- home
- Search
- Energy Research
- 3. Good health
- Energies
- Energy Research
- 3. Good health
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Youssef Kassem; Hüseyin Gökçekuş; Ali Güvensoy;doi: 10.3390/en14227627
The growth of populations and economy in Northern Cyprus has led to continuing utilization of fossil fuels as the primary source of electricity, which will raise environmental pollution. Thus, utilizing renewable energy, particularly solar energy, might be a solution to minimize this issue. This paper presents the potential of grid-connected solar PV power generation at Near East University Hospital (NEU Hospital), one of the largest and leading medical facilities in Northern Cyprus, to meet the energy demand during the daytime to reduce energy bills. For this purpose, the first objective of the study is to evaluate the solar energy potential as a power source for the NEU Hospital based on four datasets (actual measurement, Satellite Application Facility on Climate Monitoring (CMSAF), Surface Radiation Data Set-Heliosat (SARAH), and ERA-5, produced by the European Centre for Medium-range Weather Forecast). The results showed that the solar resource of the selected location is categorized as excellent (class 5), that is, the global solar radiation is within the range of 1843.8–2035.9 kWH/m2. The second objective is to investigate the impact of orientation angles on PV output, capacity factor, economic feasibility indicators, and CO2 emissions by using different PV modules. The results are compared with optimum orientation angles found by Photovoltaic Geographical Information System (PVGIS) simulation software. This objective was achieved by using RETScreen Expert software. The results demonstrated that the highest performance of the proposed system was achieved for orientation angles of 180° (azimuth angle) and −35° (tilt angle). Consequently, it is recommended that orientation angles, PV modules, and market prices are considered to maximize energy production and reduce electricity production costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Basem Al Alwan; Zhao Wang; Wissam Fawaz; K. Y. Simon Ng;doi: 10.3390/en15217827
All solid-state room-temperature lithium-sulfur (Li-S) batteries have gained increasing attention due to their ability to eliminate the polysulfides shuttle effects and the safety dangers associated with the liquid electrolytes. Herein, a novel composite solid-state electrolyte, which is nickel-tungsten carbides (NiWC) over mesoporous silica (SBA-15) filled polyethylene oxide (PEO), was developed and investigated for Li-S batteries. The filler minimizes the crystallinity of the PEO and increases the ionic conductivity of the electrolyte, resulting in lowering the AC impedance of electrolyte composite from 26,256 ohm to 2416 ohm and to 5734 ohm after adding the electrolyte material with Ni/W ratios of 1:1 and 9:1, respectively. A high initial specific capacity of 1305 mAh g−1 and a capacity retention of 66.7% after 8 cycles at C/10 was obtained at room temperature after adding NiWC/SBA-15 with a Ni/W ratio of 1:1. This novel composite solid-state electrolyte shows a remarkable long-term performance at high current rates (1, 2, 4, and 5C) and rate capabilities at 0.1, 0.2, 0.5, 1, 2, 4 and back to 0.1C. The battery was able to recover 77% of the initial specific capacity at 0.1C. The materials were characterized by XRD and SEM-EDX to study the crystallinity and elemental distributions, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:FCT | CEB-UMFCT| CEB-UMBruno P. Morais; Valdo Martins; Gilberto Martins; Ana Rita Castro; Maria Madalena Alves; Maria Alcina Pereira; Ana J. Cavaleiro;doi: 10.3390/en14164830
Hydrocarbon-containing wastes and wastewaters are produced worldwide by the activities of the oil and gas industry. Anaerobic digestion has the potential to treat these waste streams, while recovering part of its energy potential as biogas. However, hydrocarbons are toxic compounds that may inhibit the microbial processes, and particularly the methanogens. In this work, the toxicity of hexadecane (0–30 mM) towards pure cultures of hydrogenotrophic methanogens (Methanobacterium formicicum and Methanospirillum hungatei) was assessed. Significantly lower (p < 0.05) methane production rates were only verified in the incubations with more than 15 mM hexadecane and represented up to 52% and 27% inhibition for M. formicicum and M. hungatei, respectively. The results obtained point out that 50% inhibition of the methanogenic activity would likely occur at hexadecane concentrations between 5–15 mM and >30 mM for M. formicicum and M. hungatei, respectively, suggesting that toxic effects from aliphatic hydrocarbons towards hydrogenotrophic methanogens may not occur during anaerobic treatment. Hydrocarbon toxicity towards hydrogenotrophic methanogens was further assessed by incubating an anaerobic sludge with H2/CO2 in the presence of a complex mixture of hydrocarbons (provided by the addition of an oily sludge from a groundwater treatment system). Specific methanogenic activity from H2/CO2 decreased 1.2 times in the presence of the hydrocarbons, but a relatively high methane production (~30 mM) was still obtained in the assays containing the inoculum and the oily sludge (without H2/CO2), reinforcing the potential of anaerobic treatment systems for methane production from oily waste/wastewater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Sultan J. Alharbi; Abdulaziz S. Alaboodi;doi: 10.3390/en16031531
As the demand for electricity continues to grow in Saudi Arabia, finding ways to increase power generation becomes increasingly important. However, conventional power generation methods such as burning fossil fuels contribute significantly to environmental pollution and harm human health through the emissions of greenhouse gases. One potential solution to this problem is the use of solar energy, which has the advantage of being abundant in Saudi Arabia due to its location in the sun belt. When compared to conventional power generation methods, solar energy is a viable alternative, particularly when the indirect costs of fossil fuels, such as harm to the environment and human health, are considered. Using photovoltaic cells to convert sunlight into electrical energy is a key method for producing clean energy. Despite the initial cost of investing in solar energy infrastructure, it is ultimately less expensive than electricity derived from fossil fuels. In recognition of the potential of solar energy, the Saudi government has outlined an ambitious plan to install 41 GW of solar capacity and invest USD 108.9 billion by 2032. Additionally, financing and significant tax benefits have been provided to promote the development of the solar industry. This research article reviews the techno-economic analysis of PV power plants and examines previous policy papers and the existing research on the topic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Shingjiang Lue; Nai-Yuan Liu; Selvaraj Rajesh Kumar; Kevin Tseng; Bo-Yan Wang; Chieh-Hsin Leung;doi: 10.3390/en10121972
The purpose of this work is to develop a one-dimensional mathematical model for predicting the cell performance of a direct formic acid fuel cell and compare this with experimental results. The predicted model can be applied to direct formic acid fuel cells operated with different formic acid concentrations, temperatures, and with various electrolytes. Tafel kinetics at the electrodes, thermodynamic equations for formic acid solutions, and the mass-transport parameters of the reactants are used to predict the effective diffusion coefficients of the reactants (oxygen and formic acid) in the porous gas diffusion layers and the associated limiting current densities to ensure the accuracy of the model. This model allows us to estimate fuel cell polarization curves for a wide range of operating conditions. Furthermore, the model is validated with experimental results from operating at 1–5 M of formic acid feed at 30–80 °C, and with Nafion-117 and silane-crosslinked sulfonated poly(styrene-ethylene/butylene-styrene) (sSEBS) membrane electrolytes reinforced in porous polytetrafluoroethylene (PTFE). The cell potential and power densities of experimental outcomes in direct formic acid fuel cells can be adequately predicted using the developed model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10121972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10121972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Authors: Pilar Mercader-Moyano; Ana Mª Estable-Reifs; Homero Pellicer;doi: 10.3390/en14196188
The aim of this study is to highlight the need for sustainable urban development by reviewing the different Indicator Systems (SI) and contrasting them with those factors that have had a correlation in the spread of the virus in order to detect its deficiencies. This research carries out an urban diagnosis and analyzes the influence of these factors in order to detect deficiencies and propose a new IS adapted to current needs. Lastly, the new SI is validated through its practical application in one of the Autonomous Communities most affected by the pandemic in Spain. It is concluded that most of the factors causing a worse incidence of the virus are hardly evaluated by the existing IS. The practical analysis shows that there are deficiencies in urban design, resulting in poor environmental quality and urban morphology.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Rafia Mumtaz; Arslan Amin; Muhammad Ajmal Khan; Muhammad Daud Abdullah Asif; Zahid Anwar; Muhammad Jawad Bashir;doi: 10.3390/en16166087
Transitioning to green energy transport systems, notably electric vehicles, is crucial to both combat climate change and enhance urban air quality in developing nations. Urban air quality is pivotal, given its impact on health, necessitating accurate pollutant forecasting and emission reduction strategies to ensure overall well-being. This study forecasts the influence of green energy transport systems on the air quality in Lahore and Islamabad, Pakistan, while noting the projected surge in electric vehicle adoption from less than 1% to 10% within three years. Predicting the impact of this change involves analyzing data before, during, and after the COVID-19 pandemic. The lockdown led to minimal fossil fuel vehicle usage, resembling a green energy transportation scenario. The novelty of this work is twofold. Firstly, remote sensing data from the Sentinel-5P satellite were utilized to predict air quality index (AQI) trends before, during, and after COVID-19. Secondly, deep learning models, including long short-term memory (LSTM) and bidirectional LSTM, and machine learning models, including decision tree and random forest regression, were utilized to forecast the levels of NO2, SO2, and CO in the atmosphere. Our results demonstrate that implementing green energy transportation systems in urban centers of developing countries can enhance air quality by approximately 98%. Notably, the bidirectional LSTM model outperformed others in predicting NO2 and SO2 concentrations, while the LSTM model excelled in forecasting CO concentration. These results offer valuable insights into predicting air pollution levels and guiding green energy policies to mitigate the adverse health effects of air pollution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16166087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16166087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Zongyan Lv; Lei Yang; Lin Wu; Jianfei Peng; Qijun Zhang; Meng Sun; Hongjun Mao; Jie Min;doi: 10.3390/en15020622
Vehicle exhaust emissions have seriously affected air quality and human health, and understanding the emission characteristics of vehicle pollutants can promote emission reductions. In this study, a chassis dynamometer was used to study the emission characteristics of the pollutants of two gasoline vehicles (Euro 5 and Euro 6) when using six kinds of fuels. The results show that the two tested vehicles had different engine performance under the same test conditions, which led to a significant difference in their emission characteristics. The fuel consumption and pollutant emission factors of the WLTC cycle were higher than those of the NEDC. The research octane number (RON) and ethanol content of fuels have significant effects on pollutant emissions. For the Euro 5 vehicle, CO and particle number (PN) emissions decreased under the WLTC cycle, and NOx emissions decreased with increasing RONs. For the Euro 6 vehicle, CO and NOx emissions decreased and PN emissions increased with increasing RONs. Compared with traditional gasoline, ethanol gasoline (E10) led to decreases in NOx and PN emissions, and increased CO emissions for the Euro 5 vehicle, while it led to higher PN and NOx emissions and lower CO emissions for the Euro 6 vehicle. In addition, the particulate matter emitted was mainly nucleation-mode particulate matter, accounting for more than 70%. There were two peaks in the particle size distribution, which were about 18 nm and 40 nm, respectively. Finally, compared with ethanol–gasoline, gasoline vehicles with high emission standards (Euro 6) are more suitable for the use of traditional gasoline with a high RON.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Lanre Olatomiwa; Ahmad A. Sadiq; Omowunmi Mary Longe; James G. Ambafi; Kufre Esenowo Jack; Toyeeb Adekunle Abd'azeez; Samuel Adeniyi;doi: 10.3390/en15249554
Quality in healthcare service is essential in giving rural dwellers a good standard of living. It has been established that many rural locations in Sub-Saharan Africa away from the grid connection have difficulty accessing electricity. The inaccessibility of reliable energy and essential medical equipment was the leading barrier to improved healthcare delivery in these rural locations. The deficiency of basic medical equipment to power essential services due to limited or unreliable electricity access has reduced rural healthcare workers’ care capabilities, resulting in higher mortality rates. This paper, therefore, reviews the existing energy solutions for rural healthcare facilities, thereby analysing different approaches and the geographical energy mix and ascertaining the effectiveness of various techniques and energy mix as solutions to effective healthcare delivery in healthcare centres. Hybrid Renewable Energy Sources (HRES) microsystems, like microgrids incorporated with solar panels and battery, is identified to ensure higher and more reliable energy access in rural healthcare centres. At the same time, the adoption of Demand Side Management (DSM) in the HRES deployment in countryside healthcare facilities is reported to decrease the initial cost of installation and improve efficiency. Lastly, in improving energy access, rural electrification planning is achieved through modelling tools related to energy access modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Xiaoquan Zhou; Liguo Yang; Xiaoxu Fan; Xuanyou Li;doi: 10.3390/en16114434
Using traditional Chinese medicine residue biomass as the raw material and industrial limestone as a carbon absorbent, this paper investigates the production of hydrogen-rich synthesis gas in a pilot-scale calcium looping dual fluidized bed (DFB) system. The study focuses on analyzing the distribution characteristics of temperature and pressure, as well as the operation and control methods of the DFB system. The effects of reaction temperature, material layer height (residence time), water vapor/biomass ratio (S/B), and calcium/carbon molar ratio (Ca/C) on gasification products are examined. The experimental results demonstrate that as the temperature (600–700 °C), S/B ratio (0.5–1.5), Ca/C ratio (0–0.6), and other parameters increase, the gas composition shows a gradual increase in the volume content of H2, a gradual decrease in the volume content of CO, and an initial increase and subsequent decrease in the volume content of CH4. Within the range of operating conditions in this study, the optimal conditions for producing hydrogen-rich gas are 700 °C, an S/B ratio of 1.5, and a Ca/C ratio of 0.6. Furthermore, increasing the height of the material layer in the gasification furnace (residence time) enhances the absorption of CO2 by the calcium absorbents, thus promoting an increase in the volume content of H2 and the carbon conversion rate in the gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Youssef Kassem; Hüseyin Gökçekuş; Ali Güvensoy;doi: 10.3390/en14227627
The growth of populations and economy in Northern Cyprus has led to continuing utilization of fossil fuels as the primary source of electricity, which will raise environmental pollution. Thus, utilizing renewable energy, particularly solar energy, might be a solution to minimize this issue. This paper presents the potential of grid-connected solar PV power generation at Near East University Hospital (NEU Hospital), one of the largest and leading medical facilities in Northern Cyprus, to meet the energy demand during the daytime to reduce energy bills. For this purpose, the first objective of the study is to evaluate the solar energy potential as a power source for the NEU Hospital based on four datasets (actual measurement, Satellite Application Facility on Climate Monitoring (CMSAF), Surface Radiation Data Set-Heliosat (SARAH), and ERA-5, produced by the European Centre for Medium-range Weather Forecast). The results showed that the solar resource of the selected location is categorized as excellent (class 5), that is, the global solar radiation is within the range of 1843.8–2035.9 kWH/m2. The second objective is to investigate the impact of orientation angles on PV output, capacity factor, economic feasibility indicators, and CO2 emissions by using different PV modules. The results are compared with optimum orientation angles found by Photovoltaic Geographical Information System (PVGIS) simulation software. This objective was achieved by using RETScreen Expert software. The results demonstrated that the highest performance of the proposed system was achieved for orientation angles of 180° (azimuth angle) and −35° (tilt angle). Consequently, it is recommended that orientation angles, PV modules, and market prices are considered to maximize energy production and reduce electricity production costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Basem Al Alwan; Zhao Wang; Wissam Fawaz; K. Y. Simon Ng;doi: 10.3390/en15217827
All solid-state room-temperature lithium-sulfur (Li-S) batteries have gained increasing attention due to their ability to eliminate the polysulfides shuttle effects and the safety dangers associated with the liquid electrolytes. Herein, a novel composite solid-state electrolyte, which is nickel-tungsten carbides (NiWC) over mesoporous silica (SBA-15) filled polyethylene oxide (PEO), was developed and investigated for Li-S batteries. The filler minimizes the crystallinity of the PEO and increases the ionic conductivity of the electrolyte, resulting in lowering the AC impedance of electrolyte composite from 26,256 ohm to 2416 ohm and to 5734 ohm after adding the electrolyte material with Ni/W ratios of 1:1 and 9:1, respectively. A high initial specific capacity of 1305 mAh g−1 and a capacity retention of 66.7% after 8 cycles at C/10 was obtained at room temperature after adding NiWC/SBA-15 with a Ni/W ratio of 1:1. This novel composite solid-state electrolyte shows a remarkable long-term performance at high current rates (1, 2, 4, and 5C) and rate capabilities at 0.1, 0.2, 0.5, 1, 2, 4 and back to 0.1C. The battery was able to recover 77% of the initial specific capacity at 0.1C. The materials were characterized by XRD and SEM-EDX to study the crystallinity and elemental distributions, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15217827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:FCT | CEB-UMFCT| CEB-UMBruno P. Morais; Valdo Martins; Gilberto Martins; Ana Rita Castro; Maria Madalena Alves; Maria Alcina Pereira; Ana J. Cavaleiro;doi: 10.3390/en14164830
Hydrocarbon-containing wastes and wastewaters are produced worldwide by the activities of the oil and gas industry. Anaerobic digestion has the potential to treat these waste streams, while recovering part of its energy potential as biogas. However, hydrocarbons are toxic compounds that may inhibit the microbial processes, and particularly the methanogens. In this work, the toxicity of hexadecane (0–30 mM) towards pure cultures of hydrogenotrophic methanogens (Methanobacterium formicicum and Methanospirillum hungatei) was assessed. Significantly lower (p < 0.05) methane production rates were only verified in the incubations with more than 15 mM hexadecane and represented up to 52% and 27% inhibition for M. formicicum and M. hungatei, respectively. The results obtained point out that 50% inhibition of the methanogenic activity would likely occur at hexadecane concentrations between 5–15 mM and >30 mM for M. formicicum and M. hungatei, respectively, suggesting that toxic effects from aliphatic hydrocarbons towards hydrogenotrophic methanogens may not occur during anaerobic treatment. Hydrocarbon toxicity towards hydrogenotrophic methanogens was further assessed by incubating an anaerobic sludge with H2/CO2 in the presence of a complex mixture of hydrocarbons (provided by the addition of an oily sludge from a groundwater treatment system). Specific methanogenic activity from H2/CO2 decreased 1.2 times in the presence of the hydrocarbons, but a relatively high methane production (~30 mM) was still obtained in the assays containing the inoculum and the oily sludge (without H2/CO2), reinforcing the potential of anaerobic treatment systems for methane production from oily waste/wastewater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Sultan J. Alharbi; Abdulaziz S. Alaboodi;doi: 10.3390/en16031531
As the demand for electricity continues to grow in Saudi Arabia, finding ways to increase power generation becomes increasingly important. However, conventional power generation methods such as burning fossil fuels contribute significantly to environmental pollution and harm human health through the emissions of greenhouse gases. One potential solution to this problem is the use of solar energy, which has the advantage of being abundant in Saudi Arabia due to its location in the sun belt. When compared to conventional power generation methods, solar energy is a viable alternative, particularly when the indirect costs of fossil fuels, such as harm to the environment and human health, are considered. Using photovoltaic cells to convert sunlight into electrical energy is a key method for producing clean energy. Despite the initial cost of investing in solar energy infrastructure, it is ultimately less expensive than electricity derived from fossil fuels. In recognition of the potential of solar energy, the Saudi government has outlined an ambitious plan to install 41 GW of solar capacity and invest USD 108.9 billion by 2032. Additionally, financing and significant tax benefits have been provided to promote the development of the solar industry. This research article reviews the techno-economic analysis of PV power plants and examines previous policy papers and the existing research on the topic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Shingjiang Lue; Nai-Yuan Liu; Selvaraj Rajesh Kumar; Kevin Tseng; Bo-Yan Wang; Chieh-Hsin Leung;doi: 10.3390/en10121972
The purpose of this work is to develop a one-dimensional mathematical model for predicting the cell performance of a direct formic acid fuel cell and compare this with experimental results. The predicted model can be applied to direct formic acid fuel cells operated with different formic acid concentrations, temperatures, and with various electrolytes. Tafel kinetics at the electrodes, thermodynamic equations for formic acid solutions, and the mass-transport parameters of the reactants are used to predict the effective diffusion coefficients of the reactants (oxygen and formic acid) in the porous gas diffusion layers and the associated limiting current densities to ensure the accuracy of the model. This model allows us to estimate fuel cell polarization curves for a wide range of operating conditions. Furthermore, the model is validated with experimental results from operating at 1–5 M of formic acid feed at 30–80 °C, and with Nafion-117 and silane-crosslinked sulfonated poly(styrene-ethylene/butylene-styrene) (sSEBS) membrane electrolytes reinforced in porous polytetrafluoroethylene (PTFE). The cell potential and power densities of experimental outcomes in direct formic acid fuel cells can be adequately predicted using the developed model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10121972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10121972&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Authors: Pilar Mercader-Moyano; Ana Mª Estable-Reifs; Homero Pellicer;doi: 10.3390/en14196188
The aim of this study is to highlight the need for sustainable urban development by reviewing the different Indicator Systems (SI) and contrasting them with those factors that have had a correlation in the spread of the virus in order to detect its deficiencies. This research carries out an urban diagnosis and analyzes the influence of these factors in order to detect deficiencies and propose a new IS adapted to current needs. Lastly, the new SI is validated through its practical application in one of the Autonomous Communities most affected by the pandemic in Spain. It is concluded that most of the factors causing a worse incidence of the virus are hardly evaluated by the existing IS. The practical analysis shows that there are deficiencies in urban design, resulting in poor environmental quality and urban morphology.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Rafia Mumtaz; Arslan Amin; Muhammad Ajmal Khan; Muhammad Daud Abdullah Asif; Zahid Anwar; Muhammad Jawad Bashir;doi: 10.3390/en16166087
Transitioning to green energy transport systems, notably electric vehicles, is crucial to both combat climate change and enhance urban air quality in developing nations. Urban air quality is pivotal, given its impact on health, necessitating accurate pollutant forecasting and emission reduction strategies to ensure overall well-being. This study forecasts the influence of green energy transport systems on the air quality in Lahore and Islamabad, Pakistan, while noting the projected surge in electric vehicle adoption from less than 1% to 10% within three years. Predicting the impact of this change involves analyzing data before, during, and after the COVID-19 pandemic. The lockdown led to minimal fossil fuel vehicle usage, resembling a green energy transportation scenario. The novelty of this work is twofold. Firstly, remote sensing data from the Sentinel-5P satellite were utilized to predict air quality index (AQI) trends before, during, and after COVID-19. Secondly, deep learning models, including long short-term memory (LSTM) and bidirectional LSTM, and machine learning models, including decision tree and random forest regression, were utilized to forecast the levels of NO2, SO2, and CO in the atmosphere. Our results demonstrate that implementing green energy transportation systems in urban centers of developing countries can enhance air quality by approximately 98%. Notably, the bidirectional LSTM model outperformed others in predicting NO2 and SO2 concentrations, while the LSTM model excelled in forecasting CO concentration. These results offer valuable insights into predicting air pollution levels and guiding green energy policies to mitigate the adverse health effects of air pollution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16166087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16166087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Zongyan Lv; Lei Yang; Lin Wu; Jianfei Peng; Qijun Zhang; Meng Sun; Hongjun Mao; Jie Min;doi: 10.3390/en15020622
Vehicle exhaust emissions have seriously affected air quality and human health, and understanding the emission characteristics of vehicle pollutants can promote emission reductions. In this study, a chassis dynamometer was used to study the emission characteristics of the pollutants of two gasoline vehicles (Euro 5 and Euro 6) when using six kinds of fuels. The results show that the two tested vehicles had different engine performance under the same test conditions, which led to a significant difference in their emission characteristics. The fuel consumption and pollutant emission factors of the WLTC cycle were higher than those of the NEDC. The research octane number (RON) and ethanol content of fuels have significant effects on pollutant emissions. For the Euro 5 vehicle, CO and particle number (PN) emissions decreased under the WLTC cycle, and NOx emissions decreased with increasing RONs. For the Euro 6 vehicle, CO and NOx emissions decreased and PN emissions increased with increasing RONs. Compared with traditional gasoline, ethanol gasoline (E10) led to decreases in NOx and PN emissions, and increased CO emissions for the Euro 5 vehicle, while it led to higher PN and NOx emissions and lower CO emissions for the Euro 6 vehicle. In addition, the particulate matter emitted was mainly nucleation-mode particulate matter, accounting for more than 70%. There were two peaks in the particle size distribution, which were about 18 nm and 40 nm, respectively. Finally, compared with ethanol–gasoline, gasoline vehicles with high emission standards (Euro 6) are more suitable for the use of traditional gasoline with a high RON.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Lanre Olatomiwa; Ahmad A. Sadiq; Omowunmi Mary Longe; James G. Ambafi; Kufre Esenowo Jack; Toyeeb Adekunle Abd'azeez; Samuel Adeniyi;doi: 10.3390/en15249554
Quality in healthcare service is essential in giving rural dwellers a good standard of living. It has been established that many rural locations in Sub-Saharan Africa away from the grid connection have difficulty accessing electricity. The inaccessibility of reliable energy and essential medical equipment was the leading barrier to improved healthcare delivery in these rural locations. The deficiency of basic medical equipment to power essential services due to limited or unreliable electricity access has reduced rural healthcare workers’ care capabilities, resulting in higher mortality rates. This paper, therefore, reviews the existing energy solutions for rural healthcare facilities, thereby analysing different approaches and the geographical energy mix and ascertaining the effectiveness of various techniques and energy mix as solutions to effective healthcare delivery in healthcare centres. Hybrid Renewable Energy Sources (HRES) microsystems, like microgrids incorporated with solar panels and battery, is identified to ensure higher and more reliable energy access in rural healthcare centres. At the same time, the adoption of Demand Side Management (DSM) in the HRES deployment in countryside healthcare facilities is reported to decrease the initial cost of installation and improve efficiency. Lastly, in improving energy access, rural electrification planning is achieved through modelling tools related to energy access modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Xiaoquan Zhou; Liguo Yang; Xiaoxu Fan; Xuanyou Li;doi: 10.3390/en16114434
Using traditional Chinese medicine residue biomass as the raw material and industrial limestone as a carbon absorbent, this paper investigates the production of hydrogen-rich synthesis gas in a pilot-scale calcium looping dual fluidized bed (DFB) system. The study focuses on analyzing the distribution characteristics of temperature and pressure, as well as the operation and control methods of the DFB system. The effects of reaction temperature, material layer height (residence time), water vapor/biomass ratio (S/B), and calcium/carbon molar ratio (Ca/C) on gasification products are examined. The experimental results demonstrate that as the temperature (600–700 °C), S/B ratio (0.5–1.5), Ca/C ratio (0–0.6), and other parameters increase, the gas composition shows a gradual increase in the volume content of H2, a gradual decrease in the volume content of CO, and an initial increase and subsequent decrease in the volume content of CH4. Within the range of operating conditions in this study, the optimal conditions for producing hydrogen-rich gas are 700 °C, an S/B ratio of 1.5, and a Ca/C ratio of 0.6. Furthermore, increasing the height of the material layer in the gasification furnace (residence time) enhances the absorption of CO2 by the calcium absorbents, thus promoting an increase in the volume content of H2 and the carbon conversion rate in the gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu