- home
- Search
- Energy Research
- Closed Access
- Restricted
- Open Source
- Applied Energy
- Energy Research
- Closed Access
- Restricted
- Open Source
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Jiehui Yuan;
Jiehui Yuan
Jiehui Yuan in OpenAIREDongkun Luo;
Dongkun Luo
Dongkun Luo in OpenAIRELianyong Feng;
Lianyong Feng
Lianyong Feng in OpenAIREShale gas, due to its clean-burning and efficient nature, is becoming an increasingly promising alternative energy resource. It is commonly held that promoting shale gas development will gradually play a significant role in meeting the energy needs of economic and social development as well as reducing harm to the environment. Given the significant implications, many countries are pursuing shale gas opportunities. However, numerous concerns have been raised about the economics of shale gas development, as it is difficult to evaluate. Accurately evaluating the economic viability of shale gas development to reduce investment risks and increase investment opportunity is the key issue that needs to be urgently addressed. This paper presents a systematic review and examination of the technical and economic evaluation techniques for the development of shale gas to provide an overview of their current status. Over time, some progress has been made in existing technical–economic evaluation techniques. It is worth noting that these techniques need to be further improved to more precisely assess the economic feasibility of developing shale gas for assisting investment decisions effectively. For this reason, various potentially useful ideas and approaches are presented to propose some potential improvement in evaluation techniques for shale gas development, which may materialize in possible future trends.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 195 citations 195 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jinhua Bao; Ningsheng Cai; Zhenshan Li;Abstract In solid fuel (such as lignite) chemical looping combustion, solid fuels undergo pyrolysis and gasification. The volatiles from pyrolysis and the gasification product (CO/H 2 ) react with oxygen carriers. The gas conversion (to CO 2 /H 2 O) in the fuel reactor is a key point. However, char particles of different sizes and conversion ratios cause segregation in the fuel reactor, which influences the contact time between fuel gases and the carrier, thereby changing the gas conversion behavior. In order to gain information on obtaining a high gas conversion in the fuel reactor, this work focused on the effect of the char particle segregation on gas conversion. Different factors – the char particle size, the fluidizing gas velocity, and the oxygen carrier reactivity – were taken into account. Smaller char particles with low density would float on top of the fluidized bed, corresponding to a low gas conversion ( U mf in the Fe63Al bed) can reduce the segregation effect, resulting in a higher CO conversion. High reactivity carriers can convert CO completely although segregation exists, whereas low reactivity carriers exhibit the segregation effect and thus corresponds to a low CO conversion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Iakovos T. Michailidis;
Iakovos T. Michailidis
Iakovos T. Michailidis in OpenAIREThomas Schild;
Roozbeh Sangi;Thomas Schild
Thomas Schild in OpenAIREPanagiotis Michailidis;
+4 AuthorsPanagiotis Michailidis
Panagiotis Michailidis in OpenAIREIakovos T. Michailidis;
Iakovos T. Michailidis
Iakovos T. Michailidis in OpenAIREThomas Schild;
Roozbeh Sangi;Thomas Schild
Thomas Schild in OpenAIREPanagiotis Michailidis;
Panagiotis Michailidis
Panagiotis Michailidis in OpenAIREChristos Korkas;
Johannes Fütterer;Christos Korkas
Christos Korkas in OpenAIREDirk Müller;
Elias B. Kosmatopoulos;Dirk Müller
Dirk Müller in OpenAIREAbstract A variety of novel, recyclable and reusable, construction materials has already been studied within literature during the past years, aiming at improving the overall energy efficiency ranking of the building envelope. However, several studies show that a delicate control of indoor climating elements can lead to a significant performance improvement by exploiting the building’s savings potential via smart adaptive HVAC regulation to exogenous uncertain disturbances (e.g. weather, occupancy). Building Optimization and Control (BOC) systems can be categorized into two different groups: centralized (requiring high data transmission rates at a central node from every corner of the overall system) and decentralized 1 (assuming an intercommunication among neighboring constituent systems). Moreover, both approaches can be further divided into two subcategories, respectively: model-assisted (usually introducing modeling oversimplifications) and model-free (typically presenting poor stability and very slow convergence rates). This paper presents the application of a novel, decentralized, agent-based , model-free BOC methodology (abbreviated as L4GPCAO) to a modern non-residential building (E.ON. Energy Research Center’s main building), equipped with controllable HVAC systems and renewable energy sources by utilizing the existing Building Management System (BES). The building testbed is located inside the RWTH Aachen University campus in Aachen, Germany. A combined rule criterion composed of the non-renewable energy consumption (NREC) and the thermal comfort index – aligned to international comfort standards – was adopted in all cases presented herein. Besides the limited availability of the specified building testbed, real-life experiments demonstrated operational effectiveness of the proposed approach in BOC applications with complex, emerging dynamics arising from the building’s occupancy and thermal characteristics. L4GPCAO outperformed the control strategy that was designed by the planers and system provider, in a conventional manner, requiring no more than five test days.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.11.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Abstract With increasing prosumers employed with flexible resources, advanced demand-side management has become of great importance. To this end, integrating demand-side flexible resources into electricity markets is a significant trend for smart energy systems. The continuous double auction (CDA) market is viewed as a promising P2P (peer to peer) market mechanism to enable interactions among demand side prosumers and consumers in distribution grids. To achieve optimal operations and maximize profits, prosumers in the electricity market must act as price makers to simultaneously optimize their operations and trading strategies. However, the CDA-based market is difficult to model explicitly because of its information-based clearing mechanism and the stochastic bidding behaviors of its participants. To facilitate prosumers actively participating in the CDA market, this paper proposes a novel prediction-integration strategy optimization (PISO) model. A surrogate market prediction model based on Extreme Learning Machine (ELM) is developed, which learns the interaction relationship between prosumer bidding actions and market responses from historical transaction data. Moreover, the prediction model can be conveniently transformed and integrated into the prosumer operation optimization model in the form of constraints. Therefore, prosumer operations and market trading strategies can be jointly optimized through the proposed approach, facilitating the integration of flexible resources into electricity markets. Numerical studies demonstrate the effectiveness of the proposed model by comparing with existing CDA trading strategies under various market conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.03.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 153 citations 153 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.03.094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors:Soroush Oshnoei;
Mohammad Reza Aghamohammadi; Siavash Oshnoei;Soroush Oshnoei
Soroush Oshnoei in OpenAIRESubham Sahoo;
+2 AuthorsSubham Sahoo
Subham Sahoo in OpenAIRESoroush Oshnoei;
Mohammad Reza Aghamohammadi; Siavash Oshnoei;Soroush Oshnoei
Soroush Oshnoei in OpenAIRESubham Sahoo;
Subham Sahoo
Subham Sahoo in OpenAIREArman Fathollahi;
Mohammad Hasan Khooban;Arman Fathollahi
Arman Fathollahi in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Huining Xu; Hao Shi; Yiqiu Tan; Qing Ye; Xiujie Liu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Chariklia A. Georgopoulou; Kyriakos C. Giannakoglou;Abstract An efficient method for solving power generating unit commitment (UC) problems with probabilistic unit outages is proposed. It is based on a two-level evolutionary algorithm (EA) minimizing the expected total operating cost (TOC) of a system of power generating units over a scheduling period, with known failure and repair rates of each unit. To compute the cost function value of each EA population member, namely a candidate UC schedule, a Monte Carlo simulation must be carried out. Some thousands of replicates are generated according to the units’ outage and repair rates and the corresponding probabilities. Each replicate is represented by a series of randomly generated availability and unavailability periods of time for each unit and the UC schedule under consideration accordingly. The expected TOC is the average of the TOCs of all Monte Carlo replicates. Therefore, the CPU cost per Monte Carlo evaluation increases noticeably and so does the CPU cost of running the EA. To reduce it, the use of a metamodel-assisted EA (MAEA) with on-line trained surrogate evaluation models or metamodels (namely, radial-basis function networks) is proposed. A novelty of this method is that the metamodels are trained on a few “representative” unit outage scenarios selected among the Monte Carlo replicates generated once during the optimization and, then, used to predict the expected TOC. Based on this low cost, approximate pre-evaluation, only a few top individuals within each generation undergo Monte Carlo simulations. The proposed MAEA is demonstrated on test problems and shown to drastically reduce the CPU cost, compared to EAs which are exclusively based on Monte Carlo simulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.10.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.10.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Somil Yadav;Caroline Hachem-Vermette;
Caroline Hachem-Vermette
Caroline Hachem-Vermette in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Abstract Efficiency of the earth-to-air heat exchangers depends not only on their thermal performance but also on the total pressure losses that are the cost of harvesting a geothermal heat. In this paper the sensitivity analysis of the flow characteristics to the change of multi-pipe exchanger geometry is presented. Experimental investigation and CFD simulation results present total pressure losses in the considered exchangers and airflows in each branch-pipes. Considered geometrical structures varies in the number of parallel pipes, pipes length, main pipes diameters and supply type. The experimental investigations were conducted on the exchangers models in a scale 1:4. To investigate the real size exchangers, validated CFD flow performance model was used. A costless modification of heat exchanger supply-type from Z-type to U-type structure (change in air inlet location) is verified as a simple method of decreasing total pressure losses by 6–36% and improving airflow division uniformity by 11–80%. It is shown that main pipes diameter that are 1.4 times bigger than parallel pipes diameter can result in diminished total pressure losses by 56–73% and improved airflow division uniformity by 6–59%. The least significant effect on the flow characteristics has the branch-pipe length. Total pressure losses of long branch-pipes exchangers can be 15–32% higher than for short ones and the airflow division uniformity can be 8–35% higher. Results can be used for choosing the proper geometry of multi-pipe earth-to-air heat exchangers from the flow performance point of view. Presented flow characteristics can be used in detailed analysis and energy assessment of exchangers cooperating with the mechanical ventilation system in building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Anders Mårtensson; J.Stenlund Nilsson;Over the past three decades, Swedish energy policy has evolved in three major stages—oil reduction, phase-out of nuclear energy, renewable energy—each with a different focus. Since 1977, Swedish law has required municipalities to develop an energy plan that addresses the supply, distribution, and use of energy. Whether such plans have contributed to the development of local energy-systems has been a subject for debate. This paper is based on a study of 12 municipal energy-plans that attempted to control and develop local energy-systems in southern Sweden. The analysis examines how municipalities promote oil reduction, efficient energy use, and the use of renewable energy. The plans varied in planning processes, contents, and level of ambition. The results of the study show that the contents of the plans follow the national energy-policies with respect to reduction of oil use, improved energy efficiency, and increased use of renewable energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(03)00062-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(03)00062-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu