews (DoPHER), Global Health, CINAHL, Joanna Briggs Institute EBP Database, Maternity and Infant Care Database, Education Resource Information Center, PsycINFO, Scopus, Web of Science and Global Index Medicus, which indexes Latin America and the Caribbean, Index Medicus for the South-East Asia Region, African Index Medicus, Western Pacific Region Index Medicus. Cochrane Central Register of Controlled Trials, WHO International Clinical Trials Registry Platform, ClinicalTrials.gov, conference proceedings, thesis and dissertations, policy and guidelines and their reference lists will also be searched. Two reviewers will independently screen titles and abstracts and full text based on predefined eligibility criteria. The Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews using the Population, Concept and Context framework and the Template for Intervention Description and Replication checklist will be used to structure and report the findings.Ethics and disseminationEthics permission to conduct the scoping review is not required as the information collected is publicly available through databases. Findings will be disseminated through a peer-reviewed publication and conference presentations.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2023License: CC BY NCFull-Text: http://hdl.handle.net/11343/340241Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1136/bmjopen-2023-073960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2023License: CC BY NCFull-Text: http://hdl.handle.net/11343/340241Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1136/bmjopen-2023-073960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu