- home
- Search
- Energy Research
- Open Access
- Closed Access
- Restricted
- Embargo
- 13. Climate action
- Energy Research
- Open Access
- Closed Access
- Restricted
- Embargo
- 13. Climate action
Research data keyboard_double_arrow_right Dataset 2023Publisher:Toni Veikkolainen Vuorinen, Tommi A.T.; Veikkolainen, Toni; Taylor, George; Gal, Martin; Oinonen, Kati; Hillers, Gregor; Rintamäki, Annukka;In summer 2020 the energy company St1 carried out its second stimulation of deep geothermal wells in Otaniemi, Espoo, in the Helsinki metropolitan area, southern Finland. Institute of Seismology of University of Helsinki (ISUH) monitored the induced seismicity during the stimulation, and also months before and after it. In the second half of 2022 ISUH consulted the Australian company Institute of Mine Seismology (IMS, https://www.imseismology.org) for providing an automatic phase picking on the ISUH 2020 event and waveform data catalogue (doi:10.23729/cdfd937c-37d5-46b0-9c16-f6e0c10bc81f) using an algorithm based on machine learning (doi: 10.1785/0220210068). The dataset provided by IMS was later transferred to formats used by ISUH. The resulting dataset comprises of phase pickings and relevant waveforms of 85 induced earthquakes that occurred between 8 March 2020 to 8 December, 2020, with local magnitudes between -1.1 and 1.4. Note that the event location and other metadata of the resulting dataset are still based on the ISUH 2020 catalogue in order to preserve the consistency within the dataset as some events did not have enough automatic phase picks for reliable relocation. Waveform, location and timing data have been produced at ISUH using seismic stations of the Finnish National Seismic Network (doi: 10.14470/UR044600) including the Helsinki local broadband network, the temporary HEL broadband network in Helsinki and Espoo, the temporary borehole network of St1 (doi: 10.1785/0220190253), and a pool of lightweight mobile seismic instruments operated by ISUH (GIPP data cubes, doi: 10.5880/GIPP.201925.1; SmartSolos and Refteks, doi: 10.1785/0220210195). The deployment is described in Rintamäki et al., 2021, A Seismic Network to Monitor the 2020 EGS Stimulation in the Espoo/Helsinki Area, Southern Finland, doi:10.1785/0220210195. Event data, event metadata, and station metadata are provided in distinct directories, and for event data, each event is assigned a subdirectory. Data formats follow generally accepted seismological standards.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23729/8138398c-8b79-4217-8617-aae33fbed953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23729/8138398c-8b79-4217-8617-aae33fbed953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 21 Feb 2018Publisher:Mendeley Authors: Ritchie, H;Study data and figure results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/jh23c96484.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/jh23c96484.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Raptis, Catherine;A global dataset of steam-electric power generating units with location, technical information, performance characteristics and associated environmental stressors (GHG emissions, freshwater consumption, thermal emissions to freshwater) as well as stressor intensities (per GJ el. produced).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Aug 2023Publisher:Zenodo Authors: Hoecker, Tyler;This archive includes a minimal dataset needed to reproduce the analysis as well as a table (CSV) and spatial polygons (ESRI shapefile) of the resulting output from the publication: Hoecker, T.J., S. A. Parks, M. Krosby & S. Z. Dobrowski. 2023. Widespread exposure to altered fire regimes under 2°C warming is projected to transform conifer forests of the Western United States. Communications Earth and Environment. Publication abstract: Changes in wildfire frequency and severity are altering conifer forests and pose threats to biodiversity and natural climate solutions. Where and when feedbacks between vegetation and fire could mediate forest transformation are unresolved. Here, for the western U.S., we used climate analogs to measure exposure to fire-regime change; quantified the direction and spatial distribution of changes in burn severity; and intersected exposure with fire-resistance trait data. We measured exposure as multivariate dissimilarities between contemporary distributions of fire frequency, burn severity, and vegetation productivity and distributions supported by a 2 °C-warmer climate. We project exposure to fire-regime change across 65% of western US conifer forests and mean burn severity to ultimately decline across 63% because of feedbacks with forest productivity and fire frequency. We find that forests occupying disparate portions of climate space are vulnerable to projected fire-regime changes. Forests may adapt to future disturbance regimes, but trajectories remain uncertain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8206100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 27 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8206100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Tatebe, Hiroaki; Watanabe, Masahiro;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MIROC.MIROC6.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2011Embargo end date: 29 Aug 2011Publisher:Harvard Dataverse Authors: E. Kopp, Robert; Golub, Alexander; O. Keohane, Nathaniel; Onda, Chikara;Drawing upon climate change damage functions previously proposed in the literature that we have calibrated to a common level of damages at 2.5 C, we examine the effect upon the social cost of carbon (SCC) of varying the specification of damages in a DICE-like integrated assessment model. In the absence of risk aversion, all of the SCC estimates but one agree within a factor of two. The effect of varying calibration damages is mildly sublinear. With a moderate level of risk aversion included, however, the differences among estimates grow greatly. By combining elements of different damage specifications and roughly taking into account uncertainty in calibration, we have constructed a composite damage function that attempts to approximate the range of uncertainty in climate change damages. In the absence of risk aversion, SCC values calculated with this function are in agreement with the standard quadratic DICE damage function; with a coefficient of relative risk aversion of 1.4, this damage function yields SCC values more than triple those of the standard function.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/jlcnit&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/jlcnit&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Phillis, Yannis;The SAFE model (Sustainability Assessment by Fuzzy Evaluation, http://www.sustainability.tuc.gr/) estimates the the overall sustainability of countries using relevant indicator data. The files (compressed, tab-delimited text) contain data on 69 sustainability indicators for 164 countries from 1990 to 2016. Three data sets are provided: 1) raw data as time series (810 out of a total of 69x164=11,316 time series are missing); 2) time series transformed into single values and normalized on a 0-1 scale from unsustainable to sustainable; 3) SAFE model inputs: a data set in which most of the missing values are imputed; for some countries certain indicators are intentionally omitted, estimated, or modified as explained in the article. Third-party sources of raw data are given in the article's supplementary Appendix E.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/n8rbrmnzf4.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/n8rbrmnzf4.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Pichler, Anton; Lafond, François;#### Note: #### An updated version of these data including data on biofuels and fuels from waste is available [here](https://pub.uni-bielefeld.de/record/2950291). The extended version also offers a package of R-scripts that have been used to reproduce the statistical analysis presented in [Hötte, Pichler, Lafond (2021): The rise of science in low-carbon energy technologies](https://doi.org/10.1016/j.rser.2020.110654). This data publication offers data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: [https://creativecommons.org/licenses/by/4.0/legalcode](https://creativecommons.org/licenses/by/4.0/legalcode) Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this data publication and the following paper. Kerstin Hötte, Anton Pichler, François Lafond: *The rise of science in low-carbon energy technologies*, Renewable and Sustainable Energy Reviews, Volume 139, 2021 [https://doi.org/10.1016/j.rser.2020.110654](https://doi.org/10.1016/j.rser.2020.110654) ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate change. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources") and Y02E03 ("Energy generation of nuclear origin") technologies are used. 8 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: [10.5281/zenodo.3685972](10.5281/zenodo.3685972) The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 8 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fiels were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assiged. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) #### Note: #### The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - Number of papers in MAG: 179,083,029 - Number of all patents: 10,160,667 - Number of citing patents: 2,058,233 - Number of cited papers: 4,404,088 - Number of citation links from patents to papers: 34,959,193 LCET subset: - Number of LCET patents: 57,530 - Number of citing LCET patents: 16,674 - Number of cited papers: 53,509 - Number of citation links from LCET patents to papers: 151,253 - Number of citation links from LCET patents to other patents: 567,274 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >250,000 hierarchical CPC classes, 8 LCET types Citation links: - Reference type, citation type, reliability score #### If you have further questions about the data or suggestions, please contact: kerstin.hotte@oxfordmartin.ox.ac.uk ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2020License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2941555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2020License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2941555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran..., ARC | Ocean acidification and r...ARC| Discovery Projects - Grant ID: DP170101722 ,ARC| Discovery Projects - Grant ID: DP150104263 ,ARC| Ocean acidification and rising sea temperature effect on fishConi, Ericka O C; Nagelkerken, Ivan; Ferreira, Camilo M; Connell, Sean D; Booth, David J;Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-07-26.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Mendeley Authors: Paula Castesana (11024216); Melisa Diaz Resquin (11024219); Sabine Darras (11024222); Darío Gómez (11024225); +6 AuthorsPaula Castesana (11024216); Melisa Diaz Resquin (11024219); Sabine Darras (11024222); Darío Gómez (11024225); Claire Granier (11024228); Nicolás Huneeus (11024231); Mauricio Osses Alvarado (11024234); Enrique Puliafito (11024237); Néstor Rojas (11024240); Laura Dawidowski (5765333);PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3 and SO2) from anthropogenic sources in South America, for the period 2014–2016. The dataset was developed on the basis of the existing data on the global dataset CAMS-GLOB-ANT v4.1 (developed by joining CEDS trends and EDGARv4.3.2 historical data), enriching it with derived data from locally available emission inventories for Argentina, Chile and Colombia. The inventories are presented as NetCDF4 files, one for each species and year, gridded with a spatial resolution of 0.1° x 0.1° covering the domain 32° W–120° W and 34° N–58° S. Each file contains 12 variables corresponding to the emissions in Tg/y from the following categories, which are organized and denominated using the nomenclature given by CAMS: thermal power plants (ENE); residential and commercial combustion (RES); road transportation (TRO); non-road transportation (TNR); fugitive emissions (FEF); industries (including fuel consumption in manufacturing industries and construction, refineries, industrial processes and solvent and other products use) (IND); agricultural soils (AGS); agriculture livestock (AGL); inland navigation (SHP); international navigation (SHP-INT); waste (including solid waste, wastewater and incineration) (SWD); and the sum of all sectors (SUM).
Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/btf2mz4fhf.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/btf2mz4fhf.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:Toni Veikkolainen Vuorinen, Tommi A.T.; Veikkolainen, Toni; Taylor, George; Gal, Martin; Oinonen, Kati; Hillers, Gregor; Rintamäki, Annukka;In summer 2020 the energy company St1 carried out its second stimulation of deep geothermal wells in Otaniemi, Espoo, in the Helsinki metropolitan area, southern Finland. Institute of Seismology of University of Helsinki (ISUH) monitored the induced seismicity during the stimulation, and also months before and after it. In the second half of 2022 ISUH consulted the Australian company Institute of Mine Seismology (IMS, https://www.imseismology.org) for providing an automatic phase picking on the ISUH 2020 event and waveform data catalogue (doi:10.23729/cdfd937c-37d5-46b0-9c16-f6e0c10bc81f) using an algorithm based on machine learning (doi: 10.1785/0220210068). The dataset provided by IMS was later transferred to formats used by ISUH. The resulting dataset comprises of phase pickings and relevant waveforms of 85 induced earthquakes that occurred between 8 March 2020 to 8 December, 2020, with local magnitudes between -1.1 and 1.4. Note that the event location and other metadata of the resulting dataset are still based on the ISUH 2020 catalogue in order to preserve the consistency within the dataset as some events did not have enough automatic phase picks for reliable relocation. Waveform, location and timing data have been produced at ISUH using seismic stations of the Finnish National Seismic Network (doi: 10.14470/UR044600) including the Helsinki local broadband network, the temporary HEL broadband network in Helsinki and Espoo, the temporary borehole network of St1 (doi: 10.1785/0220190253), and a pool of lightweight mobile seismic instruments operated by ISUH (GIPP data cubes, doi: 10.5880/GIPP.201925.1; SmartSolos and Refteks, doi: 10.1785/0220210195). The deployment is described in Rintamäki et al., 2021, A Seismic Network to Monitor the 2020 EGS Stimulation in the Espoo/Helsinki Area, Southern Finland, doi:10.1785/0220210195. Event data, event metadata, and station metadata are provided in distinct directories, and for event data, each event is assigned a subdirectory. Data formats follow generally accepted seismological standards.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23729/8138398c-8b79-4217-8617-aae33fbed953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23729/8138398c-8b79-4217-8617-aae33fbed953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 21 Feb 2018Publisher:Mendeley Authors: Ritchie, H;Study data and figure results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/jh23c96484.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/jh23c96484.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Raptis, Catherine;A global dataset of steam-electric power generating units with location, technical information, performance characteristics and associated environmental stressors (GHG emissions, freshwater consumption, thermal emissions to freshwater) as well as stressor intensities (per GJ el. produced).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Aug 2023Publisher:Zenodo Authors: Hoecker, Tyler;This archive includes a minimal dataset needed to reproduce the analysis as well as a table (CSV) and spatial polygons (ESRI shapefile) of the resulting output from the publication: Hoecker, T.J., S. A. Parks, M. Krosby & S. Z. Dobrowski. 2023. Widespread exposure to altered fire regimes under 2°C warming is projected to transform conifer forests of the Western United States. Communications Earth and Environment. Publication abstract: Changes in wildfire frequency and severity are altering conifer forests and pose threats to biodiversity and natural climate solutions. Where and when feedbacks between vegetation and fire could mediate forest transformation are unresolved. Here, for the western U.S., we used climate analogs to measure exposure to fire-regime change; quantified the direction and spatial distribution of changes in burn severity; and intersected exposure with fire-resistance trait data. We measured exposure as multivariate dissimilarities between contemporary distributions of fire frequency, burn severity, and vegetation productivity and distributions supported by a 2 °C-warmer climate. We project exposure to fire-regime change across 65% of western US conifer forests and mean burn severity to ultimately decline across 63% because of feedbacks with forest productivity and fire frequency. We find that forests occupying disparate portions of climate space are vulnerable to projected fire-regime changes. Forests may adapt to future disturbance regimes, but trajectories remain uncertain.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8206100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 27 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8206100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Tatebe, Hiroaki; Watanabe, Masahiro;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MIROC.MIROC6.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2011Embargo end date: 29 Aug 2011Publisher:Harvard Dataverse Authors: E. Kopp, Robert; Golub, Alexander; O. Keohane, Nathaniel; Onda, Chikara;Drawing upon climate change damage functions previously proposed in the literature that we have calibrated to a common level of damages at 2.5 C, we examine the effect upon the social cost of carbon (SCC) of varying the specification of damages in a DICE-like integrated assessment model. In the absence of risk aversion, all of the SCC estimates but one agree within a factor of two. The effect of varying calibration damages is mildly sublinear. With a moderate level of risk aversion included, however, the differences among estimates grow greatly. By combining elements of different damage specifications and roughly taking into account uncertainty in calibration, we have constructed a composite damage function that attempts to approximate the range of uncertainty in climate change damages. In the absence of risk aversion, SCC values calculated with this function are in agreement with the standard quadratic DICE damage function; with a coefficient of relative risk aversion of 1.4, this damage function yields SCC values more than triple those of the standard function.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/jlcnit&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/jlcnit&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Phillis, Yannis;The SAFE model (Sustainability Assessment by Fuzzy Evaluation, http://www.sustainability.tuc.gr/) estimates the the overall sustainability of countries using relevant indicator data. The files (compressed, tab-delimited text) contain data on 69 sustainability indicators for 164 countries from 1990 to 2016. Three data sets are provided: 1) raw data as time series (810 out of a total of 69x164=11,316 time series are missing); 2) time series transformed into single values and normalized on a 0-1 scale from unsustainable to sustainable; 3) SAFE model inputs: a data set in which most of the missing values are imputed; for some countries certain indicators are intentionally omitted, estimated, or modified as explained in the article. Third-party sources of raw data are given in the article's supplementary Appendix E.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/n8rbrmnzf4.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/n8rbrmnzf4.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Pichler, Anton; Lafond, François;#### Note: #### An updated version of these data including data on biofuels and fuels from waste is available [here](https://pub.uni-bielefeld.de/record/2950291). The extended version also offers a package of R-scripts that have been used to reproduce the statistical analysis presented in [Hötte, Pichler, Lafond (2021): The rise of science in low-carbon energy technologies](https://doi.org/10.1016/j.rser.2020.110654). This data publication offers data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: [https://creativecommons.org/licenses/by/4.0/legalcode](https://creativecommons.org/licenses/by/4.0/legalcode) Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this data publication and the following paper. Kerstin Hötte, Anton Pichler, François Lafond: *The rise of science in low-carbon energy technologies*, Renewable and Sustainable Energy Reviews, Volume 139, 2021 [https://doi.org/10.1016/j.rser.2020.110654](https://doi.org/10.1016/j.rser.2020.110654) ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate change. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources") and Y02E03 ("Energy generation of nuclear origin") technologies are used. 8 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: [10.5281/zenodo.3685972](10.5281/zenodo.3685972) The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 8 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fiels were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assiged. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) #### Note: #### The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - Number of papers in MAG: 179,083,029 - Number of all patents: 10,160,667 - Number of citing patents: 2,058,233 - Number of cited papers: 4,404,088 - Number of citation links from patents to papers: 34,959,193 LCET subset: - Number of LCET patents: 57,530 - Number of citing LCET patents: 16,674 - Number of cited papers: 53,509 - Number of citation links from LCET patents to papers: 151,253 - Number of citation links from LCET patents to other patents: 567,274 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >250,000 hierarchical CPC classes, 8 LCET types Citation links: - Reference type, citation type, reliability score #### If you have further questions about the data or suggestions, please contact: kerstin.hotte@oxfordmartin.ox.ac.uk ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2020License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2941555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2020License: CC BYData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2941555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran..., ARC | Ocean acidification and r...ARC| Discovery Projects - Grant ID: DP170101722 ,ARC| Discovery Projects - Grant ID: DP150104263 ,ARC| Ocean acidification and rising sea temperature effect on fishConi, Ericka O C; Nagelkerken, Ivan; Ferreira, Camilo M; Connell, Sean D; Booth, David J;Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of CO2 enrichment was observed at natural CO2 vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-07-26.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.934128&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Mendeley Authors: Paula Castesana (11024216); Melisa Diaz Resquin (11024219); Sabine Darras (11024222); Darío Gómez (11024225); +6 AuthorsPaula Castesana (11024216); Melisa Diaz Resquin (11024219); Sabine Darras (11024222); Darío Gómez (11024225); Claire Granier (11024228); Nicolás Huneeus (11024231); Mauricio Osses Alvarado (11024234); Enrique Puliafito (11024237); Néstor Rojas (11024240); Laura Dawidowski (5765333);PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3 and SO2) from anthropogenic sources in South America, for the period 2014–2016. The dataset was developed on the basis of the existing data on the global dataset CAMS-GLOB-ANT v4.1 (developed by joining CEDS trends and EDGARv4.3.2 historical data), enriching it with derived data from locally available emission inventories for Argentina, Chile and Colombia. The inventories are presented as NetCDF4 files, one for each species and year, gridded with a spatial resolution of 0.1° x 0.1° covering the domain 32° W–120° W and 34° N–58° S. Each file contains 12 variables corresponding to the emissions in Tg/y from the following categories, which are organized and denominated using the nomenclature given by CAMS: thermal power plants (ENE); residential and commercial combustion (RES); road transportation (TRO); non-road transportation (TNR); fugitive emissions (FEF); industries (including fuel consumption in manufacturing industries and construction, refineries, industrial processes and solvent and other products use) (IND); agricultural soils (AGS); agriculture livestock (AGL); inland navigation (SHP); international navigation (SHP-INT); waste (including solid waste, wastewater and incineration) (SWD); and the sum of all sectors (SUM).
Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/btf2mz4fhf.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/btf2mz4fhf.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu